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Abstract: With the large-scale application of the Internet of Things (IoT), security issues have become
increasingly prominent. Device identification is an effective way to secure IoT environment by quickly
identifying the category or model of devices in the network. Currently, the passive fingerprinting
method used for IoT device identification based on network traffic flow mostly focuses on protocol
features in packet headers but does not consider the direction and length of packet sequences.
This paper proposes a device identification method for the IoT based on directional packet length
sequences in network flows and a deep convolutional neural network. Each value in a packet
length sequence represents the size and transmission direction of the corresponding packet. This
method constructs device fingerprints from packet length sequences and uses convolutional layers
to extract deep features from the device fingerprints. Experimental results show that this method
can effectively recognize device identity with accuracy, recall, precision, and f1-score over 99%.
Compared with methods using traditional machine learning and feature extraction techniques, our
feature representation is more intuitive, and the classification model is effective.

Keywords: Internet of Things; device identification; deep learning; fingerprinting

1. Introduction

In recent years, the number of Internet of Things (IoT) devices in use has continued to
proliferate. It is estimated that the number of IoT devices will reach 75 billion by 2025 [1].
For both the traditional Internet and IoT, security remains an important issue. The challenge
of IoT security comes from the heterogeneity of IoT devices [2,3], and the limited nature
of their resources, such as processing ability, battery and bandwidth [4], for implement-
ing traditional security solutions. Many security issues can be mitigated by identifying
unknown devices in the local network, which enables appropriate security enforcement
on a particular device. Besides cybersecurity application, IoT device identification is an
important area of research that many other applications can further benefit from, espe-
cially the smart building domain. Researchers have developed many applications in this
field recently, such as plug load automation and control [5], wireless communication [6],
energy management [7], occupant-appliance interaction patterns, and abnormal traffic
detection [8].

As IoT devices are constantly being installed in and removed from a network, it is
essential to identify the device type or model for security concerns. IoT device identifi-
cation (fingerprinting) is sometimes difficult due to the large variety of protocols used in
devices. Commonly an IoT device should respond to queries about its identity, however,
an unknown or compromised device might disguise itself as another device by sending
false identity information. This behavior can be detected by fingerprinting techniques
through passive network traffic analysis. Therefore, passive fingerprinting of IoT devices
is of vital importance for securing IoT networks. In general, IoT device identification or
fingerprinting is a multiclass classification problem. By training a classifier based on feature
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set extracted from network traffic traces, we can predict the type, model, and manufacturer
of an unknown device when it first enters a network.

To find device features, many previous studies, such as IoT Sentinel [9], IoTSense [10],
and IoTDevID [11], have used protocol-based and payload features; the details of their
methods are covered in Section 2.1.

In this paper, we introduce a new method for IoT device identification (fingerprinting)
that models feature extracted from the directions and lengths of packets in a network trace.
Then, a classifier based on a convolutional neural network is used for device identification.
The contributions of our work are as follows:

1. We propose a new feature extraction technique based on the directions and lengths of
the packets in network traces which is fundamentally different from other IoT device
identification methods. This may provide different insights compared to other feature
extraction techniques used in this field.

2. Based on an evaluation of experimental results, our method performs better than
previous work in terms of classification precision, recall, and F-1 score.

The rest of this paper is organized as follows: Section 2 reviews related works, and
Section 3 defines our proposed method of data representation and classification. Section 4
reports the experimental results. These results are discussed in Section 5. Section 6 discusses
limitations and concludes the paper.

2. Background and Related Work

This section reviews the previous work on IoT device identification and then presents
some background on deep learning to provide a better understanding of our method.

2.1. IoT Device Identification

Research on IoT device identification, or fingerprinting, is still in the early stage due to
the rapid development of the IoT industry. Many previous works have focused on device
identification using fingerprinting methods to classify IoT devices. Device identification
can be characterized as a classification problem in machine learning. The objective of
the classification task may be either device type or model classification. First, features
are extracted from raw network traffic data. Then the data in feature vector form are
divided into training and testing sets, and different algorithms are used for training and
testing. Many previous works differ in the feature extraction methods and machine learning
algorithms used. Most of them have used features such as packet header and payload
statistics, flow statistics, or timestamp features. Algorithms such as naïve Bayes, decision
trees, random forest, k-nearest neighbors, and support vector machines are commonly used
in these works. Table 1 summarizes various recent works on IoT device identification.

Table 1. Device identification solutions based on device fingerprinting.

Work Year Algorithms Features Dataset Classes Results

[9] 2017 RF Packet header-based [9] Device
Type

81.5% for 27 devices,
95% for 17 of them.

[10] 2018 Gradient boosting,
kNN, DT

Header
payload statistics Private Device

Type
99% overall acc.

86–99% TPR

[12] 2018 t-SNE,
RF Flow statistics Private Device

Type 99.9% acc. for 4 types

[13] 2018 k-means,
RF

IoT protocol flow
statistics Private Device

Type
97% acc.

97% F1-score

[14] 2018 RF, SVM, MLP Clock skew and
timestamp features Private Device Model 97.03% precision, 94.6% recall,

99.76% acc. for 51 devices

[15] 2018 RF Ping timestamp Private Real/Virtual
Device

99.5% accuracy using 25 pings
and 99.9% over 200 pings.

[16] 2019 RF Flow/Packet statistics [16] Device Model 99.88% acc., 5.06% RRSE
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Table 1. Cont.

Work Year Algorithms Features Dataset Classes Results

[17] 2019 AdaBoost Encrypted flow
statistics [18] Device Model 95.5% acc. and F1-score

[19] 2019 Clustering + k-NN Flow periods (DFT) Private Device
Type

F1-score above 90% for
21/23% labels and 98.2%

overall acc.

[20] 2019 RF Packet length statistics [18] Device Model 96% overall acc.

[21] 2020 k-NN, RF, GB, Bagging low frequency data [21] Device
Type

accuracies up to 93% in online
setting

[22] 2021 k-NN Frequency distribution
of packet lengths [16] Device Model Over 99% acc.

[11] 2021 RF Header
payload statistics [9,18] Device Model 94–99% acc. using different

aggregated packets

In [9], Miettinen et al. described a framework called IoT Sentinel for securing IoT
devices using the fingerprinting approach. They extracted a set of 23 features from pro-
tocols in different layers of the network, IP options, packet content, and port class from
12 consecutive packets and finally obtained a feature set with a size of 23 × 12 = 276. Then,
binary classifiers were trained for one device type versus the rest using the random forest
algorithm. An experiment was performed over a set of 27 devices, and accuracies of 95%
for 17 devices and 50% for 10 devices were achieved, resulting in an average of 85%.

In IoTSense [10], Bezawada et al. used part of the feature set from IoT Sentinel and
another feature set from the payload. Specifically, IoTSense considers 17 protocol-based
features and an additional three payload-related features. The fingerprints are produced
by extracting 20 features from five packets, for a total of 100 features. This work achieved
99% average accuracy and 93–100% per-device recall using the k-NN, decision trees, and
gradient boosting algorithms. This work on IoTSense considered a smaller number of
devices than the work on IoT Sentinel (i.e., 10 vs. 31).

Sivanathan et al. [16] used a large dataset collected from 28 IoT devices over six months
for IoT device classification. This work used eight features, namely flow volume, flow
duration, average flow rate, device sleep time, server port numbers, DNS queries, NTP
queries and cipher suites. Naïve Bayes and random forest were used together to construct
the classifier. As a result, an accuracy of 99.88% was obtained. However, some of the
features were too device specific, which could influence the classification results.

Meidan et al. [23] proposed a method to identify unauthorized IoT devices. Their
dataset contained 17 devices. In total 334 features were extracted from each network traffic
flow. A random forest was used for classification and as a result, unauthorized devices
could be identified with an accuracy of 96%. The drawback of this study was that the
features included application layer information, which is often encrypted in reality.

Shahid et al. [12] used bidirectional flow characteristics to identify different types
of IoT devices. They used four different types of equipment: sensors, cameras, bulbs
and sockets. From the algorithmic perspective, t-SNE used for dimension reduction, and
a random forest was used for classification. This research finally achieved an accuracy
of 99.9%.

Yin et al. [24] proposed IoT ETEI, an automated end-to-end IoT device identification
method based on a CNN + BiLSTM deep learning model. Their method outperforms
traditional methods with higher identification accuracy and less overhead. Even for IoT
network traffic using encrypted protocols, the method can reach an identification accuracy
of over 99%.

Similarly, to address the problem of device type and model identification, the author
of this paper [15] used the ping operation to generate fingerprints of different IoT devices
to distinguish real embedded devices from virtual or simulated embedded systems. For
each ping, ping requests with an interval of 0.2 s were used to calculate the statistical
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characteristics based on time. Detection rates of 99.5% (using 25 pings) and 99.9% (using
200 pings) were obtained.

Oser et al. [14] used TCP timestamps to measure the clock offsets of different IoT
device models for model identification. They used a total of 51 different models of
562 devices. When only the clock offset was used, the system could not identify most
models. Therefore, the author used 12 other features obtained from timestamps in addition
to the original clock offset, and finally obtained 97.03% accuracy, 94.64% recall rate and
99.76% accuracy rate.

Thangavelu et al. [13] proposed DEFT, a distributed device fingerprint identification
system. In their method, an SDN network gateway is used to monitor and classify equip-
ment locally. Statistical features based on packet headers and application layer protocols
are extracted, and then a 15-min session is formed. To identify new equipment types, a
clustering algorithm (k-means) and random forest are used. Perdisci et al. [25] analyzed
the DNS application layer protocol to build fingerprints of IoT devices and used a method
based on file retrieval to classify them.

Another related work in the context of IoT device model classification comes from
Marchal et al. [19]. They presented Audi (Autonomous IoT Device-Type Identification), a
system for identifying the types of IoT devices by passively analyzing periodic network
communication. To identify periodic flows, a discrete Fourier transform was used to
transform the time domain into the frequency domain. Then, 33 different features were cal-
culated for each cycle. Their results were over 90% in F1-score and 98.2% in comprehensive
accuracy. Msadek et al. [17] focused on encrypted traffic analysis, and they used a head
sliding window to obtain statistical features. AdaBoost was used for classification, and an
accuracy rate and F1-score of 95.5 were obtained.

Pinheiro et al. [20] proposed an IoT device and event identification technique based
on packet length from encrypted traffic. Their solution utilized packet length statistics to
identify IoT devices and events, including the mean packet length, the standard deviation,
and the number of bytes transmitted over a one-second window. The method used only
three statistics reducing the computational complexity for IoT traffic classification. The
traffic classification algorithms used included k-NN, decision tree, random forest, support
vector machine and majority voting. The results showed that the random forest algorithm
could achieve up to 96% accuracy in the identification of devices on the UNSW dataset [18].

Duan et al. [22] proposed a practical IoT device identification system called ByteIoT
based on the frequency distribution of bidirectional packet lengths. For ByteIoT, a k-NN
classifier was applied. The authors evaluated ByteIoT on several datasets and the results
showed that it achieved over 99% accuracy on the UNSW IEEE TMC 2018 dataset [16].

Following the same technical route, OConnor et al. [26] presented HomeSnitch, a
communication classification framework designed for home IoT devices based on semantic
behaviors (such as firmware upgrades, audio and video recording, and data uploading).
HomeSnitch uses the adudump [27] traffic analysis tool to build an application layer model
of the packet headers. Finally, 13 different features are extracted to describe the application
layer data exchange. The authors used the YourThings [28] dataset for testing, and obtained
99.69% accuracy, 93.93% F1-score and 96.82% TPR. Trimananda et al. [29] performed similar
research, and they proposed Ping-Pong, a tool for extracting signatures of packet events.
This work addressed research on encrypted traffic and unknown protocols, and used a
method based on clustering and statistical packet analysis. Hafeez et al. [30] proposed
IoT-KEEPER, a system that uses an unsupervised learning method to identify device types
and detect malicious behaviors. The methods used were fuzzy c-means and interpolation.

Using a more complex method based on deep learning, Ortiz et al. [31] proposed
DeviceMien, a probability-based device identification framework that uses a stacked LSTM-
autoencoder structure to automatically learn the characteristics of the original TCP packets,
and then uses DBSCAN to cluster them. To test their model, the authors used two datasets,
one public [16] and one private.
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In commercial buildings, plug loads often account for up to one-third of the energy
use. Some researchers have developed automatic smart plug load identification systems for
enhancing the capabilities of existing load monitoring systems. Tekler et al. [21] proposed
a near-real-time plug load identification approach that used low-frequency power data
in office spaces. They applied a novel dynamic time window strategy during feature
extraction. Then the proposed method was evaluated in online and offline settings for
device identification using k-NN, random forest (RF), gradient boosting (GB), and bagging
algorithms. As a result, the best online model achieved accuracies up to 93% using the
bagging algorithm with a minimum dynamic time window of 5 min.

The above previous works have made important contributions to the IoT device
identification, however most of the methods depend on certain packet header field values
or related statistical values in the network traffic generated by IoT devices, which require
manual feature engineering or predefined domain knowledge. Some related work also
needs feature selection algorithms to select useful features from the feature pool. In this
work, our method for IoT device identification uses the length and direction of continuous
packets generated by a specific unknown device and then transforms it into sequence of
packet length and direction, as the input of the deep learning model. The learning ability
of the deep learning model is leveraged to extract features automatically. Extracting packet
length and direction is simple and no other feature engineering techniques are needed.
This method dramatically reduces the difficulty in manually extracting features, and has
better generalization ability. In addition, the accuracy of our method is as good asor better
than the best previous work.

2.2. Deep Learning

Deep learning is a branch of machine learning methods; it refers to algorithms based
on artificial neural network architectures that are used to perform representation learning
on data [32,33]. The advantage of deep learning is the use of automated feature learning
and hierarchical feature extraction algorithms in place of manual feature engineering.
Convolutional neural networks (CNNs) consist of several convolutional layers and fully
connected layers and include shared weights and pooling layers. This structure allows a
CNN to use input data with a high-dimensional structure. CNNs produce better results
in image and speech recognition compared with other neural network models. A CNN
can also be trained using the backpropagation algorithm and with a smaller number of
parameters than other deep feedforward neural networks. Figure 1 shows a block diagram
of a traditional CNN. The diagram shows that there are two steps in a CNN: feature
extraction and classification. Feature extraction is performed by convolutional layers
and pooling layers and batch normalization and dropout are used to prevent overfitting.
In classification, fully connected layers are used to classify the input as in a traditional
multilayer perceptron (MLP).
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3. Methodology
3.1. System Overview

In our study, we propose a method for IoT device identification. Figure 2 presents our
proposed system model. The first stage of the model shows when an unknown device joins
the local IoT network. The model passively captures a sequence of network packets for
the device. Then, a feature vector (fingerprint) is extracted from the network traces, and
the unknown device can be identified using a classifier trained on a training set of known
devices. Figure 2 shows the complete system workflow. We first describe the method used
for preprocessing and representing the data of network traffic traces; the deep learning
classifier used for final identification is introduced.
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3.2. Data Preprocessing

IoT device identification can be seen as a supervised machine learning (or classifica-
tion) problem. For a classification problem, first we should have feature vectors that can
model the data of interest (network packet data); then, these feature vectors are fed into a
classification model to obtain their predicted classes. In general, four categories of input
features are used in network traffic classifiers: time-series, header, payload, and statistical
features [34]. Each network packet includes a header and payload. For a layer-2 packet,
if the payload is encrypted, the only information available to us is the metadata stored in
the Ethernet header. Recent IoT device identification research has focused on extracting
feature sets from packet headers and then using feature vectors obtained from individual
packets for training and testing. Therefore, in the previous work, each packet was used as
one data sample. In contrast, the proposed method utilizes several continuous packets and
one such packet sequence is used as one data sample for device identification. This feature
extraction and representation method is introduced below.

In this work, we use two time-series features, namely, packet length and direction, of
N continuous packets. The feature vector is of length N with 1 channel in which packet
length and direction are combined. As in [35], we define an outgoing packet from a device
as having a positive value, whereas the incoming packet has a negative value. The original
dataset is in PCAP format, and the network traffic is captured by software located in the
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gateway of a local network. The first step is aggregating packets generated by each device
in chronological order according to the MAC address of each device. As a result, the PCAP
file is split into different small files, and each small file contains all the packets generated
by each device in a specific time period. For a small PCAP file, we extract the packet length
and then combine the packet length and direction to obtain a numeric value for each packet.
For example, 1400 denotes that this is an incoming packet of length 1400. Then a long
sequence consisting of these numeric values is constructed in time order. To make a feature
vector representing the device, the long sequence is sliced for every N packets to obtain
multiple feature vectors of length N. The trailing packets are dropped for convenience. If
the length of the feature vector is too long, this leads to more parameters in the classification
model, and more computational resources are needed. In addition, it is also not good if
the length is too short, as a lack of sufficient information will cause the method to fail. The
optimal length N must be determined through experiments.

3.3. Convolutional Neural Networks

Convolutional neural networks have been widely used in image recognition. Data
in image recognition task is high-dimensional tensor. Since the network traffic data are
represented by one-dimensional sequence, inspired from sequence classification tasks
such as DNA sequence classification [36] and heart sound signal processing [37], we
adopt 1-D convolutional layers in the network design, in contrast to traditional image
recognition applications. Another difference is that in traditional image classification,
activation functions such as the sigmoid and rectified linear unit (ReLU) are widely used,
but they do not work on negative values. Thus, the packet direction information would
be lost if we were to use these functions; instead, activation functions such as hyperbolic
tangent (tanh), leaky ReLU, and exponential linear unit (ELU) can deal with negative values.
Among these three activation functions, we performed comparisons during hyperparameter
tuning and found that ELU performed best.

Our CNN model includes three convolutional blocks and two fully connected blocks.
The three convolutional blocks look similar except for the number of filters and the kernel
size. Each convolutional block comprises one convolutional layer, followed by batch nor-
malization, then an activation function (ReLU or ELU), followed by another convolutional
layer, batch normalization, and an activation function Finally, max pooling and dropout are
used. This block is repeated three times with a different kernel size each time. In each fully
connected (FC) block, a fully connected layer is followed by batch normalization, ReLU
activation, and dropout. The FC block structure is repeated twice with different numbers
of neurons in the fully connected layers. The block diagram of our CNN model is shown in
Figure 3.

3.4. CNN Hyperparameter Tuning

In a supervised classification task, many hyperparameters need to be tuned. such
as the value of k in k-NN, or the number of hidden layers in MLP. Properly tuning the
hyperparameters allows model not only to fit the training data but also to generalize on
the test data that it has not been trained on. We performed an extensive search in the
hyperparameter space to find the better hyperparameters for our model. The model was
built block by block in each layer. For each layer of the CNN model, we performed an
experiment by varying the hyperparameters-and then chose the hyperparameters that gave
the best performance. The search spaces and final values after hyperparameter tuning are
shown in Table 2.

Table 3 lists the input/output shape, kernel shape, and number of parameters for each
layer of this CNN model.
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Table 2. Hyperparameters search space and final values for the CNN models.

Hyperparameters Search Space Final

Input Dimension [100, 1000] 500

Optimizer Adam, Adamax Adam

Learning Rate [0.0009, 0.01] 0.001

Training Epochs [10, 50] 30

Batch Size [16, 256] 100

[Filter, Pool, Stride] Sizes [2, 16] [8, 8, 4]

Activation Function Tanh, ReLU, ELU ELU

Number of Filters

Block 1 [Conv1, Conv2] [8, 64] [32, 32]

Block 2 [Conv3, Conv4] [32, 128] [64, 64]

Block 3 [Conv5, Conv6] [64, 256] [128, 128]

Pooling Layers [Min, Average, Max] Max

Number of FC Layers [1, 4] 2

Hidden Units of FC Layers [128, 1024] 512

Dropout [Pooling, FC1, FC2] [0.1, 0.8] [0.1, 0.7, 0.5]
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Table 3. Input/output/kernel shapes, and number of parameters for each layer of the model.

Block Layer Input Shape Output Shape Kernel Shape Param #

Conv. Block 1

Conv1d [-, 1, 500] [-, 32, 493] [8] 288

BatchNorm1d [-, 32, 493] [-, 32, 493] – 64

ELU [-, 32, 493] [-, 32, 493] – –

Conv1d [-, 32, 493] [-, 32, 486] [8] 8224

BatchNorm1d [-, 32, 486] [-, 32, 486] – –

ELU [-, 32, 486] [-, 32, 486] – –

MaxPool1d [-, 32, 486] [-, 32, 120] 8 –

Dropout [-, 32, 120] [-, 32, 120] – –

Conv. Block 2

Conv1d [-, 32, 120] [-, 64, 113] [8] 16,448

BatchNorm1d [-, 64, 113] [-, 64, 113] – 128

ELU [-, 64, 113] [-, 64, 113] – –

Conv1d [-, 64, 113] [-, 64, 106] [8] 32,832

BatchNorm1d [-, 64, 106] [-, 64, 106] – 128

ELU [-, 64, 106] [-, 64, 106] – –

MaxPool1d [-, 64, 106] [-, 64, 25] 8 –

Dropout [-, 64, 25] [-, 64, 25] – –

Conv. Block 3

Conv1d [-, 64, 25] [-, 128, 18] [8] 65,664

BatchNorm1d [-, 128, 18] [-, 128, 18] – 256

ELU [-, 128, 18] [-, 128, 18] – –

Conv1d [-, 128, 18] [-, 128, 11] [8] 131,200

BatchNorm1d [-, 128, 11] [-, 128, 11] – 256

ELU [-, 128, 11] [-, 128, 11] – –

MaxPool1d [-, 128, 11] [-, 128, 1] 8 –

Dropout [-, 128, 1] [-, 128, 1] – –

FC Block 1

Flatten [-, 128, 1] [-, 128] – –

Linear [-, 128] [-, 512] – 66,048

BatchNorm1d [-, 512] [-, 512] – 1024

ReLU [-, 512] [-, 512] – –

Dropout [-, 512] [-, 512] – –

FC Block 2

Linear [-, 512] [-, 512] – 262,656

BatchNorm1d [-, 512] [-, 512] – 1024

ReLU [-, 512] [-, 512] – –

Dropout [-, 512] [-, 512] – –

Output Linear [-, 512] [-, 18] – 9234

Total parameters: 595,538

4. Experimental Evaluation

In this section, we describe the experimental setup and the dataset on which the
identification tests were carried out. The results were obtained in two different scenarios:
(1) classifying IoT devices into 7 categories and (2) classifying 18 IoT device models. The
results for these two scenarios are shown below.
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4.1. Experimental Setup and Datasets

Three different real device datasets available for public use that can be used for IoT
device identification. Their names, creation year, and number of devices are as follows:
Aalto University [9], 2016, 27 devices; UNSW dataset [18], 2016, 28 devices; IoTFinder [25],
2019, 51 devices. During the selection of the dataset to be used in our experiments, we found
that the Aalto University dataset contains only network traffic from the device installation
process. Although this installation process was repeated 20 times to increase the quantity
of data, this dataset is still too small compared with the others. The UNSW dataset was
built by collecting network traffic data of IoT devices in normal working environments
rather than during the device installation process. The raw PCAP file size is 11.3 GB, which
is large enough for deep learning evaluation. The IoTFinder dataset relies only on DNS
traffic to identify IoT devices, which is not suitable for our objective. Thus, considering
the advantages of the UNSW dataset, we chose to use this dataset for all the evaluations
and analyses presented below. This dataset contains various types of devices, including
lights, cameras, hubs, and healthcare devices. Table 4 provides detailed information about
the devices. The TP-Link router is a gateway to the Internet. The WAN interface of the
router was connected to the Internet, and the IoT devices were connected to the LAN or
WLAN interfaces. Some software was installed on the gateway such as the tcpdump tool
for collecting the network traffic of all devices. Then the collected network traffic was stored
in PCAP files. We parsed the PCAP files and extracted informative features in accordance
with the MAC address of each device.

Table 4. List of IoT devices in the dataset.

Category Device Wireless/Wired

Hubs
Smart Things Wired

Amazon Echo Wireless

Cameras

Netatmo Welcome Wireless

TP-Link Day Night Cloud camera Wireless

Samsung SmartCam Wireless

Dropcam Wireless

Insteon Camera Wired/Wireless

Nest Dropcam Wireless

Withings Smart Baby Monitor Wired

Switches & Triggers

Belkin Wemo switch Wireless

TP-Link Smart plug Wireless

iHome Wireless

Belkin wemo motion sensor Wireless

Air quality sensors Netatmo weather station Wireless

Healthcare devices Withings Aura smart sleep sensor Wireless

Light Bulbs LiFX Smart Bulb Wireless

Electronics
Triby Speaker Wireless

Pix-Star Photo-frame Wireless

The dataset is organized by date, with one PCAP file for one day. In total, we down-
loaded 20 PCAP files corresponding to 31 device types. However, the original dataset
contains several devices such as iPhones, laptops, and routers which cannot be categorized
as IoT devices. Because the objective of this research is to study the relationship between
network traffic behavior and IoT device type or model, we ignored these non-IoT devices
for the purity of the dataset. We used the MAC addresses to aggregate the data from the
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raw PCAP files. In addition, the MAC addresses of several devices could not be found in
the PCAP files and thus were also ignored. After cleaning the data, we finally obtained
18 devices. The PCAP file for each day was parsed using the MAC addresses of the devices.
Finally, a long sequence of packet direction and size was generated for each device. We cut
each long sequence into slices every 500 entries to obtain our feature vectors, as described
in Section 3.1. The statistics on the distribution of the data samples for each device after the
completion of the above data preprocessing steps are shown in Table 5.

Table 5. Statistics about the number of data instances for each category.

Device Data Instances

Dropcam 8266

Amazon Echo 2009

Samsung SmartCam 1915

Insteon Camera 1419

Belkin wemo motion sensor 1268

Withings Smart Baby Monitor 1116

Belkin Wemo switch 935

Smart Things 931

Netatmo Welcome 874

Withings Aura smart sleep sensor 647

TP-Link Day Night Cloud camera 526

Nest Dropcam 299

Netatmo weather station 272

LiFX Smart Bulb 251

Triby Speaker 248

PIX-STAR Photo-frame 93

iHome 80

TP-Link Smart plug 45

Three metrics were used for the performance evaluation of our model. The definitions
of metrics are listed below; they are precision, recall, and F1-score. TP is true positive, FP is
false negative, FN is false negative.

precision =
TP

TP + FP

recall =
TP

TP + FN

F1-score =
2 · precision · recall

precision + recall

4.2. Device Category Identification

In this experiment, we explored the capability of our model to classify devices into
different categories. For this experiment, we generated a new dataset from the original
dataset by grouping the devices into different device categories, e.g., hubs or cameras. The
statistics of this dataset are shown in Table 6. This dataset consists of the categories from
Table 4.
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Table 6. Statistics on the number of data instances for each category.

Device Data Instances

Hubs 2940

Cameras 14,415

Switches & Triggers 2328

Air quality sensors 272

Healthcare devices 647

Light bulbs 251

Electronics 341

We used the CNN model described in Table 1. The generated dataset was split at
a ratio of 80%:10%:10% for training, validation, and testing. The experimental results
including precision, recall, and F1-score are listed in Table 7, and Figure 4 illustrates the
confusion matrix of the classification results.
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Table 7. The precision, recall, and F1-score results and numbers of test data for category.

Category Precision Recall F1-Score Support

Hubs 1.00 0.99 1.00 292

Cameras 1.00 1.00 1.00 1439

Switches 1.00 1.00 1.00 248

Air quality sensors 1.00 1.00 1.00 25

Healthcare devices 0.98 1.00 0.99 54

Light bulbs 1.00 1.00 1.00 22

Electronics 0.97 0.95 0.96 40

Weighted average 1.00 1.00 1.00 2120

4.3. Device Model Identification

In this experiment, we evaluated the classification accuracy of the proposed model for
device model fingerprinting. The goal of the classifier was to distinguish distinct devices.
The experiment was conducted with two models for comparative study. First, we used a
traditional neural network model, an MLP, for classification. The architecture of the MLP
used is described in Table 8. The dataset was split at a ratio of 80%:10%:10% for the training,
validation, and testing. Figures 5 and 6 show the training progress of the MLP from the
perspectives of accuracy and loss, and it can be seen that the accuracy curve was not stable
in the last several epochs of training.

Table 8. MLP layer characteristics.

Layer Neurons Input Dimension Activation

1 512 500 ReLU

2 128 - ReLU

3 18 - sigmoid
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Second, the proposed CNN model was tested on the same data. The dataset was
again split at a ratio of 80%:10%:10% for the training, validation, and testing. Figure 7
shows the progress of training in terms of accuracy as the number of epochs increased. We
selected the maximum number of epochs to be 30 to achieve the desired accuracy. Figure 8
illustrates how the loss was is reduced as the number of epochs increased. The loss we
used during training was the cross-entropy loss. As the value of the loss decreased, the
predictions improved.
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Tables 9 and 10 show the experimental results in terms of the precision, recall, and
F1-score of each class of MLP and CNN, respectively. On average, the precision achieved is
99%, and the recall achieved is 99%. The F1-score is a measure that combines precision and
recall; on average, the F1-score achieved was 99%. Figures 9 and 10 illustrate the confusion
matrices of the classification results.

Table 9. The precision, recall, and F1-score results and the numbers of test data for the MLP.

Device Precision Recall F1-Score Support

Withings Smart Baby Monitor 0.96 0.85 0.90 104

Belkin wemo motion sensor 0.48 0.78 0.60 138

Smart Things 0.64 0.72 0.68 83

Amazon Echo 0.71 0.57 0.63 209

TP-Link Smart plug 0.00 0.00 0.00 4

Belkin Wemo switch 0.43 0.59 0.50 100

Withings Aura smart sleep sensor 0.74 0.57 0.65 54

iHome 0.00 0.00 0.00 6

TP-Link Day Night Cloud camera 0.78 0.14 0.23 51

Nest Dropcam 0.50 0.04 0.07 27

Netatmo weather station 0.70 0.28 0.40 25

Triby Speaker 0.20 0.18 0.19 28

PIX-STAR Photo-frame 0.00 0.00 0.00 12

Samsung SmartCam 0.61 0.80 0.70 179

Netatmo Welcome 0.91 0.44 0.59 94

Light Bulbs LiFX Smart Bulb 0.00 0.00 0.00 22

Insteon Camera 0.56 0.84 0.67 130

Dropcam 0.99 0.97 0.98 854

weighted average 0.77 0.76 0.75 2120
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Table 10. The precision, recall, and f1-score results and the numbers of test data for the CNN.

Device Precision Recall F1-Score Support

Withings Smart Baby Monitor 1.00 1.00 1.00 104

Belkin wemo motion sensor 0.99 1.00 1.00 138

Smart Things 1.00 1.00 1.00 83

Amazon Echo 0.99 0.99 0.99 209

TP-Link Smart plug 1.00 1.00 1.00 4

Belkin Wemo switch 1.00 1.00 1.00 100

Withings Aura smart sleep sensor 1.00 1.00 1.00 54

iHome 1.00 0.83 0.91 6

TP-Link Day Night Cloud camera 1.00 1.00 1.00 51

Nest Dropcam 0.81 0.81 0.81 27

Netatmo weather station 1.00 1.00 1.00 25

Triby Speaker 0.93 0.89 0.91 28

PIX-STAR Photo-frame 1.00 1.00 1.00 12

Samsung SmartCam 1.00 1.00 1.00 179

Netatmo Welcome 1.00 0.99 0.99 94

Light Bulbs LiFX Smart Bulb 1.00 1.00 1.00 22

Insteon Camera 0.98 0.99 0.99 130

Dropcam 1.00 1.00 1.00 854

weighted average 0.99 0.99 0.99 2120
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5. Discussion and Limitation

In our study, we performed device identification by fingerprinting the packet length of
network traffic flows via a deep learning algorithm. A certain number of successive packets
from a specific device were used to construct a sequence that we took as a fingerprint.
The experimental results show that this method is effective and efficient. For comparison,
IoT Sentinel uses the first 12 packets during the device installation process to extract the
feature vector, which is an approach that cannot be directly applied to the UNSW dataset.
Thus, we cannot present a comparison with the results of IoT Sentinel. The authors of
IoTSense did not provide their private dataset, so we cannot reproduce their methods
with the UNSW dataset. IoTDevID leverages feature extraction techniques similar to those
of IoT Sentinel and IoTSense, with some modifications and performance enhancement.
Therefore, the results of IoTDevID on the UNSW dataset are a good benchmark for compar-
ison. Compared with previous work on the same dataset, namely, UNSW [18], the work of
Msadek et al. [17], and IoTDevID [11], the proposed CNN model achieves superior perfor-
mance in classification accuracy, meaning that this algorithm can identify IoT devices with
very high accuracy. Compared with a shallow neural network (MLP), the accuracy of clas-
sification is also boosted significantly by leveraging deep learning (CNN). A performance
comparison of those different methods is shown in Table 11.

The dataset we used in this study is unbalanced in terms of the number of data
instances for each device. As a result, the classification precision for devices such as the
iHome and TP-Link Smart plug is poor because of insufficient training data. One solution
may be to use data augmentation techniques, but this is beyond the scope of this paper.
Another limitation of deep learning is that the quantity of data needed to train a network
increase as the network becomes deeper. Simply, the more complicated a model is, the
more training data are needed. Therefore, deep learning models do not perform as well
on small datasets. Traditional machine learning algorithms can usually perform well with
fewer data.
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Another limitation of this work is that to construct the feature vector, it is necessary
to use 500 consecutive packets in a flow, making the latency of the identification system
larger than that in previous works, such as IoT Sentinel and IoTSense which use only tens
of packets. In the future, we will explore how to use a smaller feature vector size while
maintaining high identification accuracy.

Table 11. Comparison of different methods.

Work Method Accuracy

IoTDevID [11] Random Forest 98.8%

UNSW [18] Random Forest 95%

Msadek et al. [17] AdaBoost 95.5%

Pinheiro et al. [20] Random Forest 96%

This work MLP 77%

This work CNN 99%

6. Conclusions

This work proposes an IoT device fingerprinting method that uses only the directions
and lengths of packets in a sequence as input features. This method reduces the effort
for manual feature engineering from packet metadata compared to many previous works.
Moreover, it leverages deep learning techniques (specifically, a CNN) for more accurate
IoT device identification. The proposed method can effectively recognize device identity
with an accuracy of over 99%. The use of the CNN demands many more computational
resources than previous works, but this issue can be solved by deploying the proposed
fingerprinting system on a local network server or gateway rather than on IoT devices. In
conclusion, we developed a fingerprinting method using only the directions and lengths
of packets to summarize the network traffic of IoT devices. Our study shows that packet
length and direction are important features of the network traffic generated by IoT devices
and that IoT device identification tasks can be successfully performed with only these
features. In addition, a CNN with one-dimensional convolutional layers is a powerful
tool for processing sequence data of this kind. Our study proposes a new direction for
fingerprinting IoT devices based on automatic feature extraction from raw data using deep
learning rather than manual feature engineering.

There are possibly several future research directions for device identification. First,
different kinds of representations for network traffic can be explored. For example, network
traffic is represented by sequence in this work, it can also be transformed to image which
contains more information. Second, beyond the device type and model identification,
device behavior identification needs to be studied in fine granularity. Last but not least,
fast online device identification systems need more exploit in the future.
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