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Abstract: In our project herein, we use the case of farmworkers, an underserved and understud-
ied population at high risk for Type-2 Diabetes Mellitus (T2DM), as a paradigm of an integrated
action-oriented research, education and extension approach involving the development of long-term
equitable strategies providing empowerment and tailored-made solutions that support practical
decision-making aiming to reduce risk of T2DM and ensuing cardiovascular disease (CVD). A
Technology-based Empowerment Didactic module (TEDm) and an Informed Decision-Making en-
hancer (IDMe) coupled in a smart application (app) for farmworkers aiming to teach, set goals,
monitor, and support in terms of nutrition, hydration, physical activity, sleep, and circadian rhythm
towards lowering T2DM risk, is to be developed and implemented considering the particular char-
acteristics of the population and setting. In parallel, anthropometric, biochemical, and clinical
assessments will be utilized to monitor risk parameters for T2DM and compliance to dietary and well-
ness plans. The app incorporating anthropometric/clinical/biochemical parameters, dietary/lifestyle
behavior, and extent of goal achievement can be continuously refined and improved through machine
learning and re-programming. The app can function as a programmable tool constantly learning,
adapting, and tailoring its services to user needs helping optimization of practical informed decision-
making towards mitigating disease symptoms and associated risk factors. This work can benefit apart
from the direct beneficiaries being farmworkers, the stakeholders who will be gaining a healthier,
more vibrant workforce, and in turn the local communities.

Keywords: agriculture; artificial intelligence (AI); machine learning; farm workers; type 2 diabetes
mellitus (T2DM); nutrition; practical decision making

1. Background/Introduction

The pursuit of health and well-being extends life quality and expectancy for individu-
als while fostering positive societal and financial externalities for communities and nations
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at large. Achieving good health outcomes is challenging in the face of multiple constraints
including finances, time, access to services and information [1,2]. While increasing health-
care costs are affecting disproportionally certain individuals and communities, healthcare
systems are often supplemented with scattered community programs, targeting particu-
larly disadvantaged communities. However, health statistics on quality of life, well-being,
chronic disease burden in the US and globally indicate that desired health outcomes remain
elusive [1]. Without viable and long-term healthcare solutions, individuals are left with
little recourse, thus in need for alternative approaches to prevent and manage disease,
and/or achieve optimal health.

It is important to consider a different approach aiming to enhance healthcare, whereby
personalized, adaptive, and integrated smart solutions, paired with real-time/real-life
monitoring, aid individuals in making informed practical health decisions and preventing
and/or managing chronic disease. This novel approach employs artificial intelligence (AI)
and other machine learning techniques (including supervised and reinforcement learning)
to help predict outcomes and the drivers of these outcomes, while interfacing with a
custodial cloud of experts for fine-tuning and feedback. Such health strategies and assets
may well be the way of the future as they empower individuals, account for their diversity
of needs, challenges, and opportunities, and grant them ownership of their health.

In the project presented herein, we present the concept of developing a Technology-
based Empowerment Didactic module (TEDm) and an Informed Decision-Making enhancer
(IDMe) coupled in a smart application (app) for farm workers in California at dispro-
portional risk for Type 2 Diabetes Mellitus (T2DM) with limited access to consultation
and healthcare. Additionally, refining and validating the IDMe based on anthropomet-
ric/clinical/biochemical parameter testing and monitoring of dietary/lifestyle behavior
and nutrition/health-goal achievement degree can supplement and optimize the work.
Farm workers constitute a population at significantly higher risk for T2DM [3–5] due to
genetics, race, and lifestyle elements including improper type of physical activity causing
physical stress, irregular sleeping patterns/disrupted circadian rhythm, irregular meal
timings, irregular distribution of calories over meals, and an overall suboptimal diet quality
and quantity [6–8]. The TEDm-IDMe app, would incorporate nutrition education, diabetes
education and life-style changes recommendations, deliver those to the participants and
set goals based on clinical nutrition and T2DM risk assessment via anthropometric/body
composition measurements, extensive blood biochemistry assessing metabolic and in-
flammatory status, i.e.,: cholesterol (HDL-c, LDL-c and total), atherogenicity index, total
triglycerides (TAG), Fasting Plasma Glucose (FPG), Glycosylated Hemoglobin (HbA1c) and
C-reactive protein (CRP) and clinical data including heart rate, blood pressure, health status,
medications, tobacco and alcohol use. Next, individualized goals are determined, and
extent of achievement can be monitored. TEDm-IDMe app would use machine learning
(AI/ pattern recognition and comparison to recommendations and cut-offs) and back/re-
programing to dynamically provide regular feedback to participants in assisting with
achieving their goals, while self-improving. The biomarkers measured are also appropriate
for cardiovascular disease (CVD) risk. Development and modes of information delivery for
TEDm considers the distinctive idiosyncratic characteristics (opportunities and limitations)
of the farmworkers’ setting and lifestyle.

The scope of our work is to enhance optimal practical decision making pertinent to
health issues involving lifestyle decisions, for populations with limited access to knowledge
and health support. Our approach presented here, is aiming at empowering traditionally
and typically underserved population in disadvantaged positions towards chronic disease
development in part due to lifestyle and work conditions, significantly relevant to diet
and nutrition. Along those lines this approach is innovative in terms of establishing an
interdisciplinary tactic to address the issues and lift barriers towards a more equitable
delivery of health support, in creating a healthier and more vibrant workforce.
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1.1. Cost of Type 2 Diabetes Mellitus in the US and CA

According to data from the American Diabetes Association, in the US, in 2015, 30.3 million
Americans (9.4% of the census population) had diabetes, with 95% of the cases estimated to
be T2DM. An estimated 7.2 million diabetes patients were undiagnosed [3–6]. Total costs of
diagnosed diabetes in the US in 2017 was $327 billion, of which $237 billion for direct medical
costs and $90 billion due to reduced productivity [6]. After adjusting for population, age and sex
differences, average medical expenditures among people with diagnosed diabetes were 2.3 times
higher than projected expenditures in the absence of diabetes [6,7]. In California, approximately
9% of adults have been diagnosed with diabetes, while a staggering 46% including about 1/3 of
those under 40 years old are prediabetic, with consistently elevated blood glucose levels, that
will most likely develop into frank T2DM. Combined, this amounts to 55% of the State’s adult
population being directly affected by diabetes [7]. T2DM incidence spread has increased by
32% in California in the past decade according to State statistics [7]. Treatment of diabetes costs
government, private insurers, and patients approximately $37.1 billion per year in California
alone, for expenses including doctor visits, testing, medication, surgery, and hospitalization
costs. Overall diabetes-generated costs are projected to increase in the coming years both in
California and the entire US [7].

1.2. Type 2 Diabetes Mellitus among Agriculture Workers

The total prevalence of type 2 diabetes among US agricultural workers is unknown,
but it is likely to be similar or higher to that found within US Hispanic population with
similar acculturation levels. A study using administrative data collected from 164 Migrant
Health Centers on more than 793,000 agricultural worker patients in 2012, reported a
prevalence rate of 7.8% for type 1 and type 2 diabetes combined among patients of all ages.
These data may well underestimate however the true prevalence of diabetes, based on
Health Center billing practices.

Stress is an important contributor to the development of T2DM via physiological effects
of stress on blood glucose modulation. Agricultural workers typically exhibit high stress
levels due to food insecurity, work type and migration challenges. Fasting blood glucose
has been associated with perceived stress among migrant agricultural workers [8] while job
strain is shown to be an independent risk factor for T2DM among working men and women,
regardless of lifestyle choices [9]. Irregular sleep patterns also tend to aggravate blood glucose
control and increase insulin resistance. A systematic review of 59 indigenous populations
around the world found that indigenous groups in North America had the highest prevalence
of type 2 diabetes, with increasing acculturation contributing to higher rates of diabetes [10].
The risk for diabetes increases in impoverished, “obesogenic” environments, where unhealthy
food is inexpensive and accessible and meal patterns are irregular.

1.3. Feasibility of Education and Technology Use for Disease Risk Attenuation

Research with a male migratory population of agricultural workers in South Carolina
indicated that 81% of the 80 participants had a smartphone and that most participants were
very positive of the idea to use mobile technologies for management of hypertension and/or
diabetes [11]. Workers unfamiliar with mobile devices also indicated a willingness to par-
ticipate in mHealth (mobile Health) programs if they had a tutorial. A quasi-experimental
study with migrant agricultural workers in Virginia found that community health workers
(in Spanish: promotores de salud), could screen for diabetes in this population as effectively
as registered nurses [12]. Thus, farmworker screening programs could potentially increase
reaching more workers.

2. Methodology and Contextual Approach
2.1. The Technology-Based Empowerment Didactic Module (TEDm)

Adults approach and engage in learning differently from young learners [13]. The
literature suggests adult learners have six significant tenets to learning: (1) they need to
know why they must learn something, (2) they need to be viewed as capable, (3) they
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come with a lot of experience, (4) they are ready to learn, (5) they are focused on the
real-world, and (6) they are primarily intrinsically motivated [14]. Familiarity with these
six keys can lead to more success in planning and facilitation of adult training programs.
Ota et al., recommend adult education be focused on experiential learning methods for
maximal effect [13]. Specific methodologies proven successful with adult learners include:
lecture, discussion, experiential learning, problem-based learning, storytelling, networking,
role-play, educational games, and case studies [13–17].

Educational programming for farm labor presents the need for additional layers of
planning. Roka et al., prepared a training model for farm labor supervisors in Florida and
proposed the need to develop partnerships with stakeholders, conduct a needs assessment,
create, and disseminate curriculum in both English and Spanish, and regularly revise the
program based on evaluations [17]. The four workshop themes addressed in the study were
packaged into a two full day format while also into a four half-day format. The trainees’
preference was to adhere to a two-day schedule, likely to maximize time away from work.

Madden explained the importance of Hispanic culture to the workplace, but the
elements must be considered with training program development. First, Hispanic culture
is very paternalistic and hierarchical [18]. The foreman is the head of the work family and
workers give them their allegiance, often looking to them as mentors. Training programs
must incorporate foremen into the delivery model to secure buy-in. Secondly, many in
farm labor have little formal education and may struggle with basic academic skills. Thus,
materials must be tailored to the audience, be written in both English and Spanish, free
of complex language, and rich in visuals to enhance and convey meaning. Videos can
also be a great tool to share information, while delivery of information using printed
materials and videos sent in a personal device is less likely to interfere with work schedule.
Finally, Hispanic workers take great pride in their work and appreciate seeing how their
work touches others, including other workers and their own families. With carefully
designed and culturally appropriate training programs, the importance of connection with
others in the context of participating in an educational intervention that empowers and
offers opportunities for health improvement can help motivate the participants to show
compliance with the program and to want to sustain the ensuing benefits as a means of
contributing to healthier families and more vibrant communities through their personal
improvement and development.

Taking these points into account, the development of educational materials that consider
the idiosyncrasies, needs and potential of this population is important. Utilizing a variety of
methods in the delivery of the educational material as appropriate is also key, while employing
novel technology in doing so, and keeping the materials and information delivery accessible
utilizing the mobile technology is the premise upon which the TEDm is founded.

In this context, scripted instructional training modules complete with key learning
objectives, content, teaching and learning methods, opportunities for application, and
assessment should be developed. Instructional training modules will feature content
important feature topics related to: personal nutrition, making healthy food choices, dealing
with cravings, exercise programs, sleep, financial outcomes associated with personal health
investment (Return On Investment). Modules will be infused with opportunities for
personal reflection, goal setting based on personal health data, as well as opportunities
for discussion with small groups where Student Health Ambassadors and foremen will
also be included. Modules will be delivered by trained Student Health Ambassadors in
live training sessions at field locations. Sessions feature a variety of andragogy teaching
methods including lecture, discussion, experiential learning, problem-based learning,
storytelling, networking, role play, educational games, and case studies. Stakeholders
are involved in planning contributing observations/anecdotal evidence regarding the
specifics of site, population limitation and opportunities as well as in implementation by
providing population access and evaluation by discussing with us our findings and any
correlated observations regarding improvements in productivity and workforce retention.
The developed app incorporating these materials while creating an interface, becomes
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available to participants through a smart-phone platform to assist with helping participants
develop healthy habits.

2.2. The Informed Decision-Making Enhancer (IDMe)

Mobile devices, in particular smartphones and/or wearables, constitute an essential
tool for the target population, and used both for personal communication as well as coordi-
nation of work-related activities. Health information technology holds significant potential
for engaging individuals in managing their health providing tools to track, manage, and
interpret personal heath metrics. These tools can empower participants to ask questions,
communicate concerns, identify, and assess alternatives, reflect on progress, and alter health
behavior. Currently the reach of consumer health informatics technologies among under-
served groups including racial/ethnic minorities and low-income individuals remains
especially problematic [19]. Participants in our study will be provided with appropriate
wearables for the deployment of both the TEDm and IDMe as well as physical activity
monitors. Typically, our target group possesses smartphones and are tech-savvy as per the
use of associated technologies, while inclined to assign a high value to new trends in the
acculturation process, thus willing to acquire new technical knowledge. Relevant tutorials
will be provided as needed to facilitate compliance and enhance the participant experience.

Literature review indicates that mobile apps and related technology can positively
affect health aspects, in particular weight loss, as well as diabetes prevention and treat-
ment [20–30]. Similarly, an initial literature review indicates a significant number of publi-
cations on the use of Artificial Intelligence and Machine Learning techniques for diabetes
prediction, prevention, and treatment [28,29,31–47].

2.3. App Development and Infrastructure

For the app development, we use a variation of the commonly used “agile develop-
ment” method. In this method, a small team of software developers, usability evaluators
and domain experts work on successive versions of the app. In short periods (“sprints”) of
2–6 weeks, improvements to the app are made and then tested through usability evalua-
tions by actual users. Feedback enters the next development cycle, until the feature set of
the app is considered sufficient for a release to the broader user community. Even after this
release, improvements continue to be made based on user feedback, changes in technology,
performance aspects, monitoring health data, updated clinical/biomarker data. Clini-
cal/biomarker/metabolomics assessment constitutes de facto results-based monitoring
and evaluation of the entire extension/education process. As the TEDm-IDMe is imple-
mented, comprehensive health assessment will reflect the progress of behavior-change in
reference to chronic disease risk and support finetuning of the TEDm-IDMe.

Through interviews and surveys, we collect information on the background of the
target population with respect to their use of related apps (e.g., nutrition tracking, health
care), their awareness regarding nutrition and health risks, their openness towards using
mobile apps in this context, and their expectations, preferences, and dislikes of potential
features of such an app. The expected outcome of this step is a document detailing the
features of the proposed app, the translation of the features into requirements that guide
the software development, and the identification of evaluation criteria to determine if the
requirements have been met, and how the app addresses the needs of the users as expressed
in the features.

App Design and Development: Based on the requirements identified in the previous step,
developers work on the following tasks:

1. Create artefacts such as design sketches, wireframes, and initial mockups that demon-
strate the way the features of the app are presented to the users. As the work proceeds,
these initial prototypes are expanded with respect to the addition of features, the
revision of the appearance, and the performance from a user’s perspective (e.g., the
response time for actions initiated by the user).
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2. Write code to implement the functionality of the app. In addition to the front end (the
part of the app that is visible to the user), there are components performing compu-
tational activities behind the scenes. This includes queries to nutritional data bases,
collection and storage of user behavior information, generation of recommendations
regarding nutrition and behavior modification, and administrative functions such as
account management, privacy, and security aspects.

3. Develop the infrastructure for the app. The app is to utilize cloud computing and
Web services to connect to nutrition data bases, knowledge repositories, data analysis
and machine learning tools, and related components. In addition, the collection and
management of user data rely on Web infrastructure. A frequently used tool for such
purposes is Google’s Firebase mobile development platform specifically intended for
fast, efficient, and secure mobile development.

Usability Evaluation: As indicated above, user feedback is considered throughout
the development process. Widely used practices for software engineering and mobile
development are followed [48–52].

1. Features: Desirable aspects of the app, formulated in a language suitable for the
intended user population.

2. Requirements: More formal specification of the features and functionality of the app,
formulated for the use of the software developers.

3. Evaluation Criteria: Ideally, these are objective and measurable characteristics of
the implemented prototype or system. Within the limits of privacy and technology
constraints, we use metrics including time spent with the app, queries made about
nutrition, data entry activities. Especially for user interfaces, in-practice user feedback
in the form of scales (expressing user satisfaction and similar criteria) or text is
commonly used.

On a regular basis, the respective version of the app against the requirements, using the
evaluation criteria defined is to be assessed and evaluated. This addresses several aspects:

1. Usability and user experience: Does the current version of the app provide the
expected features at that stage? How well can users utilize those features? Are the
users satisfied with the way they interact with the app? What problems do users
encounter, and what suggestions for improvement do they have.

2. Core functionality of the app: Does the app deliver the expected results? Are these
results correct and complete (no missing information)?

3. Infrastructure: Does the app communicate/interact with respective infrastructure
as specified?

In the initial stages of development, the emphasis is mainly on the interaction with
the main features of the app, and less with performance aspects like response time. In later
stages, more emphasis is given to detailed graphic design issues, performance, and stability.

Deployment: For the early versions of the app (sketches, mockups, and partially
functional prototypes), development devices are utilized to conduct usability evaluations
and collect feedback.

Validation: Ongoing validations of aspects such as usability, functionality, and perfor-
mance of the app together with the respective infrastructure are to be conducted as well
as analysis of the overall outcome for the approach in terms of efficacy through objective
clinical assessment.

Clinical assessment constitutes de facto results-based monitoring and evaluation of the
entire extension/education process. As the TEDm-IDMe is implemented clinical assessment
over time-points demonstrates objectively, in a quantifiable manner, the progress in terms
of behavior change as it relates to specific risk parameters for T2DM and ensuing CVD.
Typical clinical health indices describing risk for cardiovascular disease and diabetes will be
assessed including energy expenditure, body composition, blood pressure, fasting plasma
glucose, blood lipid panel, and biomarkers validating dietary intakes per food groups such
as red blood cell fatty acids, serum alkylresorcinols, carotenoids and L-carnitine.
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2.4. Assumptions

1. We assume that farmworkers as indicated by the literature but also common experi-
ence, field perception and anecdotal evidence and stakeholder input will have low
level of nutrition knowledge and T2DM/CVD knowledge.

2. Research has demonstrated that farmworkers would be positive towards using mobile
devices to improve their health as it relates to nutrition and T2DM/Hypertension/CVD.

3. Our population is typically familiar with smart devices but even the few who are not,
are still positively predisposed to learning and are found in a conducive environment
which could teach them through their interaction with peers.

2.5. Hypothesis

We hypothesize that improving knowledge/attitude towards nutrition and other
lifestyle parameters affecting T2DM/CVD risk of farmworkers in combination with moni-
toring and personalized/tailored feedback and customizable help with practical decision
making towards health, could result in lower risk for T2DM/CVD, higher productivity and
labor retention and an overall more productive and effective labor force.

An overall graphical schematic approach on the concepts discussed is provided below
with Figure 1. The approach while it uses the paradigm of farmworkers focusing on this
population in particular, it can be also followed and applied to other beneficiaries who may
be experiencing particular challenges and are thus in a disadvantaged and underserved
status due to idiosyncratic lifestyles and work environments/demands.
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3. Perspectives and Conclusions

Our goal is to lay the foundation for capacity building and the establishment of an
approach that will produce comprehensive methods and services through applied research
for personalized health monitoring and practical decision making. Thus, this work is signif-
icant since the approach followed promotes innovation and interdisciplinarity as it induces
ingenuity and creative thinking towards integrating intellectual capital, various specialties
and disciplines as well as combines methods and procedures to generate TEDm-IDMe app
bundle(s). These applications function as programmable tools that can continuously learn,
adapt, and tailor their educational and counseling services to users’ needs. The applications
also consider users’ limitations/opportunities, health, and behavior evaluation to help
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with optimization of practically informed decision making aimed at minimizing risk of
chronic disease (such as T2DM and ensuing cardiovascular disease). Addressing the com-
plexity and idiosyncrasies of various target groups is a method of transferring power and
responsibility in terms of informed health behavior to the individual in a personalized and
continuously evolving way. Systems that include a variety of methods in terms of informa-
tion acquisition and promote personalized/precision nutrition are generally considered the
way of the future both for dealing most effectively with disease but also optimizing health
and wellbeing [53–57]. Traditional food and dietary practices and use of technological
devices have been seen to improve health outcomes [58–60] and our approach may combine
the two in the population selected. Limitations of the approach include the extensiveness of
information needed and the integration challenges for generating health recommendations.
Specific strengths include the comprehensive approach and the personalized precision
nutrition and lifestyle considerations.

Moreover, specifically a high level of interdisciplinarity is achieved in this approach
by creating possibilities for a hub of experts from fields including nutritional biochem-
istry/metabolism, metabolomics, communication and education, computer science and
software engineering, business, and graphic design. Our aim is to address critical aspects
of health assessment, monitoring and data validation with the aid of advanced technology
that will be tailor-made and constantly evolving to mirror the needs of its users.

Funding: United States Department of Agriculture—National Institute of Food and Agriculture
(USDA-NIFA) grant, No: 2020-70001-31296, awarded to Angelos K. Sikalidis (PI) and Aleksandra
S. Kristo (Co-PI).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board of California Polytechnic State University
(protocol code 2020-103).

Informed Consent Statement: Informed consent was obtained from all participants involved in
the study.

Data Availability Statement: Data/outcomes available at: nutritioncenter.link.

Acknowledgments: The authors would like to extend sincere thanks to stakeholders in the Agricul-
ture sector/stakeholders of California for useful conversations that helped in the conceptualization
of this proposal in providing stimuli underlining challenges and opportunities regarding the farm
labor force.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lentferink, A.J.; Oldenhuis, H.K.; De Groot, M.; Polstra, L.; Velthuijsen, H.; Van Gemert-Pijnen, J.E. Key Components in eHealth

Interventions Combining Self-Tracking and Persuasive eCoaching to Promote a Healthier Lifestyle: A Scoping Review. J. Med
Internet Res. 2017, 19, e277. [CrossRef] [PubMed]

2. Patel, M.L.; Hopkins, C.M.; Brooks, T.L.; Bennett, G.G. Comparing Self-Monitoring Strategies for Weight Loss in a Smartphone
App: Randomized Controlled Trial. JMIR mHealth uHealth 2019, 7, e12209. [CrossRef] [PubMed]

3. American Diabetes Association. Classification and Diagnosis of Diabetes. Diabetes Care 2016, 40, S11–S24. [CrossRef]
4. Ogurtsova, K.; Da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff,

L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017,
128, 40–50. [CrossRef] [PubMed]

5. American Diabetes Association Official Website. Available online: http://www.diabetes.org/diabetes-basics/statistics/?loc=db-
slabnav (accessed on 21 August 2019).

6. Centers for Disease Control and Prevention. National Diabetes Statistics Report; Centers for Disease Control and Prevention, U.S.
Dept of Health and Human Services: Atlanta, GA, USA, 2017; Available online: http://www.diabetes.org/assets/pdfs/basics/
cdc-statistics-report-2017.pdf (accessed on 20 August 2022).

7. Babey, S.H.; Wolstein, J.; Diamant, A.L.; Goldstein, H. Prediabetes in California: Nearly Half of California Adults on Path to Diabetes;
UCLA Center for Health Policy Research and California Center for Public Health Advocacy: Los Angeles, CA, USA, 2016.

8. Clingerman, E. Type 2 Diabetes Among Migrant and Seasonal Farmworkers. Hisp. Heal. Care Int. 2008, 6, 97–106. [CrossRef]

http://doi.org/10.2196/jmir.7288
http://www.ncbi.nlm.nih.gov/pubmed/28765103
http://doi.org/10.2196/12209
http://www.ncbi.nlm.nih.gov/pubmed/30816851
http://doi.org/10.2337/dc17-s005
http://doi.org/10.1016/j.diabres.2017.03.024
http://www.ncbi.nlm.nih.gov/pubmed/28437734
http://www.diabetes.org/diabetes-basics/statistics/?loc=db-slabnav
http://www.diabetes.org/diabetes-basics/statistics/?loc=db-slabnav
http://www.diabetes.org/assets/pdfs/basics/cdc-statistics-report-2017.pdf
http://www.diabetes.org/assets/pdfs/basics/cdc-statistics-report-2017.pdf
http://doi.org/10.1891/1540-4153.6.2.97


Sensors 2022, 22, 8299 9 of 10

9. Nyberg, S.T.; Fransson, E.I.; Heikkilä, K.; Ahola, K.; Alfredsson, L.; Bjorner, J.B.; Borritz, M.; Burr, H.; Dragano, N.; Gold-
berg, M.; et al. Job Strain as a Risk Factor for Type 2 Diabetes: A Pooled Analysis of 124,808 Men and Women. Diabetes Care 2014,
37, 2268–2275. [CrossRef]

10. Yu, C.H.Y.; Zinman, B. Type 2 diabetes and impaired glucose tolerance in aboriginal populations: A global perspective. Diabetes
Res. Clin. Pract. 2007, 78, 159–170. [CrossRef]

11. Price, M.; Williamson, D.; McCandless, R.; Mueller, M.; Gregoski, M.; Brunner-Jackson, B.; Treiber, E.; Davidson, L.; Treiber, F.;
Afari-Kumah, E.; et al. Hispanic Migrant Farm Workers’ Attitudes Toward Mobile Phone-Based Telehealth for Management of
Chronic Health Conditions. J. Med Internet Res. 2013, 15, e76. [CrossRef]

12. Thompson, R.H.; Snyder, A.; Burt, D.R.; Greiner, D.S.; Luna, M.A. Risk Screening for Cardiovascular Disease and Diabetes in
Latino Migrant Farmworkers: A Role for the Community Health Worker. J. Community Heal. 2014, 40, 131–137. [CrossRef]

13. Ota, C.; DiCarlo, C.E.; Burts, D.C.; Laird, R.; Gioe, C. Training and the needs of adult learners. J. Ext. 2006, 44, 1753–1759.
14. Knowles, M.S.; Swanson, R.A.; Holton, I.I.I.E.F. The Adult Learner: The Definitive Classic in Adult Education and Human Resource

Development, 6th ed.; Elsevier Science and Technology Books: CA, USA, 2006.
15. Gillis, D.; English, L.M. Extension and health promotion: An adult learning approach. J. Extens. 2001, 39, 1–8.
16. Svinicki, M.; McKeachie, W.J. McKeachie’s Teaching Tips: Strategies, Research and Theory for College and University Teachers, 14th ed.;

Wadsworth, Cengage Learning: Belmont, CA, USA, 2014.
17. Roka, F.M.; Thissen, C.A.; Monaghan, P.F.; Morera, M.C.; Galindo-Gonzalez, S.; Tovar-Aguilar, J.S. Lessons learned developing an

extension-based training program for farm labor supervisors. J. Extens. 2014, 55, v55-4a1. Available online: https://tigerprints.
clemson.edu/joejoe/2017august/a1.php (accessed on 19 August 2022).

18. Madden, L. Creating a happier, healthier, Hispanic work force. EHS Today 2011, 4, 46.
19. Unertl, K.M.; Schaefbauer, C.L.; Campbell, T.R.; Senteio, C.; A Siek, K.; Bakken, S.; Veinot, T.C. Integrating community-based

participatory research and informatics approaches to improve the engagement and health of underserved populations. J. Am.
Med Informatics Assoc. 2015, 23, 60–73. [CrossRef]

20. Grock, S.; Ku, J.-H.; Kim, J.; Moin, T. A Review of Technology-Assisted Interventions for Diabetes Prevention. Curr. Diabetes Rep.
2017, 17, 1–12. [CrossRef]

21. Bonoto, B.C.; De Araújo, V.E.; Godói, I.P.; De Lemos, L.L.P.; Godman, B.; Bennie, M.; Diniz, L.M.; Junior, A.A.G. Efficacy of Mobile
Apps to Support the Care of Patients With Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled
Trials. JMIR mHealth uHealth 2017, 5, e4. [CrossRef]

22. Dunn, C.G.; Turner-McGrievy, G.M.; Wilcox, S.; Hutto, B. Dietary Self-Monitoring Through Calorie Tracking but Not Through a
Digital Photography App Is Associated with Significant Weight Loss: The 2SMART Pilot Study—A 6-Month Randomized Trial. J.
Acad. Nutr. Diet. 2019, 119, 1525–1532. [CrossRef]

23. Burke, L.E.; Conroy, M.B.; Sereika, S.M.; Elci, O.U.; Styn, M.A.; Acharya, S.D.; Sevick, M.A.; Ewing, L.J.; Glanz, K. The Effect
of Electronic Self-Monitoring on Weight Loss and Dietary Intake: A Randomized Behavioral Weight Loss Trial. Obesity 2011,
19, 338–344. [CrossRef]

24. Free, C.; Phillips, G.; Galli, L.; Watson, L.; Felix, L.; Edwards, P.; Patel, V.; Haines, A. The Effectiveness of Mobile-Health
Technology-Based Health Behaviour Change or Disease Management Interventions for Health Care Consumers: A Systematic
Review. PLOS Med. 2013, 10, e1001362. [CrossRef]

25. Arens, J.H.; Hauth, W.; Weissmann, J. Novel App- and Web-Supported Diabetes Prevention Program to Promote Weight
Reduction, Physical Activity, and a Healthier Lifestyle: Observation of the Clinical Application. J. Diabetes Sci. Technol. 2018,
12, 831–838. [CrossRef]

26. Chew, H.S.J.; Koh, W.L.; Ng, J.S.H.Y.; Tan, K.K. Sustainability of Weight Loss Through Smartphone Apps: Systematic Review and
Meta-analysis on Anthropometric, Metabolic, and Dietary Outcomes. J Med Internet Res. 2022, 24, e40141. [CrossRef] [PubMed]

27. Boucher, J.L. Connectedness: How Technology and Social Networks Are Advancing Diabetes Nutrition Care. Diabetes Spectr.
2019, 32, 69–75. [CrossRef] [PubMed]

28. Kerr, D.; King, F.; Klonoff, D.C. Digital Health Interventions for Diabetes: Everything to Gain and Nothing to Lose. Diabetes Spectr.
2019, 32, 226–230. [CrossRef] [PubMed]

29. Fagherazzi, G.; Ravaud, P. Digital diabetes: Perspectives for diabetes prevention, management and research. Diabetes Metab. 2018,
45, 322–329. [CrossRef] [PubMed]

30. Asbjørnsen, R.A.; Smedsrød, M.L.; Solberg Nes, L.; Wentzel, J.; Varsi, C.; Hjelmesæth, J.; van Gemert-Pijnen, J.E. Persuasive System
Design Principles and Behavior Change Techniques to Stimulate Motivation and Adherence in Electronic Health Interventions to
Support Weight Loss Maintenance: Scoping Review. J. Med. Internet Res. 2019, 21, e14265. [CrossRef] [PubMed]

31. Zou, Q.; Qu, K.; Luo, Y.; Yin, D.; Ju, Y.; Tang, H. Predicting Diabetes Mellitus With Machine Learning Techniques. Front. Genet.
2018, 9, 515. [CrossRef]

32. Tsao, H.-Y.; Chan, P.-Y.; Su, E.C.-Y. Predicting diabetic retinopathy and identifying interpretable biomedical features using
machine learning algorithms. BMC Bioinform. 2018, 19, 283. [CrossRef]

33. Farran, B.; Channanath, A.M.; Behbehani, K.; Thanaraj, T.A. Predictive models to assess risk of type 2 diabetes, hypertension and
comorbidity: Machine-learning algorithms and validation using national health data from Kuwait—A cohort study. BMJ Open
2013, 3, e002457. [CrossRef]

http://doi.org/10.2337/dc13-2936
http://doi.org/10.1016/j.diabres.2007.03.022
http://doi.org/10.2196/jmir.2500
http://doi.org/10.1007/s10900-014-9910-2
https://tigerprints.clemson.edu/joejoe/2017august/a1.php
https://tigerprints.clemson.edu/joejoe/2017august/a1.php
http://doi.org/10.1093/jamia/ocv094
http://doi.org/10.1007/s11892-017-0948-2
http://doi.org/10.2196/mhealth.6309
http://doi.org/10.1016/j.jand.2019.03.013
http://doi.org/10.1038/oby.2010.208
http://doi.org/10.1371/journal.pmed.1001362
http://doi.org/10.1177/1932296818768621
http://doi.org/10.2196/40141
http://www.ncbi.nlm.nih.gov/pubmed/36129739
http://doi.org/10.2337/ds18-0079
http://www.ncbi.nlm.nih.gov/pubmed/30853767
http://doi.org/10.2337/ds18-0085
http://www.ncbi.nlm.nih.gov/pubmed/31462878
http://doi.org/10.1016/j.diabet.2018.08.012
http://www.ncbi.nlm.nih.gov/pubmed/30243616
http://doi.org/10.2196/14265
http://www.ncbi.nlm.nih.gov/pubmed/31228174
http://doi.org/10.3389/fgene.2018.00515
http://doi.org/10.1186/s12859-018-2277-0
http://doi.org/10.1136/bmjopen-2012-002457


Sensors 2022, 22, 8299 10 of 10

34. Swapna, G.; Vinayakumar, R.; Soman, K.P. Diabetes detection using deep learning algorithms. ICT Express 2018, 4, 243–246.
[CrossRef]

35. Vyas, S.; Ranjan, R.; Singh, N.; Mathur, A. Review of Predictive Analysis Techniques for Analysis Diabetes Risk. In Proceedings of
the 2019 Amity International Conference on Artificial Intelligence (AICAI), Dubai, United Arab Emirates, 4–6 February 2019;
pp. 626–631. [CrossRef]

36. Meng, X.-H.; Huang, Y.-X.; Rao, D.-P.; Zhang, Q.; Liu, Q. Comparison of three data mining models for predicting diabetes or
prediabetes by risk factors. Kaohsiung J. Med Sci. 2013, 29, 93–99. [CrossRef]

37. Alam, T.M.; Iqbal, M.A.; Ali, Y.; Wahab, A.; Ijaz, S.; Baig, T.I.; Hussain, A.; Malik, M.A.; Raza, M.M.; Ibrar, S.; et al. A model for
early prediction of diabetes. Informatics Med. Unlocked 2019, 16, 100204. [CrossRef]

38. Wu, H.; Yang, S.; Huang, Z.; He, J.; Wang, X. Type 2 diabetes mellitus prediction model based on data mining. Inform. Med.
Unlocked 2018, 10, 100–107. [CrossRef]

39. Kavakiotis, I.; Tsave, O.; Salifoglou, A.; Maglaveras, N.; Vlahavas, I.; Chouvarda, I. Machine Learning and Data Mining Methods
in Diabetes Research. Comput. Struct. Biotechnol. J. 2017, 15, 104–116. [CrossRef]

40. Li, S. Machine Learning for Diabetes. Towards Data Science. Available online: https://towardsdatascience.com/machine-
learning-for-diabetes-562dd7df4d42 (accessed on 11 September 2019).

41. Sennaar, K. Machine Learning for Managing Diabetes: 5 Current Use Cases. Emerj. Available online: https://emerj.com/ai-
sector-overviews/machine-learning-managing-diabetes-5-current-use-cases/ (accessed on 11 September 2019).

42. Cahn, A.; Shoshan, A.; Sagiv, T.; Yesharim, R.; Raz, I.; Goshen, R. Use of a Machine Learning Algorithm Improves Prediction of
Progression to Diabetes. Diabetes 2018, 67, 1286-p. [CrossRef]

43. Dankwa-Mullan, I.; Rivo, M.; Sepulveda, M.; Park, Y.; Snowdon, J.; Rhee, K. Transforming Diabetes Care Through Artificial
Intelligence: The Future Is Here. Popul. Heal. Manag. 2019, 22, 229–242. [CrossRef]

44. Contreras, I.; Vehi, J. Artificial Intelligence for Diabetes Management and Decision Support: Literature Review. J. Med Internet Res.
2018, 20, e10775. [CrossRef]

45. Kent, J. Artificial Intelligence Mobile Coach Can Aid Diabetes Care. HealthITAnalytics. Available online: https://healthitanalytics.
com/news/artificial-intelligence-mobile-coach-can-aid-diabetes-care (accessed on 11 September 2019).

46. Dietsche, E. Israeli startup Sweetch leverages AI for diabetes prevention. MedCity News. December 2018. Available online:
https://medcitynews.com/2018/12/israeli-startup-sweetch/ (accessed on 11 September 2019).

47. Stircu, S. How artificial intelligence will shape the future of diabetes. Medtech Views. November 2017. Available online:
http://www.medtechviews.eu/article/how-artificial-intelligence-will-shape-future-diabetes (accessed on 11 September 2019).

48. Hartson, R.; Pyla, P.S. The UX Book: Process and Guidelines for Ensuring a Quality User Experience; Elsevier: Amsterdam,
The Netherlands, 2012.

49. Garrett, J.J. The Elements of User Experience: User-Centered Design for the Web and Beyond; Pearson Education: London, UK, 2010.
50. Nielsen, J.; Budiu, R. Mobile Usability, 1st ed.; New Riders: Berkeley, CA, USA, 2012.
51. Nayebi, F.; Desharnais, J.-M.; Abran, A.; Nayebi, F.; Desharnais, J.; Abran, A. The state of the art of mobile application usability

evaluation. In Proceedings of the 2012 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE),
Montreal, QC, Canada, 29 April–2 May 2012; pp. 1–4. [CrossRef]

52. Moumane, K.; Idri, A.; Abran, A. Usability evaluation of mobile applications using ISO 9241 and ISO 25062 standards. SpringerPlus
2016, 5, 548. [CrossRef]

53. Sikalidis, A.K. From Food for Survival to Food for Personalized Optimal Health: A Historical Perspective of How Food and
Nutrition Gave Rise to Nutrigenomics. J. Am. Coll. Nutr. 2018, 38, 84–95. [CrossRef]

54. Marcum, J.A. Nutrigenetics/Nutrigenomics, Personalized Nutrition, and Precision Healthcare. Curr. Nutr. Rep. 2020, 9, 338–345.
[CrossRef]

55. Mullins, V.A.; Bresette, W.; Johnstone, L.; Hallmark, B.; Chilton, F.H. Genomics in Personalized Nutrition: Can You “Eat for Your
Genes”? Nutrients 2020, 12, 3118. [CrossRef]

56. Ahluwalia, M.K. Nutrigenetics and nutrigenomics—A personalized approach to nutrition. Adv Genet. 2021, 108, 277–340.
[CrossRef]

57. Samieri, C.; Yassine, H.N.; van Lent, D.M.; Lefèvre-Arbogast, S.; van de Rest, O.; Bowman, G.L.; Scarmeas, N. Personalized
nutrition for dementia prevention. Alzheimer’s Dement. 2021, 18, 1424–1437. [CrossRef]

58. Kristo, A.; Sikalidis, A.; Uzun, A. Traditional Societal Practices Can Avert Poor Dietary Habits and Reduce Obesity Risk in
Preschool Children of Mothers with Low Socioeconomic Status and Unemployment. Behav. Sci. 2021, 11, 42. [CrossRef] [PubMed]

59. Kristo, A.S.; Çinar, N.; Kucuknil, S.L.; Sikalidis, A.K. Technological Devices and Their Effect on Preschool Children’s Eating Habits
in Communities of Mixed Socioeconomic Status in Istanbul; a Pilot Cross-Sectional Study. Behav. Sci. 2021, 11, 157. [CrossRef]
[PubMed]

60. Sikalidis, A.; Kelleher, A.; Kristo, A. Mediterranean Diet. Encyclopedia 2021, 1, 371–387. [CrossRef]

http://doi.org/10.1016/j.icte.2018.10.005
http://doi.org/10.1109/aicai.2019.8701236
http://doi.org/10.1016/j.kjms.2012.08.016
http://doi.org/10.1016/j.imu.2019.100204
http://doi.org/10.1016/j.imu.2017.12.006
http://doi.org/10.1016/j.csbj.2016.12.005
https://towardsdatascience.com/machine-learning-for-diabetes-562dd7df4d42
https://towardsdatascience.com/machine-learning-for-diabetes-562dd7df4d42
https://emerj.com/ai-sector-overviews/machine-learning-managing-diabetes-5-current-use-cases/
https://emerj.com/ai-sector-overviews/machine-learning-managing-diabetes-5-current-use-cases/
http://doi.org/10.2337/db18-1286-P
http://doi.org/10.1089/pop.2018.0129
http://doi.org/10.2196/10775
https://healthitanalytics.com/news/artificial-intelligence-mobile-coach-can-aid-diabetes-care
https://healthitanalytics.com/news/artificial-intelligence-mobile-coach-can-aid-diabetes-care
https://medcitynews.com/2018/12/israeli-startup-sweetch/
http://www.medtechviews.eu/article/how-artificial-intelligence-will-shape-future-diabetes
http://doi.org/10.1109/ccece.2012.6334930
http://doi.org/10.1186/s40064-016-2171-z
http://doi.org/10.1080/07315724.2018.1481797
http://doi.org/10.1007/s13668-020-00327-z
http://doi.org/10.3390/nu12103118
http://doi.org/10.1016/bs.adgen.2021.08.005
http://doi.org/10.1002/alz.12486
http://doi.org/10.3390/bs11040042
http://www.ncbi.nlm.nih.gov/pubmed/33804972
http://doi.org/10.3390/bs11110157
http://www.ncbi.nlm.nih.gov/pubmed/34821618
http://doi.org/10.3390/encyclopedia1020031

	Background/Introduction 
	Cost of Type 2 Diabetes Mellitus in the US and CA 
	Type 2 Diabetes Mellitus among Agriculture Workers 
	Feasibility of Education and Technology Use for Disease Risk Attenuation 

	Methodology and Contextual Approach 
	The Technology-Based Empowerment Didactic Module (TEDm) 
	The Informed Decision-Making Enhancer (IDMe) 
	App Development and Infrastructure 
	Assumptions 
	Hypothesis 

	Perspectives and Conclusions 
	References

