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Abstract: Target azimuth information can help further improve the accuracy of magnetic orientation,
but the current periodic magnetic field generated by the magnetic beacon is multivalued, so it is
not suitable for azimuth measurement. According to the distribution of a rotating magnetic field
and the phase angle measuring principle, we put forward a new magnetic source structure design
of a multiple rotating permanent magnet array by adjusting the spacing d, the rotating speed ω
and the initial rotation angle ϕ, and then verified the mathematical model using COMSOL sim-
ulation software. A triple structure was obtained by comparison (d3 =

√
3d1 =

√
3d2 = 4

√
3 m,

d3 =
√

3d1 =
√

3d2 = 4
√

3 m, ϕ1 = 0, ϕ2 = 4π
5 rad. ϕ3 = π rad), which can produce a strong char-

acteristic magnetic signal similar to a heart-shaped field pattern. Finally, a signal transceiver system
was set up for the experiment. The experimental result shows that the waveform of the magnetic
signal generated by the real beacon meets the requirement of having a unique maximum value and
good directivity within a period, which proves the practical application effect of the structure.

Keywords: phase-shift angle measurement; rotating magnetic; magnetic beacon; COMSOL simulation;
optimization design

1. Introduction

Compared to other navigation methods, magnetic navigation [1–3] has the advantages
of autonomy, no accumulated error, and strong anti-interference ability, which reduces the
risk of the signal being captured and attacked.

According to different magnetic sources, magnetic navigation can be divided into
geomagnetic navigation and artificial magnetic navigation [4]. Geomagnetic navigation
relies on geodesy to match geophysical features, including geomagnetic matching [5,6],
terrain matching [7], and gravity matching [8,9]. However, the matching technology itself
requires the support of a high-precision measuring instrument, a sizable and perfect ge-
omagnetic field model, and a mature positioning algorithm, so its positioning accuracy
makes it difficult to satisfy certain situations which have high positioning requirements.
With the progress of material technology, new strong magnetic materials [10–12] have
brought a new direction to magnetic positioning research. It has been found that the low
frequency rotating magnetic field [13–16] obtained by rotating an artificial magnetic beacon
has excellent properties such as high penetration, strong robustness, easy extraction, and
is suitable for navigation and positioning applications in complex scenes. Paperno [17]
proposed a new magnetic position and direction tracking method based on the quasi-static
rotating magnetic field, which improved the speed and accuracy of magnetic tracking.
The University of Michigan [18] proposed an electromagnetic beacon and inertial naviga-
tion sensor positioning technology, which greatly improves the accuracy of autonomous
navigation positioning. Domestically, Zhang Dacheng [19] designed the software and
hardware for the magnetic beacon positioning system and used the four-parameter sinu-
soidal signal reconstruction method to improve identification accuracy. With the help of
the magnetic field gradient tensor algorithm, Deng Guoqing [20] applied the magnetic
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beacon positioning to the real-time positioning of horizontal directional drilling, which
improved the positioning accuracy. Wang Run [21] designed and optimized the source
structure based on the magnetic beacon structure, which provided an effective solution for
the limited transmission distance of magnetic navigation and positioning signals and the
difficulty of signal extraction. Optimizing the magnetic source structure or improving the
positioning algorithm notwithstanding, the target is located by measuring the amplitude
of the magnetic field. However, the measurement of the amplitude needs to solve prob-
lems such as a chaotic electromagnetic environment, a strong abnormal field, and quick
attenuation of magnetic signal strength; the improvement of the positioning accuracy is
increasingly difficult.

Differing from the amplitude of the magnetic signal, the phase information of a
low-frequency magnetic signal [22–26] has the advantage of being hard to disturb by the en-
vironmental magnetic field. In the radio navigation system [27,28], the phase measurement
is an important navigation means which has the advantages of convenience, flexibility,
and high precision, and can be combined with other positioning methods to effectively
improve the positioning accuracy of navigation equipment. Therefore, it is proposed that
the phase information of a low-frequency magnetic signal should be used to measure the
orientation of the target and to fuse the information, so as to further improve the magnetic
positioning accuracy.

The direction-finding method proposed in this paper refers to the phase-shift angle
measuring method in radio navigation systems and the special heart-shaped direction
pattern generated by the Voltaic beacon antenna. The research of this method can be
divided into six sections: (1) Section 1: We introduce the relevant research results and
leads to the research content of the paper; (2) Section 2: We analyze the magnetic field
distribution of a low-frequency rotating magnetic field [29] and establish the mathematical
model of a magnetic field. Then, the design idea of a magnetic beacon is discussed;
(3) Section 3: We design and establish the mathematical models of a binary array, ternary
array, and quaternary array. Then, by adjusting the rotation parameters of each permanent
magnet, the magnetic field distribution of each array structure under different conditions
is compared and analyzed. Finally, COMSOL Multiphysics software is used to verify the
optimal structural parameters of each array; (4) Section 4: We simulate the optimized
structure in different transmission media using the COMSOL Multiphysics software and
verify whether the structure can play a role in different environments; (5) Section 5: We
carry out the confirmatory experiment with the help of the structural entity; (6) Section 6:
We summarize and evaluate all the work, which provides a better solution for the source
design of the direction-finding system based on the rotating magnetic beacon and further
advances the research on the direction-finding mechanism.

2. Phase-Based Goniometric Principle
2.1. Principle of Signal Generation of Rotating Permanent Magnet Beacon

Let m denote the magnetic moment, then the magnetic moment determinant of the
permanent magnet is expressed as:

m = (Br/µ)V (1)

Br is the remanent magnetic intensity of the permanent magnet, V is the volume of the
permanent magnet, and µ is the spatial permeability. The static magnetic field produced by
a permanent magnet is determined by its magnetic moment, independent of its shape. The
static magnetic field generated by a static magnetic dipole is only related to its magnetic
dipole distance, which is expressed as l, and the relationship between the magnetic dipole
distance and magnetic moment is as follows:

qml = µm (2)
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where qm stands for magnetic charge. Equivalent relation can be obtained from Equa-
tions (1) and (2):

qml = BrV (3)

So, a permanent magnet can be equivalent to a magnetic dipole, and in the same
way, a rotating permanent magnet can be thought of as a magnetic dipole rotating. A
single circular micro electric current is defined as a magnetic dipole, as shown in Figure 1.
Supposing I is the current size, R is the radius of the circular electric current, Pm is the
average molecular magnetic moment and points in the Z-axis direction; according to
Maxwell’s equations and Biot–Savart Law, any point Q(r, θ, z) on the circle electric current
can produce magnetic induction intensity at the space P(R, θ1, z):

dB =
µ

4π

Idl× a
a3 , |a| 6= 0 (4)
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In Equation (4), a represents the distance between P(R, θ1, z) and Q(r, θ, z):

|a| =
√

r2 + R2 − 2R× cos(θ− θ1) + z2.
The magnetic field component can be expressed in polar coordinates:

Bx = 3µ
4π ×

Pm

(
√

R2+r2+z2)
5 × zrcosθ

By = 3µ
4π ×

Pm

(
√

R2+r2+z2)
5 × zrsinθ

Bz = 3µ
4π ×

Pm

(
√

R2+r2+z2)
5 × (2R2 + 2z2 − r2)

(5)

The distance between the general measuring point and the permanent magnet allows
R� r, and then the magnetic field component can be expressed as:

Bx = 3µ
4π ·

Pm
r′5
· zx

By = 3µ
4π ·

Pm
r′5
· zy

Bz = 3µ
4π ·

Pm
r′5
· (3z2 − r′2)

(6)

where r′2 = x2 + y2 + z2.
Since the magnetic moment of a permanent magnet is a vector and changes from

moment to moment during rotation, the transformation of the coordinate system should
be considered when calculating the magnetic field distribution of a rotating permanent
magnet to ensure that the expression of the magnetic field component at any moment can
be expressed by a coordinate system, as shown in Figure 2.
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Given a permanent magnet in any state, we assume that the initial coordinate system
is O-X1Y1Z1, and the magnetic moment of the permanent magnet points in the positive
direction Z1. Then the initial coordinate system is rotated by an angle ϕ around axis X1,
and we can obtain a new coordinate system O-X2Y2Z2, and take this coordinate as the base.
The transformation process of the coordinate system can be expressed as follows:x2

y2
z2

 = Rx ·

x1
y1
z1

 =

1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ

 ·
x1

y1
z1

 (7)

Therefore, in the rotation process, coordinate system O-X1Y1Z1 can be expressed by
coordinate system O-X2Y2Z2 as:

x1 = x2
y1 = y2cosϕ+ z2sinϕ
z1 = z2cosϕ− y2sinϕ

(8)

Substituting the above equation into the magnetic field intensity distribution
Equation (6) yields expression (9) for the magnetic field intensity component in the coor-
dinate system O-X1Y1Z1; the coordinate base of this component is X2Y2Z2, where we let
B′ = µPm

4πr5 . 
Bx1 = 3B′ · x2(z2cosϕ− y2sinϕ)

By1
= 3B′ · (y2cosϕ+ z2sinϕ)(z2cosϕ− y2sinϕ)

Bz1 = B′ · [2(z2cosϕ− y2sinϕ)2 − x2
2 − (y2cosϕ+ z2sinϕ)2]

(9)

On the basis of the projection relationship between coordinate systems, coordinate
system O-X1Y1Z1 is projected onto coordinate system O-X2Y2Z2, so the component of the
magnetic field intensity in the coordinate system O-X2Y2Z2 can be expressed as:

Bx2 = Bx1

By2
= By1

cosϕ− Bz1sinϕ
Bz2 = Bz1cosϕ+ By1

sinϕ
(10)

Substituting this equation back to Equation (9), the magnetic field intensity component
measured in the original coordinate system O-X2Y2Z2 can be expressed as:

Bx2 = B′ · (3x2z2cosϕ− 3x2y2sinϕ)
By2

= B′ ·
[
6y2z2cosϕ+ (x2

2 − 2y2
2 + z2

2)sinϕ
]

Bz2 = B′ ·
[
(2z2

2 − y2
2 − x2

2)cosϕ− 3y2z2sinϕ
] (11)
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Recombine the rotation axis of the permanent magnet with axis Z2, and the rotation
transformation of O-X2Y2Z2 should also be considered in the rotation process.

Make the coordinate system O-X2Y2Z2 rotate the angle β around Z2 to obtain the new
coordinate system O-X3Y3Z3. The coordinate system transformation can be expressed as:x3

y3
z3

 = Rz ·

x2
y2
z2

 =

 cosβ sinβ 0
−sinβ cosβ 0

0 0 1

 ·
x2

y2
z2

 (12)

Therefore, coordinate system O-X3Y3Z3 can be expressed by coordinate base X2Y2Z2 as:
x3 = x2cosβ+ y2sinβ

y3 = −x2sinβ+ y2cosβ
z3 = z2

(13)

Substituting it into Equation (11), the component of magnetic field intensity in the
coordinate system O-X3Y3Z3 can be expressed by the coordinate basis X2Y2Z2 as:


Bx3 = 3B′ · [(x2z2cosβ+ y2z2sinβ)cosϕ− (x2cosβ+ y2sinβ)(y2cosβ− x2sinβ)sinϕ]

By3
= B′ ·

[
6(y2z2cosβ− x2z2sinβ)cosϕ+ (x2cosβ+ y2sinβ)2sinϕ− 2(y2cosβ− x2sinβ)2sinϕ+ z2

]
Bz3 = B′ ·

[
(2z2

2 − y2
2 − x2

2)cosϕ− 3y2z2sinϕ
] (14)

According to the projection relationship between coordinate systems, the component
of magnetic field intensity in coordinate system O-X2Y2Z2 can be expressed as:

Bx2 = Bx3cosβ− By3
sinβ

By2
= Bx3sinβ+ By3

cosβ
Bz2 = Bz3

(15)

By replacing the above equation back into Equation (14), the magnetic field intensity
component of the magnetic field measured in the coordinate system O-X3Y3Z3 can be
expressed in the coordinate system O-X2Y2Z2 as:


Bx2 = B′ ·

[
(2x2

2 − y2
2 − z2

2)cosβsinϕ+ 3x2y2sinβsinϕ+ (6− 3cos2β)x2z2cosϕ− 3y2z2sinβcosβcosϕ
]

By2
= B′ ·

[
3x2y2cosβsinϕ+ (2y2

2 − x2
2 − z2

2)sinβsinϕ+ 3y2z2(1 + cos2β)cosϕ− 3x2z2sinβcosβcosϕ
]

Bz2 = B′ ·
[
(3x2z2cosβ+ 3y2z2sinβ)sinϕ+ (2z2

2 − x2
2 − y2

2)cosϕ
] (16)

If the permanent magnet rotates in a horizontal plane, which means the direction of
the magnetic moment is perpendicular to the Z2-axis (ϕ = π

2 ), then Equation (16) can be
expressed as: 

Bx2 = B′ ·
[
(2x2

2 − y2
2 − z2

2)cosβ+ 3x2y2sinβ
]

By2
= B′ ·

[
3x2y2cosβ+ (2y2

2 − x2
2 − z2

2)sinβ
]

Bz2 = B′ · [3x2z2cosβ+ 3y2z2sinβ]
(17)

If the magnetic moment of the permanent magnet is in the X2OY2 plane and rotates
with angular velocityω around the Z2 axis, the magnetic field intensity component can be
expressed as: 

Bx2 = B′ ·
[
(2x2

2 − y2
2 − z2

2)cosωt + 3x2y2sinωt
]

By2
= B′ ·

[
3x2y2cosωt + (2y2

2 − x2
2 − z2

2)sinωt
]

Bz2 = B′ · [3x2z2cosωt + 3y2z2sinωt]
(18)
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2.2. Phase-Based Goniometric Method

The directivity function of the horizontal directional map of the voltage-beacon an-
tenna is:

F(θ0) = 1 + msinθ0(0 < m ≤ 1) (19)

If an equal amplitude wave signal is fed to the antenna, the expression is:

eT(t) = ETsinΩt (20)

The equal-amplitude wave signal is modulated to obtain a heart-shaped field pattern,
and then this heart-shaped field pattern is made to rotate at an angular velocity of Ω. So,
the working principle of the phase-based goniometric method is shown in Figure 3. The
electrical signal received by the aircraft in the angular θ0 direction can be expressed as:

et(t, θ0) = ET(1−msin(Ωt− θ0))sinωt (21)
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As shown in Figure 3, the heart-shaped field pattern rotates uniformly with a period T
and the target can receive a reference signal when its maximum value points in the positive
direction of the Y-axis. If the time elapsed from the receipt of the reference signal to the first
receipt of the maximum value of the heart-shaped field pattern by the target is t, then the
orientation of the target relative to the signal source can be expressed as:

θ0 = ((T− t)/T)× 2π (22)

It can be seen from Equation (21) that there is a one-to-one correspondence between
the phase and the angle θ0 of the signal in different directions. From the expression of the
rotating magnetic field, it can be concluded that a low frequency periodic magnetic signal
can be obtained by combining several different magnetic fields in a certain way, which has
a format similar to the above equation. Its envelope waveform can be decomposed as:

e(t,ω,φ) = a + m1sin(ω1t +φ1) + m2sin(ω2t +φ2) + . . . (23)

3. Structural Design of Rotating Permanent Magnet Beacon

According to the requirements of the phase-shift angle measurement method, the
waveform of the total magnetic field generated by the magnetic beacon in polar coordinates
should be similar to the heart shape, and the representation of the waveform converted to
the cartesian system should be that there is only one maximum value within a period, and
the amplitude on both sides of the maximum value should be as small as possible.

From Equations (18) and (23), we know that the angular velocity ωn in Equation (23)
is jointly determined by the rotational speed of each permanent magnet in the array; the
initial phase φn, constant a and amplitude factor mn are jointly determined by the distance
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from each permanent magnet in the array to the measurement point and the initial angle
of rotation. However, Equation (18) can only represent the magnitude of the magnetic
field strength, but not the vector direction of the magnetic field. Therefore, among the
above determining factors, the distance from the measurement point to the permanent
magnet mainly affects the amplitude of the synthesized signal, while the influence of the
rotation speed ω and the initial angle ϕ on the timing of the magnetic field synthesis at
the N and S poles of the permanent magnet is the most important factor of waveform
synthesis. Therefore, the optimized design focuses on analyzing the effect of rotation speed
and initial angle on the waveform, and to simplify the structural design all models choose
symmetric structure.

In this section, according to the current experimental conditions, the structures of
the binary array, ternary array and quaternary array are designed first. The mathematical
models of the corresponding structures are constructed according to Equation (18), the
parameters are adjusted and optimized, and then the optimized structures are simulated
and verified by COMSOL physical simulation software.

In advance, the size of the permanent magnet is 13 cm× 5 cm× 2 cm, and the sintered
NdFeB permanent magnet of material grade N38 is selected, and its performance parameters
are shown in Table 1. Therefore, the residual magnetic field strength of the permanent
magnet is set to 1.25T during modeling.

Table 1. The main parameters of the NdFeB.

Performance Parameter

Type Material Br/T Hcj/KA m−1 (BH)m/KJ·m−3 Tc/◦C

Sintered NdFeB N38 1.22–1.26 ≥955 287–303 ≤80

3.1. Binary Array Structure

A binary array structure consisting of two permanent magnets is discussed first. As
shown in Figure 4, two magnets rotate at angular velocities and ω2 in the XOY plane at
(−d1, 0) and (d2, 0), respectively, and the measurement point P(2,−8, 3) is set outside the
structure. The angular velocity of rotation, initial rotation angle, and permanent magnet
spacing are adjusted individually for simulation.
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Figure 4. The binary array structure.

According to the experimental conditions and the practical requirements of data pro-
cessing, first make the rotation speed of the two permanent magnets ω1 = ω2 = 8π rad/s,
then let the initial angle ϕ1 = ϕ2 = 0 and adjust the distance d1, d2 of the permanent
magnet from the origin so that the effect of the spacing d on the rotating magnetic signal
synthesis is observed, and the simulation results are shown in Figure 5.
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Figure 5. A comparison of the binary array’s magnetic field intensity at different spacing.

As can be seen from Figure 5, with the increase of the spacing, the magnetic field
intensity measured continuously at the fixed-point decreases, and the signal characteristics
continue to weaken, but the signal phase does not move and the waveform largely remains
the same, so the change of the spacing has no effect on the phase information of the signal
and has a greater impact on the propagation distance of the signal. In order to ensure the
consistency of the simulation data and the physical measurement data, considering the
size of the experimental field, the simulation is fixed with the permanent magnet spacing
d1 = d2 = 4 m, and the rotation speed of only one of the permanent magnets is changed to
obtain the relationship between the magnetic field strength and the rotation speed at the
measurement point, as shown in Figure 6.
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Figure 6. A comparison of binary array’s magnetic field intensity at different rotational speeds.

It shows that when ω2 = 2ω1 = 8π rad/s, the signal has fewer extreme points at
the same time while the intensity is guaranteed, which is more in line with the signal
characteristics required for phase-based goniometry. Then, fixing the permanent magnet
pitch and rotation speed and only changing the initial angle ϕ2 of the permanent magnet
rotation for simulation, the magnetic field strength curve is shown in Figure 7.

By analyzing the simulation results in Figure 7, we can know that with the increase
of the initial angle of rotation ϕ2, the magnetic field intensity tends to increase and then
weaken. When ϕ1 = 0,ϕ2 = 4π

5 rad, the peak value of the signal is the largest, and
the difference between two adjacent great values is more obvious and characteristic. In
summary, it can be concluded that the performance of the synthesized signal is better when
the two permanent magnets are symmetrically distributed at an interval of 8m, and the
rotation speed satisfies ω2 = 2ω1 = 8π rad/s and the initial angle of rotation satisfies
ϕ1 = 0,ϕ2 = 4π

5 rad.
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The optimized binary array structure parameters are input into the COMSOL software
for modelling, and the magnetic field intensity is also collected at P(2,−8, 3). The compari-
son of the magnetic field intensity between the mathematical model and COMSOL model
is shown in Figure 8.
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Figure 8. A comparison of magnetic field intensity of a binary array between the mathematical model
and the COMSOL model.

It can be seen in the figure that the signal waveforms generated by beacons constructed
by the two models are basically the same, among which the main error exists at the
minimum value, and the maximum error value is 1.4 nT, and the phase information
corresponding to the maximum value does not change, so it can be considered that the
design idea of the binary array structure is feasible.

3.2. Ternary Array Structure

A binary array structure with good performance is obtained through simulation. On
this basis, in order to make the signal intensity greater, the waveform more characteristic,
and the phase information more easily extracted, a permanent magnet is added to form
a ternary array structure, as shown in Figure 9. From the simulation data of the binary
array structure, we can know that the spacing of the permanent magnets only has a
large impact on the intensity of the signal and a small impact on the phase information,
so on the basis of the binary array structure, the rotation speed and the initial angle of
rotation of the permanent magnets are adjusted respectively. Three permanent magnets
rotate in the XOY plane at angular velocities ω1,ω2,ω3 at (−d1, 0), (d2, 0), and (0, d3),
respectively, and measurement points P(2,−8, 3) are set outside the structure, where
d3 =

√
3d1 =

√
3d2 = 4

√
3 m.
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Figure 9. The ternary structure.

In the first place, the rotation speed of the permanent magnet is optimized for simulation.
On the basis of binary array structure, first fix the angular velocitiesω2 = 2ω1 = 8π rad/s,
then adjustω3 to get the relationship between magnetic field strength and rotation speed
out of the measurement point, as shown in Figure 10.
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Figure 10. A comparison of ternary array’s magnetic field intensity at different rotational speeds.

According to the simulation data, it can be seen that whenω2 = 2ω2 = 2ω1 = 8π rad/s,
the signal has a greater difference in amplitude between adjacent extreme points while
ensuring the intensity, and the special rectification is stronger, which is more consistent
with the requirements of signal characteristics. Then, fix the pitch and rotation speed of the
permanent magnet, adjust the rotation initial angle ϕ3 and ϕ2 in turn, and get the magnetic
field intensity change curve, as shown in Figure 11.

From the simulation results, we get that when ϕ1 = 0,ϕ2 = 4π
5 rad,ϕ3 = π rad, the

signal peak is maximum and the difference between two adjacent great values is more
obvious and characteristic. To sum up, the signal performance is better when the three
permanent magnets are distributed in a positive triangle at an interval of 8m, the rotation
speed satisfies ω2 = 2ω1 = 2ω3 = 8π rad/s, and the initial rotation angle satisfies
ϕ1 = 0,ϕ2 = 4π

5 rad,ϕ3 = π rad.
The optimized ternary array structure parameters are input into the COMSOL soft-

ware for modelling, and the magnetic field intensity is also collected at P(2,−8, 3). The
comparison of the magnetic field intensity between the mathematical model and COMSOL
model is shown in Figure 12.
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Sensors 2022, 22, 8304 12 of 24 
 

 

comparison of the magnetic field intensity between the mathematical model and COM-
SOL model is shown in Figure 12. 

 
Figure 12. A comparison of the magnetic field intensity of a ternary array between the mathematical 
and COMSOL models. 

It can be seen from the figure that the signal waveforms generated by beacons con-
structed by the two models are basically the same, among which the main error still exists 
at the minimum value, the maximum error value is 1.44 nT, and the phase information 
corresponding to the maximum value is slightly delayed. However, the slope around the 
maximum value of the signal obtained by the COMSOL software simulation is greater, 
which is more conducive to the identification of the signal, so it still can be considered 
that the design idea of the binary array structure is feasible. 

3.3. Quaternary Array Structure 
Based on the ternary array structure, we continue to add a permanent magnet and 

adjust the rotation speed and the initial angle of rotation of the permanent magnet, re-
spectively. As shown in Figure 13, four permanent magnets are located in the XOY plane 

at (−d1, −d1), (d2, −d2), (−d3, d3), (d4, d4), rotating at angular velocities 1ω , 2ω , 3ω , 4ω , 
and with measurement points −P(2, 8, 3)  outside the structure, where 

1 2 3 4d = d = d = d = 4m. 

 
Figure 13. The quaternary array structure. 

Primarily, the rotation speed of the permanent magnet is optimized for simulation. 
According to the design experience, the quadratic array structure is designed by first 

 

x

y

o

N

s

N

s
ᵠ1

ω1

ᵠ2

ω2

P(x,y,z)

d1 d2

N

s

N

s
ᵠ3

ω3

ᵠ4

ω4

d3 d4

Figure 12. A comparison of the magnetic field intensity of a ternary array between the mathematical
and COMSOL models.

It can be seen from the figure that the signal waveforms generated by beacons con-
structed by the two models are basically the same, among which the main error still exists
at the minimum value, the maximum error value is 1.44 nT, and the phase information
corresponding to the maximum value is slightly delayed. However, the slope around the
maximum value of the signal obtained by the COMSOL software simulation is greater,
which is more conducive to the identification of the signal, so it still can be considered that
the design idea of the binary array structure is feasible.

3.3. Quaternary Array Structure

Based on the ternary array structure, we continue to add a permanent magnet and
adjust the rotation speed and the initial angle of rotation of the permanent magnet, respec-
tively. As shown in Figure 13, four permanent magnets are located in the XOY plane at (−d1,
−d1), (d2, −d2), (−d3, d3), (d4, d4), rotating at angular velocitiesω1,ω2,ω3,ω4, and with
measurement points P(2,−8, 3) outside the structure, where d1 = d2 = d3 = d4 = 4 m.

Primarily, the rotation speed of the permanent magnet is optimized for simulation.
According to the design experience, the quadratic array structure is designed by first fixing
ω2 = 2ω1 = 2ω3 = 8π rad/s and then adjusting ω4 to obtain the relationship between
the magnetic field strength and rotation speed at the measurement point, as shown in
Figure 14.
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Figure 13. The quaternary array structure.
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Figure 15. A comparison of quaternary array’s magnetic field intensity at different initial angles of 

rotation: (a) Changing the initial rotation angle 4φ ; (b) changing the initial rotation angle 3φ . 

As can be seen from the figure, by adjusting the initial angle of rotation, the peak of 

the signal is the largest when 
1 2 3 4

4π 6φ = 0,φ =  rad,φ = π rad,φ = π rad
5 5 , and the differ-

ence between two adjacent great values is more obvious and characteristic. On the whole, 
it can be concluded that the performance of the synthesized signal is better when the four 
permanent magnets are distributed in a square with 4m interval between two, the rotation 

Figure 14. A comparison of quaternary array’s magnetic field intensity at different rotational speeds.

Comparing the ternary array structure and the quadratic array structure, it can be seen
that after adding a permanent magnet, the signal change pattern corresponding to different
rotational speeds is basically the same, and whenω2 = ω4 = 2ω1 = 2ω3 = 8π rad/s, the
intensity of the signal is relatively larger and the characteristics are more obvious. Via fixed
structure spacing, rotation speed, and sequentially adjusting the rotation initial angle ϕ4,
ϕ3, we get the magnetic field intensity change curve as shown in Figure 15.
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As can be seen from the figure, by adjusting the initial angle of rotation, the peak of
the signal is the largest when ϕ1 = 0,ϕ2 = 4π

5 rad,ϕ3 = 6
5 π rad,ϕ4 = π rad, and the

difference between two adjacent great values is more obvious and characteristic. On the
whole, it can be concluded that the performance of the synthesized signal is better when
the four permanent magnets are distributed in a square with 4m interval between two, the
rotation speed satisfiesω2 = ω4 = 2ω1 = 2ω3 = 8π rad/s, and the rotation initial angle
satisfies ϕ1 = 0,ϕ2 = 4π

5 rad,ϕ3 = 6
5 π rad,ϕ4 = π rad.

The optimized quadratic array structure parameters are input into the COMSOL
software for modelling, and the magnetic field intensity is also collected at P(2,−8, 3). The
comparison of the magnetic field intensity between the mathematical model and COMSOL
model is shown in Figure 16.
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Figure 16. A comparison of magnetic field intensity of the quaternary array between the mathematical
and COMSOL models.

It can be seen from the figure that the signal waveforms generated by beacons con-
structed by the two models are basically the same, among which the errors occur at both
maximum and minimum values, and the maximum error value is 15 nT, and the phase
at the maximum point is slightly ahead, so it can be considered that with the increase
of the number of permanent magnets, the error between the mathematical model and
the simulation model becomes larger, and the practicability of the optimized structure
is controversial.

According to Figures 8, 12 and 16, it can be seen that the beacon structural parameters
optimized by the mathematical model are applied to the simulation model. Although the
law of signal waveform is basically the same, with the increase of the number of permanent
magnets, the error at the minimum and maximum amplitude becomes larger and larger.
The comprehensive analysis reason is as follows: the mathematical model is based on
the magnetic dipole model, but the rectangular permanent magnet model is established
in the simulation verification. In fact, the distribution pattern of the magnetic field of a
rectangular permanent magnet in the near field is different from that of a magnetic dipole,
so the magnetic signal waveform generated by the two models is basically the same, but
there will be errors in the calculation at the extreme point. At the same time, by analyzing
the magnetic field of ternary array and quadratic array structures, it can be seen that
increasing the number of permanent magnets can significantly improve the strength of a
magnetic signal, but the magnetic field intensity on both sides of the maximum point will
continue to increase, thus weakening the characteristics of the signal. To sum up, for the
validity of the subsequent experimental results, the ternary array structure is selected as
the experimental verification object.
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4. Analysis of the Effect of Rotating Permanent Magnetic Beacons on Different
near Fields

The magnetic field of permanent magnets decays rapidly with the increase of distance,
and the simulation calculation can conclude that increasing the number of permanent
magnets to form an array can effectively increase the magnetic field strength. In practice,
the rotating magnetic beacon may be used in various environments, and the propagation
medium of the magnetic signal is not only limited to air, so the ternary array structure is
chosen here, and the propagation medium of the magnetic signal is replaced by air, soil, and
seawater, respectively, and the field strength change of the structure in different media is
obtained by using simulation software. By reviewing the data, it is known that the relative
permeability of air is 1, that of soil is slightly greater than 1, and that of seawater is slightly
less than 1. The field strength variation curves obtained by setting different permeabilities
are shown in Figure 17.
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Figure 17. A comparison of magnetic field intensity in different media.

When changing the propagation medium, the magnetic signal intensity changes with
distance in the same pattern, but due to the difference in relative permeability, the magnetic
signal attenuation increases in seawater and decreases in soil, which is greatly related to
the composition of the medium, but has little effect on the signal propagation trend, so the
magnetic beacon structure proposed in this paper can play a stable effect in common media.

5. Experiment and Analysis

Since there are differences between the permanent magnets simulated by the software
and those obtained by actual machining, further experiments are needed to verify the
performance of the array structure obtained by simulation optimization.

5.1. Beacon Array Layout and Signal Testing

The dimensions of the three permanent magnets in the magnetic beacon array are the
same, L ×W × H = 13 cm × 5 cm × 2 cm, the remanent magnetization of the permanent
magnets is 1.25 T and the demagnetization coefficient is 0.14. The layout of the array is
shown in Figure 18. The three permanent magnets rotate along the Z-axis clockwise with
angular velocities of ω1, ω2 and ω3, respectively. The spacing of all three permanent
magnets is d, and the initial angles of rotation are ϕ1, ϕ2, and ϕ3. The measurement point
is set at a point P outside the array, and the synthetic magnetic field generated by the array
is measured after steps such as noise reduction and offsetting the ambient magnetic field.
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Figure 18. A schematic diagram of beacon operation.

5.2. Experiment and Result Analysis

A measurement system platform is built in the laboratory, which consists of the
following parts: a magnetic beacon, non-magnetic turntable, three-axis magnetometer
sensor, AC/DC power supply, signal acquisition, and data processing software, etc., as
shown in Figure 19.
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Figure 19. The measurement system platform.

The permanent magnets used in the experiment are the same as those in the simulation
design, and the individual permanent magnets are shown in Figure 20. According to the
design scheme, the coordinates of the turntable in the measurement array are (−4,0,0),
(4,0,0), (0,4

√
3,0), where the midpoint of turntable 1 and turntable 2 is the coordinate

origin, and the rotation speed of the turntable is set to ω1 = 4π rad/s, ω2 = 8π rad/s,
ω3 = 4π rad/s, respectively, and the sensor is placed at coordinate P(2,−8, 3), as shown
in Figure 21.

After adjusting the rotation parameters, the power supply is started, the three rotary
tables are rotated simultaneously, the measurement software is started, and the magnetic
field information is collected using a three-axis flux meter with a sampling rate of 200 Hz,
the data for which mainly includes: acquisition time, total magnetic field B, magnetic
field component Bx, magnetic field component By, and magnetic field component Bz.
The collected data are imported into Origin software for waveform plotting, and the
experimental process is shown in Figure 22.
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As shown in Figure 23, the magnetic signal is collected with a three-axis flux meter,
and the waveform is stabilized and selected for plotting within 1s time. An error analysis
of experimental and theoretical values is shown in Figure 24.
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As can be seen from Figure 22, at the first maximum point, the experimental value is
smaller than the theoretical value; at the second maximum point, the experimental value is
larger than the theoretical value; and at the other extreme points, the experimental value
is smaller than the theoretical value, and the maximum error is 2.71 nT. After arranging
the experimental environment and instruments, the reasons for errors are summarized as
follows: (1) By measuring the magnetic field intensity of each permanent magnet, it is found
that the three permanent magnets are not completely consistent, and the magnetic value of
the permanent magnet at position 3 is smaller than the theoretical value, while the magnetic
value of the permanent magnet at position 1 and 2 is larger than the theoretical value. In
the process of rotation, the speed of the permanent magnet at position 2 is twice that of the
permanent magnet at position 1 and 3. Therefore, in the process of signal superposition, the
signal is too large when it should be cancelled and too small when it should be enhanced; (2)
the switches of the three turntables are not controlled at the same time, so there will be time
deviation, which will lead to an error at the moment when the extreme point appears; (3)
the time from start-up to stability of the turntable is different, so in the process of rotation,
the initial rotation angle is not completely consistent with the theoretical value, which
leads to the deviation of the magnetic field intensity at the corresponding moment of the
extreme point; (4) the laboratory is not a non-magnetic environment. Because the indoor
power supply mode is an alternating current, the interference magnetic field with variable
intensity and frequency will also be generated, thus affecting the experimental results.

Although the magnetic signal measured via experimentation has some errors com-
pared with the theoretical value, the error value is within the permissible range, and the
overall change law of the signal is consistent with the change law of the theoretical value, so it
can be considered that the magnetic beacon designed in this paper has certain practicability.

In order to further verify the feasibility of the method, this paper will use the physical
simulation and theoretical simulation method to experiment with the direction finding
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function. The following improvements are made to solve the problems that emerged
from the actual testing of the fiducial model: (1) Ensure that the permanent magnets are
consistent with the theoretical model before the experiment; (2) adjust the control system
of the turntable to ensure the synchronization of rotation as much as possible; (3) add a
random resonance detection method to the data processing to maximize the effect of the
ambient magnetic field while also improving the SNR of the output signal.

Next, the orientation experiment is performed. First, set up the magnetic beacon; as
shown in Figure 25, the center of the array O is the center of the circle; then, set five test
points in the radius of 8 m on the circumference: P1(4

√
3,−4,3), P2(4,−4

√
3,3), P3(0,8,3),

P4(−4,−4
√

3,3), P5(−4
√

3,−4,3). The signal receiving and processing unit will be placed at
these five test points in turn, after the turntable start and smooth rotation to start collecting
magnetic signals.
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Figure 25. A schematic diagram of the experiment.

When the measurement point is at P1 (4
√

3,−4,3), the maximum value of the magnetic
signal needs to rotate through 120◦ from the positive half-axis of the Y-axis to the measure-
ment point, corresponding to a time of 0.167 s, and the actual measurement results are
shown in Figure 26.
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Figure 26. The measured signal at point P1.

Based on the measurement results, we know that the time difference from the reference
to the first maximum point of the signal is 0.164 s, corresponding to an angle of 118.08◦.

When the measurement point is at P2(4,−4
√

3,3), the maximum value of the magnetic
signal needs to rotate through 150◦ from the positive half-axis of the Y-axis to the measure-
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ment point, corresponding to a time of 0.208 s, and the actual measurement results are
shown in Figure 27.

Sensors 2022, 22, 8304 20 of 24 
 

 

 
Figure 26. The measured signal at point P1. 

Based on the measurement results, we know that the time difference from the refer-
ence to the first maximum point of the signal is 0.164 s, corresponding to an angle of 
118.08°. 

When the measurement point is at P2(4,−4 3,3), the maximum value of the magnetic 
signal needs to rotate through 150° from the positive half-axis of the Y-axis to the meas-
urement point, corresponding to a time of 0.208 s, and the actual measurement results are 
shown in Figure 27. 

 
Figure 27. The measured signal at point P2. 

Based on the measurement results, we know that the time difference from the refer-
ence to the first maximum point of the signal is 0.201 s, corresponding to an angle of 147.6°. 

When the measurement point is at P3(0,8,3), the maximum value of the magnetic sig-
nal needs to rotate through 180° from the positive half-axis of the Y-axis to the measure-
ment point, corresponding to a time of 0.25 s, and the actual measurement results are 
shown in Figure 28. 

Figure 27. The measured signal at point P2.

Based on the measurement results, we know that the time difference from the reference
to the first maximum point of the signal is 0.201 s, corresponding to an angle of 147.6◦.

When the measurement point is at P3(0,8,3), the maximum value of the magnetic signal
needs to rotate through 180◦ from the positive half-axis of the Y-axis to the measurement
point, corresponding to a time of 0.25 s, and the actual measurement results are shown in
Figure 28.
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Figure 28. The measured signal at point P3.

Based on the measurement results, we know that the time difference from the reference
to the first maximum point of the signal is 0.247 s, corresponding to an angle of 177.84◦.

When the measurement point is at P4(−4,−4
√

3,3), the maximum value of the mag-
netic signal needs to rotate through 210◦ from the positive half-axis of the Y-axis to the
measurement point, corresponding to a time of 0.291 s, and the actual measurement results
are shown in Figure 29.

Based on the measurement results, we know that the time difference from the reference
to the first maximum point of the signal is 0.289 s, corresponding to an angle of 208.08◦.

When the measurement point is at P5(−4
√

3,−4,3), the maximum value of the mag-
netic signal needs to rotate through 240◦ from the positive half-axis of the Y-axis to the
measurement point, corresponding to a time of 0.334 s, and the actual measurement results
are shown in Figure 30.



Sensors 2022, 22, 8304 20 of 22

Sensors 2022, 22, 8304 21 of 24 
 

 

 
Figure 28. The measured signal at point P3. 

Based on the measurement results, we know that the time difference from the refer-
ence to the first maximum point of the signal is 0.247 s, corresponding to an angle of 
177.84°. 

When the measurement point is at P4(−4,−4 3,3), the maximum value of the mag-
netic signal needs to rotate through 210° from the positive half-axis of the Y-axis to the 
measurement point, corresponding to a time of 0.291 s, and the actual measurement re-
sults are shown in Figure 29. 

 
Figure 29. The measured signal at point P4. 

Based on the measurement results, we know that the time difference from the refer-
ence to the first maximum point of the signal is 0.289 s, corresponding to an angle of 
208.08°. 

When the measurement point is at P5(−4 3,−4,3), the maximum value of the mag-
netic signal needs to rotate through 240° from the positive half-axis of the Y-axis to the 
measurement point, corresponding to a time of 0.334 s, and the actual measurement re-
sults are shown in Figure 30. 

Figure 29. The measured signal at point P4.
Sensors 2022, 22, 8304 22 of 24 
 

 

 
Figure 30. The measured signal at point P5. 

Based on the measurement results, we know that the time difference from the refer-
ence to the first maximum point of the signal is 0.33 s, corresponding to an angle of 237.6°. 

The orientation measurement error at the five measurement points can be obtained 
according to Figures 26–30, as shown in Figure 31. 

 
Figure 31. Measuring error. 

From the figure, we can see that the measurement error is mainly distributed around 
2°, and the noisy signal will have some distortion after random filtering detection and 
smoothing, which leads to deviation in the measurement of the maximum value, thus af-
fecting the measurement of the orientation. When the distance is close, the deviation of 2° 
is not obvious, but as the distance increases, the angular error will become more and more 
obvious, so this directional measurement system needs to continue to improve the prob-
lem of improving the accuracy, such as the optimization of the beacon structure, the im-
provement of the signal detection algorithm, and the improvement of the data acquisition 
software and other aspects. 

In general, the experimental system can complete the measurement of target orienta-
tion after the initial optimization, which verifies the feasibility of the proposed method to 
a certain extent. 

6. Conclusions 
To address the problem of difficulty in improving the positioning accuracy in the 

artificial magnetic beacon positioning based on amplitude measurement, (1) establish the 
rotating permanent magnet model, derive the expression of magnetic field intensity at any 
point outside the rotating permanent magnet, and analyze the spatial characteristics of 
the magnetic field; (2) use the MATLAB software to simulate and analyze the binary array, 
ternary array and quadratic array structures on the basis of the mathematical model, and 
find that a certain number of permanent magnets are placed according to the design, and 
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Based on the measurement results, we know that the time difference from the reference
to the first maximum point of the signal is 0.33 s, corresponding to an angle of 237.6◦.

The orientation measurement error at the five measurement points can be obtained
according to Figures 26–30, as shown in Figure 31.
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From the figure, we can see that the measurement error is mainly distributed around
2◦, and the noisy signal will have some distortion after random filtering detection and
smoothing, which leads to deviation in the measurement of the maximum value, thus
affecting the measurement of the orientation. When the distance is close, the deviation
of 2◦ is not obvious, but as the distance increases, the angular error will become more
and more obvious, so this directional measurement system needs to continue to improve
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the problem of improving the accuracy, such as the optimization of the beacon structure,
the improvement of the signal detection algorithm, and the improvement of the data
acquisition software and other aspects.

In general, the experimental system can complete the measurement of target orienta-
tion after the initial optimization, which verifies the feasibility of the proposed method to a
certain extent.

6. Conclusions

To address the problem of difficulty in improving the positioning accuracy in the
artificial magnetic beacon positioning based on amplitude measurement, (1) establish the
rotating permanent magnet model, derive the expression of magnetic field intensity at
any point outside the rotating permanent magnet, and analyze the spatial characteristics
of the magnetic field; (2) use the MATLAB software to simulate and analyze the binary
array, ternary array and quadratic array structures on the basis of the mathematical model,
and find that a certain number of permanent magnets are placed according to the design,
and the rotation parameters of each permanent magnet are adjusted to obtain a signal
with strong characteristics to meet the phase orientation, but with the increase of the
number of permanent magnets, the characteristics of the signal first increase and then
decrease. The signal generated by the ternary array structure has stronger characteristics
while satisfying the requirements. The COMSOL physical simulation software is used
to verify whether the optimized structure obtained via mathematical model is available;
(3) three common environments of air, seawater and soil are simulated to verify that the
obtained structure can function stably in them; (4) an experimental system is established,
and the detection of magnetic beacon signals and the feasibility of using magnetic beacon
signals for direction finding are carried out successively. The results indicated that the
optimally designed beacons could be applied to the direction finding method and achieve
better results. Measuring the phase information is different from measuring the amplitude,
which does not require high amplitude accuracy at each moment, providing a good idea to
further improve the positioning accuracy, so that a larger size of the permanent magnet
can be made to further analyze the working performance at longer distances when the
conditions allow.
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