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Abstract: In image captioning models, the main challenge in describing an image is identifying all
the objects by precisely considering the relationships between the objects and producing various
captions. Over the past few years, many methods have been proposed, from an attribute-to-attribute
comparison approach to handling issues related to semantics and their relationships. Despite the
improvements, the existing techniques suffer from inadequate positional and geometrical attributes
concepts. The reason is that most of the abovementioned approaches depend on Convolutional
Neural Networks (CNNs) for object detection. CNN is notorious for failing to detect equivariance
and rotational invariance in objects. Moreover, the pooling layers in CNNs cause valuable information
to be lost. Inspired by the recent successful approaches, this paper introduces a novel framework
for extracting meaningful descriptions based on a parallelized capsule network that describes the
content of images through a high level of understanding of the semantic contents of an image. The
main contribution of this paper is proposing a new method that not only overrides the limitations
of CNNs but also generates descriptions with a wide variety of words by using Wikipedia. In our
framework, capsules focus on the generation of meaningful descriptions with more detailed spatial
and geometrical attributes for a given set of images by considering the position of the entities as
well as their relationships. Qualitative experiments on the benchmark dataset MS-COCO show that
our framework outperforms state-of-the-art image captioning models when describing the semantic
content of the images.

Keywords: image captioning; deep learning; Convolution Neural Network; natural language processing

1. Introduction

Automatic image captioning is a challenging problem in computer vision, and it aims
to generate rich content and human-understandable descriptions for given images [1].
With the increase in the volume of digital images, we must deal with many different
image resources on the Internet, i.e., news articles, advertisements, blogs, and the like.
As most images have no description, their user-driven interpretation is challenging, and
even when a description is present, manually checking that it corresponds to the image
is time-consuming. Therefore, the increasing volume of images asks for automatic image
captioning approaches to describe the content of images. Describing the content of images
has many applications, such as scene understanding and image retrieval in several use cases
including biomedicine, business, education, digital libraries, and web search engines [2].
For example, image captioning effectively allows blind people to comprehend and perceive
their surroundings.

The performance of image captioning models is closely related to the quality of
extracted features from images. The power of the language model can help to generate
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accurate and meaningful descriptions related to image content. Considering the semantic
relationships between the identified objects within the image is essential in the image
caption generation task. However, identifying the objects (i.e., the nouns in the caption)
within an image is still challenging. Moreover, finding their interaction (i.e., the verbs in
the caption) is extremely difficult. In fact, expressing object interaction by natural language
as semantic knowledge, either as verbs or adverbial compositions, is the core issue in
image captioning. Figure 1 shows an example image for which our model has generated
its corresponding caption and one given manually by a human. In both captions, the
relationship (standing, posing) among the objects (group of people, small children) plays
an important role in understanding the picture.
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Figure 1. An example of an image description with the proposed model.

The visual content of the images alone cannot always be completely interpreted.
Recent image captioning methods use deep learning algorithms to control the complexity
and address the above challenges of the image captioning process [3–8]. However, they
struggle with generating realistic descriptions that capture all image concepts. Other
image captioning models use convolutional neural networks (CNN) as an image feature
extractor. These networks cannot significantly identify prominent image objects and their
relationships to generate a meaningful description for the image. Additionally, CNN needs
a lot of data to learn, and using pooling layers in CNN leads to valuable information loss.

In this paper, we develop a novel method that (1) overcomes the limitations of CNNs,
(2) generates descriptions with a non-restricted variety of words, and (3) is capable to
describe the relationships between the objects. We use a novel encoder–decoder mechanism
that addresses these challenges by using a capsule network (CapsNet) [9]. The result is a
set of meaningful descriptions for the image via a language model. CapsNet can effectively
compensate for the shortcomings of a CNN by detecting tissue overlap characteristics [10].
In CapsNet, more salient spatial features and geometrical attributes, such as direction,
size, scale, and object attributions, can be represented for each input. This aspect of
CapsNet contrasts with CNN since the lack of local invariance features produces excessive
variations of global discriminating outputs [11]. In addition, our model employs an external
knowledge base, i.e., Wikipedia, aiming to accomplish augmented textual training data to
generate more meaningful and diverse captions.

More specifically, in our model, the encoder–decoder system is employed to describe
the content of images in natural language. The encoder extracts attributes from the features
of the image together with semantic relationships between those attributes by a CNN and a
CapsNet. The output of the encoder is three sequences of indexes. The first one declares the
visual content and high-level concepts within each image. The second sequence of indexes
is the corresponding textual information extracted from Wikipedia based on the predicted
labels of the images, and the last sequence represents the descriptions of each image as
already present in the dataset. These fixed-length attribute vectors are fed to the recurrent
neural networks (RNN) as a decoder to generate a caption by a language model. The main
contributions of our work are as follows:

• The development of a novel parallel structure for a capsule network can capture more
comprehensive information about the objects within an image by considering their
relationships.
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• The use of Wikipedia as an external knowledge base for enrichment of all the textual
training information and generating out-of-domain representation when describing
the content of the image

• The application of our framework on the MSCOCO large-scale dataset. As mentioned
in [11], using large-scale dataset including RGB images requires a huge number of
resources because of the architecture of capsule networks.

• We performed a benchmarking towards a list of existing state-of-the-art models.

This paper is organized as follows: Section 2 presents an overview of the related
literature and models in image captioning. All the employed models and the proposed
method with the design of the framework are presented in Section 3. In Sections 4 and 5,
the reader can find the descriptions of all experiments and the study results, followed by
the conclusions in Section 6.

For assessing the results, we used standard discrete natural language processing
metrics such as BLEU 1–4 [12], ROUGE [13], and METEOR [14], showing a more accurate
description of the input image when compared to existing state-of-the-art models.

2. Related Work

Image captioning is a popular research topic in computer vision and natural language
processing. Generating an accurate textual explanation that describes the content of an
image is accomplished by understanding the visual content of the image. Recently, the
interest in image captioning has broadened with the development of benchmark datasets
such as MS-COCO [15], Flickr 8K [16], and Flickr 30K [17].

Current image captioning models can be categorized into template-based, retrieval-
based, and neural network-based models. The template-based models [18–20] first detect
all the image attributes using image classification and object detection methods. These
methods generate captions by filling in pre-defined templates from the identified objects.
This approach produces too flexible captions that cannot correctly describe the relationships
between attributes [21].

Retrieval-based models [22–24] create a pool of similar images in an image database
and rank the retrieved images by measuring their similarities and then change the found
image descriptions to create a new description for the queried image. The usefulness of
this strategy is severely constrained when dealing with images that are not in the dataset
and thus not classified, i.e., unseen.

The neural network-based models are inspired by the success of deep neural networks
in machine learning tasks and use in an encoder–decoder architecture [25–35]. An encoder
extracts image contents by a CNN, a module associates contents to words, and a decoder
by an RNN is used for language modeling and creating image captions. Kiros et al. [27]
proposed a multimodal language model that jointly learned the high-level image features
and word representations. Their model can generate image captions without using any
default template or structure, making the model more flexible. Nevertheless, their model
could not learn latent representations of the interactions between the objects in the image.
Moreover, they investigated a manual algorithm including multiple modules that cannot
learn from each other during the training process.

Wu et al. [25] proposed a two-phase attribute-based model for the image captioning
approach based on a CNN-LSTM framework. The CNN classifier extracts the attributes
as high-level semantic concepts in their framework to generate image captions. They
significantly improved in generating rich captions, but their model demonstrates the
problem of equally distributing semantic concepts in whole sentences [5]. They also
implemented a visual question-answering model in the captioning phase using extracted
information from an external knowledge base to answer a wide range of image-based
questions based on the content of images.

Mason and Charniak [28] proposed a graphic retrieval model to obtain the textual
description of undescribed images based on the text descriptions of similar images with
the highest rank in the dataset. The constant presence of the best matches description
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sentence to the query image is unrealistic. A word frequency model has been used to find
a smoothed assessment of the visual content of various captions. The same challenge is
found in [29], in which Devlin et al. provided the nearest neighbour method for image
captioning. They make a pool of captions based on training data and describe the query
image based on the nearest neighbour images. Vinyals et al. [30] used a Neural Image
Caption (NIC) model to generate a plain text description by maximizing the likelihood of
the target sentence given the image. In NIC, the words with the highest probability are
selected from outputs to be formed as an image description.

Lebret et al. [31] investigated a CNN-based image captioning approach to infer phrases
that describe the image. Then all the predicted phrases are combined using a language
model to create a caption. Their proposed model is an example-based method that makes
the model like a large dictionary, and accurate, relevant descriptions will not always be
found in the data source. Therefore, these methods are not always fine for complex data,
although they avoid critical mistakes in generating captions using a language model.

You et al. [32] proposed a combined bottom-up and top-down model which selects
salient regions of an image via a bottom-up mechanism and then generates the captions by
applying a top-down mechanism. A similar image captioning method has been proposed
by Johnson et al. [33]. They employed a convolutional localization network to predict a
set of captions across the important regions of the image and generate the label sequences
using a recurrent neural network. The proposed method localizes the salient regions and
generates captions for each region using a language model. Finding a relationship between
all these regions is always a big challenge in these approaches.

Liu et al. [3] proposed an ontology to describe the scene construction of images. Their
constructed ontology can specify the object types and the special information for the
objects (e.g., location, velocity). This visual and special information can transform into
meaningful project information for generating captions using integrated computer vision
and linguistic models.

Various improvements are made to captioning models to make the network more
inventive and effective by considering visual and semantic attention to the image. For ex-
ample, in Ref. [34], Yang and Liu introduced a method called ATT-BM-SOM to increase the
readability of the syntax and optimize the syntactic structure of captions. This framework
operates based on the attention balance mechanism and the syntax optimization module
and effectively fuses image information. Their model generates high-quality captions,
compensating for the lack of image information selection and syntax readability.

Training large amounts of data give machine learning models greater predictive per-
formance. However, training massive data by machine learning may increase the execution
time of the model and it could memorize the data that causes the model to overfit. In
Ref. [35], Martens and Provost demonstrated that a large amount of data could lead to lower
estimation variance and hence lower error with better prediction performance. However,
data quality plays an important role in the performance of the model. The hypothesis is
that more data may contain useful information. To this aim, Hossain et al. [36] proposed a
method that leverages a combination of real and synthetic data generated by the Genera-
tive Adversarial Network (GAN). It is an efficient alternative for the techniques requiring
human-annotated images, as they are labor-intensive to generate and time-consuming.

Xian and Tian [37] employed a self-guiding model to extract textual features using
the multimodal LSTM model. Their model adequately describes the images without
having a perfect training dataset. It is an important issue that we have considered in the
research described in this paper. Recently, Reinforcement Learning (RL) methods have
been incorporated into image caption generation models. Rennie et al. [26] proposed a
reinforcement model for optimizing the process of image captioning. They considered a
reward parameter on the results at the test time. Yan et al. [38] proposed a hierarchical
model that uses the GAN and RL algorithm to produce more accurate captions for images.
They measured the consistency between the generated captions and the content of images
by the RL optimization process and the discriminator in the framework of GAN. For object
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detection and extracting salient regions from an image, they used faster R-CNN models,
and then they used CNN to extract features from the proposed regions. They achieved
significant improvement over the generated captions for the images.

In Section 3, the structure of the image caption generation models and the employed
networks in our experiments will be discussed in more detail.

3. Materials and Image Captioning Methods

Following the trend of current work, as mentioned in Section 2, we use an encoder–
decoder framework to create the captions of images. Understanding the image requires
recognizing the objects, properties, and interactions in the encoder part. Moreover, produc-
ing sentences to describe images in the decoder requires understanding language syntax
and semantics. Figure 2 illustrates the employed Knowledge Discovery Database (KDD) of
our model: images and descriptions proceed separately in the data processing phase. Then
in the transformation phase, all the image and text data are processed to create feature
vectors for the language model. A CNN is employed for predicting the labels from the
given image. In the text enrichment phase, we used Wikipedia to extract relevant informa-
tion based on the predicted labels of images. Then, all the data sequences are fed to the
language model in the NLP phase for tokenizing, embedding, and making word vectors
from the image captions in the dataset and extracted knowledge from Wikipedia. After
which, all the information is fed into the caption predictor in the evaluation section to
produce a caption given the input image.
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The novelty of our work consists of a new variant of the capsule network, parallelizing
its basic structure to capture more comprehensive information about the objects within
the image, thus leading to a more accurate description of the input image. The primary
structure of the capsule network works well on a simple dataset such as MNIST, which
includes images with a single object and only one channel. However, the network efficiency
significantly decreases when applied to images with large special dimensions and complex
datasets such as MS-COCO and Flicker. The presence of multiple channels and objects in
the images increases the training time of the network and leads to weak results compared to
state-of-the-art [39]. This problem happens due to inefficiency in capturing the underlying
information of the image. To handle this issue, we extended the baseline network by
parallelizing the convolutional layers and the primary capsules of the original CapsNet,
followed by a concatenation approach to extract more complex and qualified features from
the images. On the other hand, parallelizing the convolution layers reduces the dimensions
of the fed features to the primary capsules and accelerates the learning process.

In the proposed image captioning model, we use CNN and CapsNet architectures to
incorporate visual context from an image, which is then used as the input of a machine
translation, such as an RNN architecture, to generate objective sentences in the decoder part
of the framework. We applied cross-entropy loss to adjust the model weights during the
sequential model training. In this section, the entire model flow is described in more detail.

We divide the dataset into a train, validation, and test subsets. The train and validation
sets are fed to the CNN and CapsNet to extract the visual features next. Transfer learning
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in CNN has been involved in retraining the MS-COCO dataset and extracting the visual
attention of images. We have applied both the Inception-V3 or VGG16 as image feature
extractors. These networks are trained on the ImageNet dataset with more than one
million images of 1000 classes. Training the CapsNet is done from scratch and based on 80
categories of objects in Category Caps. Subsequently, the image features and captions are
transferred to the RNN network to train the language model.

The proposed architecture uses Inception-V3 and capsule networks to extract visual
information from the images and compare all our experiments to the result of the base
models. The details of these networks are shown in Table 1.

Table 1. Specific parameters of the models in the evaluation.

Parameters
Networks

VGG-16 Inception-v3 CapsNet

Depth 16 48 8
Image size (pixel) 224 × 224 299 × 299 299 × 299
Solver (optimizer) SGDM RMSProb ADAM

Loss function cross-entropy cross-entropy MSE
Batch size 32 64 128

Learning rate 0.001 0.0001 0.001
Learning rate drop factor 0.1 0.1 0.5
Learning rate drop period 10 10 10

Momentum 0.9 0.9 0.9
Gradient threshold method L2norm L2norm L2norm

SGDM: Stochastic gradient descent with momentum; Adam: Adaptive momentum estimation; RMSProb: root
mean square propagation; MSE: mean squared error.

3.1. Inception-V3

In 2015, Google introduced GoogleNet [40]. This network reduces the computational
burden of the network with a lightweight structure and has been shown to obtain better
performance. The first version of the inception network includes filters of multiple sizes
(1 × 1, 3 × 3, 5 × 5) to perform convolution on an input image. To reduce the network
parameters and computational cost, Inception-V3 breaks down the kernels into smaller
sizes (e.g., 5 × 5 kernels into two (1 × 5, 5 × 1)). This solution can extend the depth
of the network and helps to prevent computation and overfitting issues. Our research
demonstrated the proper performance of Inception-V3 [41]

In the encoder phase, we used the extracted features from the last fully connected
layer of the Inception-V3 network and the predicted labels from the SoftMax layer.

3.2. VGG16

This network is one of the two networks introduced by Simonyan and Zisserman
in 2014 [42]. This model has 13 convolutional layers of a 3 × 3 filter with a stride of
1 pixel followed by a max-pooling layer 2 × 2 filter of stride two and ReLU activation
function. ReLU can reduce the gradient disappearance problem by providing more optimal
error transmission than the sigmoid function. This network computes approximately
138 M parameters and is considered an extensive network. A pre-trained network on
the ImageNet dataset extracts visual features from input images by applying the transfer
learning method. VGG16 has five convolutional layers and pooling modules. These
modules have respectively 64, 128, 256, 512, and 512 filters. The feature map size will be
reduced in half after each module. Following [25], we considered this model a baseline
because of its straightforward character. We employ the extracted features from the last
fully connected layer to initialize the RNN network.
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3.3. Capsule Network

A capsule is a set of neurons whose activity vectors indicate the posture characteristics
of an entity and the length of the vector denotes the chance of that entity existing. Unlike a
convolutional network, capsules save comprehensive information about the location and
pose of an entity.

Hinton et al. [9] claimed that regardless of the high capability of CNNs, this network
has two main disadvantages: 1—lack of rotation invariant and 2—using a pooling layer.
The former causes failure in recognizing spatial relations between the objects, and the latter
causes information loss due to the maximum value selection of each region. Therefore
Sabour et al. [9] proposed a capsule network to address the issues mentioned above.

There are different concrete components in a capsule network for learning the semantic
representations within the image (see Figure 3). These components map construction by
reconstructing the discrepancy map from the input image. The major components of the
capsule network involve the following:

• Primary capsules combine the features extracted by convolutional layers in the con-
struction phase.

• Reshaping the extracted feature maps from the primary capsules.
• Squashing is a non-linear activation function that squashes the weighted input vector

of a particular capsule. This function distributes the length of the output vector
between 0 and 1.

• The dynamic routing layer produces output capsules with high agreements by au-
tomatically grouping input capsules. The pooling layers in the capsule network are
replaced by a mechanism called “routing by agreement” in the rooting layer: the
output of each capsule in the lower level is sent to the parent capsules in the higher
level only if their features have a dependency.

• Category capsules with a marginal classification loss and a reconstruction sub-network
with a reconstruction loss for recovering the original image from capsule representa-
tions.
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Figure 3. Capsule Network Architecture.

The operation of all these components is explained in this section in more detail.
One important aspect of capsule networks is their ability to identify individual parts of
objects in a single image and then represent spatial relationships between those parts. For
example, in Figure 3, the CapsNet has identified three different parts of objects within
the input image (tie, child, bin). The output image on the right side of the figure shows
the result of the reconstruction subnetwork in the employed capsule network. Figure 4
shows the construction of a capsule and how data is routed between lower-level and
higher-level capsules.
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In Figure 4a, each capsule finds the appropriate parent in the next layer during the
dynamic routing procedure to send its output to those capsules in the above layer. The
input and output of a capsule are vectors. Given ui as the prediction vector of capsule i and
uj|i as the output of parent capsule j in higher level will be computed by multiplying ui
with a weighted matrix wij :

ûi|j = wij . ui (1)

The length of ui indicates the probability of predicting a component in the image
even after changing the viewing angle. The direction of ui represents several properties
of that component, such as size and position. A weighted sum overall ˆuj|i and an inter-
mediate coupling coefficient cij , is calculated as the total input vector to capsule j by the
following function:

sj = ∑
i

cijûj|i (2)

Here, the coupling coefficient cij , are the class-specific likelihood calculated after
flattening the vectors and is computed by a routing SoftMax function as follows:

cij =
exp

(
bij
)

∑k exp(bik)
(3)

where bij represents the log probability of connection between capsules i and j. As shown
in Figure 4b, the value of cij increases when the lower-level and higher-level capsules are
consistent with their predictions and decreases when they are inconsistent. Based on the
original paper, this parameter is initialized at 0 in the routing by agreement procedure.
Instead of applying the ReLU activation function as in VGG16 and Inception-v3, the
following non-linear squashing function [9] will be calculated over the input vector in
this network:

vj =

∣∣∣∣sj
∣∣∣∣2

1 +
∣∣∣∣sj
∣∣∣∣2 sj∣∣∣∣sj

∣∣∣∣ (4)

where sj is the input vector and vj is the normalized output between 0 and 1. The log
probability is updated along with the routing mechanism by calculating the agreement
between vj as the output of capsule j in the above layer and ˆui|j, as a prediction vector.

The loss function of the network for each capsule k is computed as follows:

Lk = Tkmax
(
0, l+ − ||Vk||

)2
+ λ (1− Tk) max

(
0, ||Vk|| − l−

)2 (5)

where Lk is loss term for one prediction, Tk is a term equal to 1 when the class k is present;
otherwise, it is 0. The upper and lower bounds of margin loss parameters, l+ and l−, are
set to 0.9 and 0.1 [9]. It means that if an entity is present with a probability above 0.9, the
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loss is zero; otherwise, the loss is not zero. Regarding capsules that could not predict the
correct label, if the predicted probability of all those labels is below 0.1, the margin loss
is zero; otherwise, it is not zero. The parameter λ is set at 0.5 and is used for numerical
stability to control the down weighting of the initial weights for the absent classes. || . ||
in all the equations denotes L2 norm.

3.4. Improved Capsule Network

In the improved version of the capsule network architecture, where we parallelized
the convolution layers and primary capsules, the input image size is 229 × 229 × 3. The
different architecture of the capsule network distinguishes it compared to CNN. Except for
the input and output layers, the capsule network consists of primary and category capsule
layers. The output of the capsules is forwarded to the decoder. The networks prevent
overfitting by rebuilding the input image from the output capsules by minimizing the
reconstruction loss as a regularization method in the decoder [43].

The original capsule network has been tested on the MNIST dataset with one color
channel (grayscale). However, the color of objects is an important factor in object detection
and image captioning tasks. Therefore, we propose a parallelized capsule network that
generates the descriptions of the images by passing the RGB images with three color
channels through the three blocks of parallel convolutional layers and parallel primary
capsules. The three-color channels of RGB images can store information and intuitively
visualize content. Therefore, color analysis is also addressed in this parallelized structure
of the capsule network, which makes the model more informative and improves the
descriptiveness of image captions by extracting more qualified features from the image [44].
Adding more convolutional layers was not logical due to the increasing model complexity
computational cost. The structure of the new network has been presented in Figure 5.
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Figure 5. Our proposed model: a CNN and a CapsNet are applied to a given image to produce the
visual features and predict the attributes of the image (a–k). The textual information of each sample
comprises the descriptions of the image and the aggregated data from the external database, and a
preprocessed method is applied to the text (l–n). After tokenizing and embedding process, the visual
attention of the image is fed to a GRU with three levels to generate a caption to explain the content of
the image (o–q).
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3.5. Gated Recurrent Uni

Our image captioning framework used a three-layer RNN network with a Gated
Recurrent unit cell [45]. This RNN is equipped with visual features in the feature maps
of CNN and CapsNet. The proposed model generates a description for each image by
maximizing the probability of the current word predicted in the caption according to the
following formula:

θ∗ = argmaxθ ∑
(I,M)

log p(M|I; θ) (6)

where θ are the parameters of the proposed model and M is the correct description of image
I. Suppose {m0, . . . , mN−1} is a sequence of words in transcription M of length N, then
log p(M|I) as the probability of generating a word for an image I, is as follows:

log p(M|I) =
N

∑
t=0

log p(mt|I, m0, . . . , mN−1, ct ) (7)

where t is the time step and ct is context vector. A two-step process feeds all the text data to
the RNN network. The first step is tokenizing, and the second one is embedding. All the
words in the sentences are converted into so-called integer-token vectors during tokenizing.
This process is based on 10,000 most frequent and unique words in the image captions.

Throughout the embedding, all the integer-token vectors are transformed into floating-
point vectors. We considered this part a decoder consisting of three GRU layers with an
input size of 512. The embedding layer converts all the integer tokens into a 128-length
vector. The output features initialize the GRU units from the encoder part. The governing
equations in GRU are given as follows:

rt = σ(Wr[ht−1, xt] + br) (8)

zt = σ(Wz[ht−1, xt] + bz) (9)

h̃t = tan h
(

Wh[rt � ht−1, xt] + bh̃t

)
(10)

ht = zt � h̃t + (1− zt)� ht−1 (11)

xt = [Ewmt−1, ct] (12)

where rt is reset gate vector at instant t, ht is output vector of the hidden layer, h̃t is candidate
activation vector, which is temporary output, zt is update gate vector, and Wr, Wz, Wh are
the weight matrices of the reset gate, the update gate, and the temporary output. All the
biases corresponding to these weight matrices are represented by br, bz, bh̃t

. xt is input
vector at instant t, which is based on the input embedding matrices, Ew, and the one-hot
encoder of the previous word, mt−1. ct is the context vector extracted by the feature maps
of CNN and CapsNet. The concatenation operator is applied on Ewmt−1 and ct to make the
input of the RNN network. � is an element-wise product.

Eventually, we minimize the following standard cross-entropy loss function for the
proposed captioning model with parameter θ and given a target ground truth m∗1:t.

Lcθ = −
T

∑
t=1

log (pθ(m∗t |m∗1:t−1)) (13)

The performance of the implementation by different metrics is discussed in the section
on evaluations and results.

3.6. External Knowledge

Many pipeline approaches have been proposed for image captioning by integrating
knowledge in text script form. In this paper, the generated caption of an input image is
obtained using “beam search”, i.e., in each iteration for training one image, we considered
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the top five attributes as a candidate for a query in a knowledge database to retrieve
sentences. After extracting the visual features of each image using CNN and CapsNet,
those five predicted attributes are used as queries to extract contextual information from
the Wikipedia database for every image in the training dataset. We only selected the first
three sentences for every attribute from all information retrieved from Wikipedia. Then
by applying the automatic summarization method, we extract the first three sentences of
retrieved text for each top five predicted label from CNN. By using this external knowledge,
we enrich the descriptive information of each image. We then passed this information
and all five available captions in the training set to the RNN network for generating a
descriptive caption from the image.

3.7. Framework

The final model follows the encoder–decoder framework. The entire architecture of
our proposed model is shown in Figure 5. There are three primary phases in this model. The
first phase includes extracting features from the images using two deep neural networks.
In this step, CapsNet and inception-V3 are used for extracting visual content from the
input image concurrently. In CapsNet, at first, three parallel levels with three convolutional
layers in 72 × 72 × 96, 34 × 34 × 96, and 26 × 26 × 256 sizes are applied to each channel
of the image (Figure 5a). As stated in Section 3, a primary capsule block is followed by
a reshaping and squashing process to take the concatenated features recognized by the
convolutional and primary capsule layers and combine them to produce new features
(Figure 5b). Then, the “routing by agreement” mechanism is performed rather than a
pooling operation (Figure 5c). Based on this mechanism, the output of each capsule in the
lower level is sent to those parent capsules in the higher level with dependency on their
features. The next layer is category capsules, which indicate the membership probability
of the input image in each category. The actual label masks the output of the categorical
capsule layer by using the L2-norm to calculate the loss (Figure 5d). The last part of the
capsule network is the decoder, which is used as a regularizer with two fully connected
layers with sizes 512 and 1024 (Figure 5e).

Capsules are forced to learn features that can be used to reconstruct the input image
by the decoder based on the calculated reconstruction loss. The output of the second fully
connected layer is used as the image visual features vector (Figure 5f). At the same time,
Inception-V3, as the second feature extractor, produces the features vector from the input
image (Figure 5h). A pre-trained convolutional network is used in this step to handle
the overfitting issue and increase the training time. Then, both visual feature vectors are
concatenated to feed the language model (Figure 5g,i,j). All of these operations are done in
the first phase.

In the second phase, in addition to five captions for each image in the dataset, we
extract external knowledge from Wikipedia based on the top five labels of each image
extracted from the CNN network (Figure 5k). We use the first three sentences of the
description retrieved by Wikipedia (Figure 5l) for each label. Finally, the information from
the first two phases is fed to the last phase (Figure 5m). In the last phase of the framework,
we use the RNN network with three layers of GRU as a decoder (Figure 5p). Tokenizing
and embedding layers convert all the preprocessed textual data to an integer vector before
feeding the descriptions to the language model (Figure 5n,o). Finally, our model trains
to describe all the textual and visual features of images by applying language modelling
techniques (Figure 5q). The model steps in Figure 4 are summarized as follows:

1. Partitioning the image set into train, validation, and test subsets randomly
2. Applying image feature extractor models to extract visual features from the images

(Figure 5a–j)
3. Extracting external knowledge for each image by searching the predicted labels from

the previous step as a query in Wikipedia and adding it to the captions that already
exist for the images in the dataset (Figure 5k–m)
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4. Applying preprocessing methods to contextual data before feeding it to the RNN net-
work, i.e., removing the punctuations numbers and wrapping each sentence around
with “ssss” and “eeee” tokens to specify the beginning and end of sentences for the
network (Figure 5n)

5. Transforming the textual features to the integers vector by tokenizing and embedding
operations for training by the language model (Figure 5o)

6. Training language model for certain epochs based on its performance on validation
data. During the training phase, the model predicts the next word of each word in the
caption (Figure 5p,q)

After the training phase, the model is ready to evaluate test set images by extracting
visual features and predicting the captions using a greedy search. Greedy search selects the
word with the highest probability at each time step and uses it as the GRU input for the
following time step until the end of the sentence is reached. In the next section, we will
discuss the details of the experiments and the obtained results by the analyzed methods.

4. Experiments

This section reports the details of implementations and the results of the experiments
conducted by different variations of models.

4.1. Dataset and Implementation Details

We use the MS-COCO dataset [15] to evaluate the proposed model in our experiments.
MS-COCO contains 123,287 k images with five captions and 80 object categories for each
image annotated by Amazon Mechanical Turk (AMT) workers. Since there are no available
annotations for the test set, in this work, we used publicly available splits provided by
Karpathy et al. [46]. We use 5000 images for validation and testing and the rest for the
training set. All the models are implemented in Python version 3.6 and using the capabilities
provided by Keras version 2.2.5 and TensorFlow version 1.15.0 deep learning libraries.
Table 1 shows the parameters set for each network. The training was done using a machine
equipped with two GeForce RTX 2080 GPU cards with 8 GB memory. The machine was
installed with two GPUs, but for the experiments, only one was necessary.

4.2. Metrics

To compare our results to other baseline models, we measure the performance of the
implemented models by the commonly used metrics, BLEU 1–4 [12], ROUGE [13], and
METEOR [14].

BLEU is one of the popular metrics to evaluate the correspondence between generated
sentences by humans and machines. This metric measures the maximum number of co-
occurrence n-grams between reference and candidate sentences. Here, ‘n’ takes the value
of 1, 2, 3, and 4 depending on the length of sentences. Each BLEU-N metric averages the
calculated accuracies from n = 1 to n = N. It means that BLEU-1 is the accuracy of the
description created for the image with the reference description based on 1-gram, BLEU-2
is the geometric mean of the calculated accuracies based on 1-gram and 2-gram, BLEU-3 is
the geometric mean of the calculated accuracies based on 1-gram, 2-gram, and 3-gram, and
so on.

ROUGE evaluates the performance of generated sentences by a machine based on
their similarity to the reference sentences. This metric finds the longest subsequence of
tokens between candidate and reference sentences and calculates how many tokens from
the human reference summaries were duplicated in the machine-generated summaries.
Unlike BLEU, which prioritizes precision, ROUGE is recall-oriented and can estimate
correlated n-grams better than BLEU.

METEOR is the last evaluation metric in this paper. In this metric and the exact word
match, the stemmed and wordnet synonym tokens are taken into account between the
alignment of the candidate and the reference sentence.
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Baselines: We provide two baseline approaches to verify the effectiveness of the
models. The framework for the baseline is almost the same as the model in [25] as a
baseline method, except that GRU replaces the LSTM language model. We used inception-
V3 and VGG16 as the feature extractor method for the encoder part.

Our approaches: We assess different variations of our approach. CN + IncV3 utilizes
the extracted features from the capsule network and inception-V3 as image features ex-
tractors. CN + VGG16 uses a VGG16 network rather than inception-V3 in the encoder.
The Wikipedia knowledge base enriches the contextualized language model in this model.
So, CN + IncV3 + EK and CN + VGG16 + EK are the models that use relevant external
knowledge from Wikipedia. We also have performed additional experiments to check
the importance of the capsule network in describing the content of images. To that end,
we implemented IncV3 + EK and VGG16 + Ek methods to verify the effectiveness of the
capsule network for image captioning models.

5. Results and Discussions

This section discusses the results from the different implementations of our framework
and then compares them to state-of-the-art. Table 2 reports image captioning results for
different implementations of our method on the MS-COCO dataset. The results demonstrate
that the CN + IncV3 + EK model with capsule network and inception-V3 feature extractors
can generate more human-like sentences by adding external knowledge to the language
model. This model archives significantly better results in the overall metrics.

Table 2. The experimental results of implemented models. Bold text indicates the best overall performance.

Models
Metrics

BLEU1 BLEU2 BLEU3 BLEU4 ROUGE METEOR

VGG 16 (Baseline) 0.33 0.24 0.18 0.16 0.21 0.24
IncV3 (Baseline) 0.36 0.26 0.21 0.17 0.23 0.28

CN + IncV3 0.77 0.54 0.43 0.35 0.47 0.35
CN + VGG 16 0.41 0.30 0.25 0.19 0.28 0.34

CN + IncV3 + EK 0.89 0.74 0.61 0.54 0.66 0.45
CN + VGG 16 + EK 0.59 0.44 0.37 0.29 0.31 0.38

IncV3 + EK 0.63 0.43 0.34 0.28 0.29 0.31
VGG 16 + EK 0.38 0.27 0.22 0.18 0.23 0.26

For the sake of brevity in explaining the results, we label BLEU 1, BLEU 2, BLEU 3,
BLEU 4, ROUGE, and METEOR as B1, B2, B3, B4, R, and M, respectively. Specifically,
the calculated metrics, B(1-4), R, and M for CN + IncV3 + EK method are 0.89, 0.74, 0.61,
0.54, 0.66, and 0.45, respectively. This result shows that the performance of this model is
significantly better than the other implementations because it takes advantage of the capsule
network and inception-V3 network as feature extractors and uses external knowledge to
enrich the trainable contextual information for the language model.

When we implemented the model without external knowledge, we faced almost 13.5%
performance degradation in B1. The degradation for other evaluation metrics is about 27%,
29.5%, 35.2%, 28.8%, and 22.2% for B (2-4), R and M, respectively, in the CN + IncV3 model.

The performance decreases about 33.7%, 40.5%, 39.3%, 46.3%, 53%, and 15.5% for all
the B (1-4), R, and M, respectively, in the case we implemented VGG16 rather than inception-
V3 in CN + VGG16 + EK model. Comparing the results between CN + IncV3 + EK as the
best model and IncV3 + EK shows that including a capsule network improves the results.
In this case, performance improvement is about 41.27%, 72.1%, 79.4%, 92%, 127.5%, and
45.2% for all the B (1-4), R and M metrics, respectively. Improving performance in these
evaluation metrics when we implemented CN + VGG16 + EK and VGG16 + EK models
is considerable. This improvement is as follows for B (1-4), R, and M, respectively: 55.3%,
63%, 68.2%, 61.1%, 34.8%, and 46.1%.
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The results show that using VGG16 as a feature extractor is not as good as inception-V3
and decreases performance. Comparing CN + VGG16 and CN + VGG16 + EK models
demonstrates adding external knowledge can enhance the performance of the language
model. Comparing the evaluation metrics between these two models indicates 44%, 46.7%,
48%, 52.6%, 10.7%, and 11.8% improvement for B (1-4), R, and M, respectively.

A comparison between the different models from our experiments demonstrates the
effectiveness of CN + IncV3 + EK as our best model. In Figure 6, all the introduced models
on MS-COCO are compared with other baselines across BLEU 1, BLEU 2, BLEU 3, BLEU 4,
ROUGE, and METEOR evaluation metrics. Comparing the results of applying all the
models over the 100 training epochs shows that the performance of the model that includes
external knowledge from Wikipedia and extracts image features by using inception-V3
and capsule network performs significantly better than the other models. According to the
plots, it is evident that most of the models have converged after 60 epochs.
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To prove the effectiveness of this model, we compare the result of the CN + IncV3 + EK
method with state-of-the-art research. In Table 3, the bold numbers show that our best model
outperforms previously published results on the MS-COCO “Karpathy” test split dataset.

Table 3. Comparison of the best result to state-of-the-art.

Models
Metrics

BLEU1 BLEU2 BLEU3 BLEU4 ROUGE METEOR

ours 0.89 0.74 0.61 0.54 0.66 0.45
Aneja et al., 2018 [47] 0.72 0.55 0.40 0.30 0.53 0.25
Tan et al., 2019 [48] 0.73 0.57 0.43 0.33 0.54 0.25
Wu et al., 2017 [25] 0.73 0.56 0.41 0.31 0.53 0.25

Zhang et al., 2021 [49] 0.75 0.62 0.48 0.36 - 0.27
Yu et al., 2019 [50] 0.81 0.67 0.52 0.40 0.59 0.29
Lu et al., 2017 [51] 0.75 0.58 0.44 0.33 0.55 0.26

Anderson et al., 2018 [52] 0.80 0.64 0.49 0.37 0.57 0.27
Jiang et al., 2018 [53] 0.80 0.65 0.50 0.38 0.58 0.28
Yan et al., 2020 [38] 0.73 0.53 0.39 0.28 0.56 0.25

Compared to our model, Ref. [47] has proposed an attention mechanism to leverage
spatial features of an image to find salient objects. Tan et al. [48] proposed a tuning model
with a small number of parameters in the RNN. Their model can produce a very sparse
decoder for generating a caption preserving the performance of the method compared to
their baseline. Zhang et al. [49] implemented a cooperative learning mechanism to combine
two image caption and image retrieval modules while generating a caption. Then, during a
multi-step refining process, they refined the image-level and object-level information to
produce a meaningful caption.

Instead of using GRU as RNN, Yu et al. [50] proposed a model which employed a
multimodal transformer as a language model in the decoder to generate a caption.

Contrary to our approach, Refs. [51,52] have focused on important image regions.
Lu et al. [51] proposed an adaptive attention framework that could decide whether to rely
on special attention to the image and when to attend to the textual image information.

In Ref. [52], Anderson et al. extracted a set of salient regions from the image by
applying a bottom-up mechanism. They also implemented a top-down mechanism to
determine the distribution of attention over the image to compute feature weightings in
different regions.

Jiang et al. [53] proposed a framework that includes a recurrent fusion network. This
fusion procedure is implemented between the encoder and decoder to exploit interactions
among the represented features from the encoder part for creating a new set of vectors
from decoder outputs.

Qualitative Results

In this section, we present some examples to show the performance of the CN + IncV3 + EK
method as our best model.

We used the occlusion sensitivity function to visualize and localize the most important
regions of the images for the network. The occlusion function computes sensitivity maps
for CNNs. This function disturbs small input areas by replacing them with an occluding
mask, typically a grey square, and moving the mask across the image to calculate the
probability score of the given class. This method can highlight the most critical regions of
the image for classification. Figure 7 shows some examples of occlusion sensitivity maps
and the regions that provide more essential features for the network.
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As demonstrated in Figure 7, using occlusion sensitivity helps us better understand
features used by the network and provide insight into the reasons for the misclassified
images. These examples show that CN + IncV3 + EK is the best descriptor model as it can
generate more human-like sentences for each image.

We can appreciate the performance of our model on the generated caption for the
photo in Figure 7a. The model identifies a good combination of all the objects within the
image through the generated caption. In this example, there is a plate of ‘salad’ which is
not mentioned in the five trained captions for the image, while the network has considered
it in the predicted caption. We believe that it is the effect of using the Wikipedia database
in the training phase to enrich the textual information of the network. Figure 7b shows that
our network has identified bird feeder as a tree since they are almost similar. Moreover,
the bird feeder concept was not in the trained descriptions by the network. Recognizing
similar objects is one of the challenges of image captioning models. The occluded image
also shows that our model focused on the bird region. In the Figure 7c photo, a bus is at
a bus stop, and our model could detect it well. In this example, the model appropriately
distinguished the position and status of attributes relative to each other.

Information about the posture and location of attributes is one of the advantages of
using a capsule network in our model. An interesting point about Figure 7d photo is that
our model has detected two cats in the image; however, the network did not notice one of
them was the image of the first cat in the mirror. Moreover, the occluded image focused on
the area of cats in the image. The photo of the person skiing (Figure 7e) has been described
correctly, and the vital region of the image perfectly matches the generated caption in the
occluded image. However, the ski board has been detected as a snowboard. Our model
generates a longer and more detailed caption for Figure 7f. Using the Wikipedia database
to enrich the description of attributes in the image is, to some extent, noticeable.

In summary, our proposed framework improves the performance of the image cap-
tioning process by employing a network that can produce more comprehensive features
about relational information between all the objects in the image. Therefore, the model gen-
erates denser and more diverse captions. Moreover, we compensated for the low-resource
language words by adding external knowledge from Wikipedia to the dataset. So, the
decoder can benefit from rich-resource captions through the training process. In terms of
the computation time, parallelizing the convolution layers in the enhanced version of the
capsule network reduces the dimensions of the fed features fed to the primary capsules
and accelerates the learning process.

6. Conclusions and Future Works

In this paper, we developed an encoder–decoder framework employing a novel
parallelized capsule network as a feature extractor and the Wikipedia database as an
external knowledge provider to establish if this approach can outperform state-of-the-art
solutions. We implemented different architectures to produce contextual knowledge from
images to achieve this. The models were trained on the MS-COCO dataset and evaluated
based on BLEU (1–4), ROUGE, and METEOR scores. Our experimental setup has included
two baseline models and is compared with several implementations to obtain a baseline
performance. Our novel approach demonstrated that using a parallel capsule network as
an encoder model provided a versatile image feature extractor.

We have demonstrated that the use of external knowledge further improved the
results. Our best model was trained with the capsule network and inception-V3 as a feature
extractor, with caption enrichment by an external contextual description. The results are
the basis for future research that will generate more conceptual and specific descriptions by
considering emotions in captions and using transformers in the decoder since this network
have extraordinary performance in image captioning [54].

In the current framework, we have set hyperparameters either manually or by using
previous settings studied in the literature. We leave it as future work to use hyperparameter
optimization techniques, such as AutoML [55], to achieve optimal prediction performance.
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Another possible future direction that needs to be taken is to verify the robustness of the
proposed method against noise through experiments. To this end, it may be useful to
look at the effect of noise across different domains, for example, studied in [56]. We also
intend to consider the diversity of the generated captions from various perspectives for
assessing the performance of our models. An image may contain a variety of captions
conveying different ideas and levels of detail, depending on the points of attention. As
there is no standard methodology for evaluating captioning models, it is more appropriate
to consider their diversity in order to assess their performance [57]. A multimodal learning
approach or updating the training network with new datasets in different domains may be
an interesting first step to incorporating diversity.
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