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Abstract: As one of the pioneering data representations, the point cloud has shown its straightforward
capacity to depict fine geometry in many applications, including computer graphics, molecular
structurology, modern sensing signal processing, and more. However, unlike computer graphs
obtained with auxiliary regularization techniques or from syntheses, raw sensor/scanner (metric) data
often contain natural random noise caused by multiple extrinsic factors, especially in the case of high-
speed imaging scenarios. On the other hand, grid-like imaging techniques (e.g., RGB images or video
frames) tend to entangle interesting aspects with environmental variations such as pose/illuminations
with Euclidean sampling/processing pipelines. As one such typical problem, 3D Facial Expression
Recognition (3D FER) has been developed into a new stage, with remaining difficulties involving
the implementation of efficient feature abstraction methods for high dimensional observations and
of stabilizing methods to obtain adequate robustness in cases of random exterior variations. In this
paper, a localized and smoothed overlapping kernel is proposed to extract discriminative inherent
geometric features. By association between the induced deformation stability and certain types of
exterior perturbations through manifold scattering transform, we provide a novel framework that
directly consumes point cloud coordinates for FER while requiring no predefined meshes or other
features/signals. As a result, our compact framework achieves 78.33% accuracy on the Bosphorus
dataset for expression recognition challenge and 77.55% on 3D-BUFE.

Keywords: 3D facial expression recognition; geometric scattering; point clouds

1. Introduction

Facial expression recognition (FER) is a prevalent artificial intelligence and machine
perceptual research fields relating to the divergent evolution of data representation tech-
niques. The most common branch is based on image/video signals, and focuses on learning
to extract expression features from variables embedded in the regular (grid-like) space,
allowing Euclidean models such as CNNs/SVMs/PCA to extract salient features from
spatial/temporal correlations [1,2]. Methods combining 3D and 2D [3-5] commonly try
to restore a geometrical representation from multi-modal sensing results, e.g., raster im-
ages and point cloud scans, and then apply the texture channel as the auxiliary salient
information to overcome possible perturbations such as isometry in real 3D scenes. For
instance, the rigid rotation augmentation scheme called Multi-View Stereo (MVS) is a
representative member [6]; however, this branch requires exhausted representation interpo-
lation, which limits its realistic application and incurs extra exterior noise. Furthermore,
issues in real recognition scenarios such as illumination variations and occlusions restrain
the generality and robustness of 2D-based methods, as the conspicuousness of an expres-
sion as the key inter-variance has the risk of being repressed by inter-subject variances
and environmental noises. Meanwhile, the 2D representation inevitably entangles the
above elements.On the other hand, 3D representations, including meshes/point clouds,
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sustain a more stable underlying geometrical structure against various types of interference,
e.g., isometry, sampling frequency shifting, and other largely irrelevant environmental
variables such as luminance disturbance in raster image sensing processes. To sum up,
a proper representation for 3D FER should be invariant to unrelated variations caused
by extrinsic elements while reserving local characterized deformations that often act in
subtler magnitudes or higher frequencies. The ultimate target should be to classify such

different manifolds { M }]N:LY " where class-specific local isometrics/diffeomorphism
should be considered as the inherent source of salient features. Geometric deep learning
(GDL) has been introduced in [7], extending classical CNN into the so-called non-Euclidean
geometry setting and exploring the intrinsic information from observed data with a deep
network structure. It has shown vitality in multiple disciplines, including [8-10] relating to
3D vision, to name only a few. This framework has profoundly proved itself in studying
the underlying non-Euclidean geometry of observed data with geometric priors prescribed
in advance. With this capability, good interpretability and efficiency concerning questions
involving geometrically represented data can be reasonably expected. Because the 3D FER
question involves complex underlying geometry, it is necessary to adapt raw data into a
more regular form with redundant manipulations before applying traditional Euclidean
deep learning methods. The intuitive approach of finding a direct approach to consuming
raw 3D data with GDL turns out to be essential.

In this paper, we follow [11] by consuming pure 3D point cloud coordination as the
only data while alternatively assuming expression samples to be geometric objects lying on
characterized low-dimensional manifolds. To accomplish this idea, we apply the geometric
wavelet scattering transform [12] in 3D FER in a novel way; our experimental results on
the Bosphorus [13] and 3D-BUFE [14] datasets prove the high efficiency of this approach in
terms of balancing expressiveness with stability against multiple random deformation or
noise. By synchronously extracting a localized and interior spatial feature from raw point
clouds with less pre-processing, our proposed approach maintains a relatively shallow and
straightforward structure.

Our contributions can be summarized as follows:

*  We propose a localized and inherent density descriptor to reserve the fine geometry of
faces without requiring a predefined mesh structure.

*  We introduce a manifold scattering transform to integrate such local features into a
manifold to maintain a common coarse underlying geometry characterized by a few
landmark points. This method shows robustness against exterior perturbations while
reserving discrimination for FER.

*  The proposed method is purely based on 3D point clouds/sets and does not use any
meshes or textures. Compared to state-of-the-art (SOTA) solutions of the same type,
our method shows improved accuracy by ~8% when classifying the seven expressions
on Bosphorus dataset.

The remainder of this paper is organized as follows. In Section 2, we list related
works and trends in 3D FER. In Section 3, we describe our overall framework and detail
our proposed methods, including the local density descriptor and manifold scattering
transform. In Section 4, we summarize the datasets and corresponding evaluation protocol
utilized in this work, provide the hyper-parameter tuning process, state the major results,
and present a comparison with competing methods. Finally, in Section 5, we provide a
discussion of the topic and conceivable future extensions.

2. Related Works

3D FER methods have succeeded in mining prominent geometrical details by SPD
(Symmetric Positive Matrix) [15], conformal mapping [3], depth map [16], and recently
with the prevalent statistical 3D Morphable Model (3DMM) [17] and point sets [11]. Among
these, Refs. [1,2] can partially solve the above isometric issues, although the texture chan-
nel is required as a discriminative feature. The stereo matching-based method [18] has
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shown advantages in dealing with rigid transformation in identification scenarios. In
the geometric learning branch, Ref. [15] relies on a predefined mesh structure, while [11]
has been the first to adopt a geometric deep learning framework (i.e., PointNet [19]) with
3D FER. This inspires our motivation to explore the above approach in order to realize
further improvements in performance. For 3D FER and other real scenario scan data, the
non-uniform sampling condition and the complexity of local deformation caused by the
mixture of expression and other exterior perturbations (e.g., pose variation, the subject’s
characteristic biological shape) can increase the intrinsic dimension of the observed realiza-
tions. Embedding prefabricated features into such a Riemann manifold incurs extra risk of
warping feature signals and failing to achieve non-aliasing asymptotic aspects. A common
approach to deal with this problem relies on considering an approximately smooth and
compact Riemann manifold as the underlying geometry of an expression in order to obtain
differentiability, then embedding an exterior and preprocessed generic function to further
enhance discrimination. Examples include SHOT [20], HoG descriptor [21], and curvature
mean maps [22]. Furthermore, facial recognition has seen the implementation of similar
methods [23,24]; an overall projection matrix was used to assemble sub-patterns, although
this approach implicitly assumed the elimination of sampling or environmental noise. A
brief summary of the above-mentioned works is provided in Table 1, showing the modality
and representation methods and classifying the different models.

Table 1. Representative methods related to 3D FER emerged in recent years; a trend can be seen in
terms of using raw data to learn representations for recognition.

No. Models Year Modality Classifiers
1 HoG + HoS [21] 2011 3D mesh SVM
2 Zernike Moments [25] 2011 Depth image SVM
3 HoG + Differential Mean Curvature Maps [22] 2013 Depth image SVM
4 SURF + Conformal mapping [3] 2015 3D+ 2D SVM
5 CNN [4] 2016 3D +2D NN
6 SPD [15] 2017 3D mesh SVM
7 RNN [26] 2020 3D + 2D NN
8 ML-UDSGPLVM [2] 2021 Multi-view 2D image NN
9 3DMM [17] 2021 3D point cloud -
10 PointNet [11] 2021 3D point cloud NN

In a prior trial in 3D FER with GDL, Ref. [11] utilized PointNet to abstract multi-scale
features from raw point clouds by stacking set abstraction layers. This can be considered
as an increasing path of “receptive fields”, with the common disadvantage of a loss of
finer local geometry in each hierarchical layer. An abstraction operation coarsely reservs
principle components from the local region, and the corresponding drop-out layer helps
to forbid over-fitting; however, it severely abates the expressiveness of the point cloud
representation. More recent approaches [12,27] have provided an alternative solution based
on defining a deep representation that is invariant to isometric transformations up to an
induced small scale. These methods rely on the idea of constructing class-specified stability
on high-dimensional representations. Specifically, Ref. [27] provided a framework for
smoothing high dimensional representation into the general manifold using manifold heat
interpolation [28] and a multi-scale wavelets filter bank network [29], thereby loosening
the prior condition with respect to the compactness and smoothness of the manifold.

3. Methodology

The overall framework is illustrated in Figure 1. First, manual landmark points (22
for the Bosphorus dataset and 83 for the 3D-BUFE dataset) are obtained from raw point
clouds. Our method then treats them as the starting point for two synchronous routes. In
the first route (the upper route in Figure 1), we consider each landmark as the origin of a
discretized Gaussian kernel with adaptive width, followed by a KNN search to determine
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its neighbors, the Euclidean radial distances of which inversely contribute to computing the
smoothed local spatial representation. By and large, this function is one form of the classical
kernel density estimation [30] scheme, which preserves the simplicity while regularizing
the scattered position representation into a continuous form without losing resolution.
Though this description is extrinsic in terms of sensitivity to local permutation of the
indexing/order, the manifold scattering transform can help to regularize the underlying
overall geometry of the expression manifold; see Section 3.1 for details of this spatial density
descriptor.
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Figure 1. Overall framework for 3D FER.

The second route (the lower route in Figure 1) involves finding a common structure in
order to identify the expression from the raw point cloud representation. This structure
should devote itself to representing identity-unrelated parts. In 3D FER, a self-evident
condition is that both expressions and other identity-unrelated behaviors affect mostly
local regions, which can include stretching, local rotation, and other diffeomorphisms. In
this intuition, we find that diagonalizing the affinity matrix of the landmarks set and then
computing the corresponding diffusion structures (similar to graph network embedding
solutions [31,32], which imitate a discrete approximation Laplacian Beltrami Operator (LBO)
on a manifold) has a good chance of achieving this goal. Note that because the landmark
set is quite small, the eigenvectors of a heat kernel H are easy to obtain and should be
sufficient to represent the coarse geometry of an expressed face. Specifically, the raw point
cloud face scan is treated as a small graph built from the landmarks set; in our example,
22/83 landmarks from a Bosphorus/3D-BUFE sample could be spectral decomposed into
eigenvalues and eigenfunctions, with the K top components then truncated and fed to
parameterize the scattering filter bank and the corresponding network; the details of
implementing this parameterization can be found in Section 3.2.

Finally, by equipping prevalent classifiers, e.g., SVM/Neural Networks, certain com-
ponents of the signal are selected to enhance the recognition accuracy. Specifically, we note
that the high dimensional nature of scattering coefficients representation Sy may lead to
overfitting during training. Therefore, a sparse learning structure [33] is inserted to provide
non-linearity and enhance the sparsity of features, which are then fed to the fully connected
layer for classification. An improvement in accuracy can be observed afterward, and we
compare the performance using the SVM with an RBF (radial basis function) kernel as the
classifier. The details of these experiments are reported in Section 4.

3.1. Local Density Descriptor

At first, the raw point cloud’s high dimensionality tends to diminish the ability of
Euclidean convolution or other deep learning methods that hold prior assumptions as to
the signal’s properties, such as its smoothness and compactness. Moreover, unlike the
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body meshes utilized in [27], face scan samples have more complex local geometries and
irregular overall variance distributions, which increases the probability of overfitting or
gradient explosion in the training phase. On the other hand, an isometry-invariant local
descriptor and mesh reconstruction scheme can block the development of a real-time-
capable approach. In this case, we apply a lighter local feature extraction approach to
describe the expression manifolds with the occurrence probability density of the local point
clusters and aggregate the localities by computing the eigenvector of landmark points and
constructing the corresponding semi-group diffusion heat maps to surmount the prevalent
existence of sampling non-uniformity.

Local Point Cluster p.

Local Reference Lattice yy,

RawPointCloud x;

Figure 2. From left to right: a neighboring point cluster has been extracted from the raw point
cloud (points in red), from the centroid of which a local reference lattice is constructed for further
computation.

We suppose a face scan, denoted as x;, within which we extract C landmark points, de-
noted as a landmark set {pjandmark, }CC=1 ; we then embed this into a small graph G = (QQ, W),
where () is the landmark point index set and W is a C x C symmetric matrix.

The following process of obtaining a local feature starts with the construction of local
reference frames centered at each landmark point pjsugmark,, Which can be seen as a local
“atomic environment” x (See Figure 2). In each ), a small face patch around each landmark
point shares a generic pattern relating to expressions across any subject. By aligning a kernel
function based on the distribution of N observed points {r,})V_; in each local reference
environment Y, the resulting local probability density of observing a point at grid positions
within each environment is a smoothed and discriminative representation/feature

A _ S (n—1m)
Pr(p) = gexp<—w> )

which is a sum of Gaussian functions at the local regular reference lattice function p.
This kernel maps the Euclidean distance from scattered points {r,}!\_, to a probability
distribution and slices each x; into C local receptive fields; by normalizing each density
function according to the adjustment of o, it eventually defines a global piece-wise density
representation

130(,”):(ﬁlr--~;pCr--~/ﬁC)~ (2)

The above approach encodes a raw point cloud face into a more regular continuous
probability density representation, with local fields being invariant to permutations of
the input order and each characteristic vector holding a correspondent length, thereby
enabling windowed operations. Moreover, the length of local point sets can be arbitrary,
and non-uniform sampling affects the results as an additive bias to the signal on each
grid point.

The isometry within each local area can be treated individually by adopting the
coarse graph embedding induced by each sample’s sparse landmarks set, with the induced
wavelet filters parameterized to the corresponding direction decided thereby.
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With the above property, each lattice descriptor abstracts the shape variations with
respect to diffeomorphism, while global isometry only influences the result to a limited de-
gree; see Figure 3 for a visualization. Note that the local descriptor can easily be substituted
by multiple species of descriptors; for instance, the 3D HoG descriptor [34] defines a process
including an explicit conversion from raw point cloud data back to a depth map, then com-
puting the statistics feature on a fixed angled plane to form the representation. However,
this kind of operation inevitably loses the fineness of raw scan results, as the depth map
yields a regular 2D domain. The curvature descriptors and SIFT feature descriptors rely on
transforming 3D point clouds into surface representations with reduced depth information.
In contrast, our descriptor captures the density feature within a solid-structured base space,
where variations in each axis can be reserved.
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Figure 3. The density feature on each grid point is computed by summing up all the contributions
of N observed points within this local region (denoted in gold); the overall representation for this
region is fixed in size as M3, and is invariant to order permutation or the length of input entries.

3.2. Manifold Scattering Transform on Face Point Clouds

With the above local spatial features in hand, we can build a global representation with
spectral embedding. Other than embedding all the points into a whole graph or manifold,
for 3D FER there is a prior property that can help reduce the computation complexity. First,
the description of local geometry is likely to be affected by global as well as local rotations,
and applying a rotation-invariant descriptor (as in [35]) or a harmonic descriptor eliminates
isometry (as in most spectral embedding methods) leads to the loss of too much information.
In the example from 3D-BUFE shown in Figure 4, a neighborhood cluster is found and
denoted as points in red; to reserve the finest possible geometric features, our local generic
function p, can be aligned to an underlying surface defined by spectral embedding, as
expressions behave locally as both planar stretching /perpendicular haunch-up with rigid
rotation. This delicate and significant variable can be decoupled from the global rotation
brought by pose variation.
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Figure 4. The left-hand image shows a part near the mouth of a sample from 3D-BUFE with an
“Anger” expression; the red points are the neighborhood cluster origin at one of the landmarks.
The right-hand image shows the same cluster from the same person with a “Happy” expression; a
compound deformation can be observed within which the local rotation should not be simply ignored.

In addition, we note that disturbance induced by translating in R? does not affect this
intrinsic representation, as the above embedding is intrinsic to the global isometry, which
includes translation. The complexity arising from the arbitrary variation brought about
by each subject’s inherent shape becomes more intractable in the case that it entangles the
representation. With these considerations, we need to construct a general structure that is
stable to global isometry and order permutation while being able to apply the extended
convolutional-like operations to align the local signal and compare it as the discriminative
feature for recognition.

A scattering transform is a hierarchical framework with a geometric group structure
obtained by constructing pre-defined dyadic wavelet layers that has been extended to
manifold scattering transform with spectral embedding and diffusion maps [27,36]. With
respect to 3D FER, the raw point cloud face can be represented as {0;}¢ C R", where n
indicates the length of local reference grid point. In practice, this is set as 10 x 10 x 10, which
is in the form of high dimensional representation. A relatively more common approach is
to embed such a generic function into Ly(M) and then implement spectral convolution
with a defined spectral path, e.g., diffusion maps or a Random Walk scheme [31].

Alternatively, a direct way to consume point cloud data was proposed in [27] by
constructing the heat semi-group process characterized by the operation path { H'}, where
the constructed convolution is defined as

H'f =Y e M f(k) gk 3)

k>0

where f is from exterior feature descriptors such as SHOT [20].

However, our task here is neither about classifying exterior signals on fixed manifolds
nor just manifolds; rather, it is about classifying hybrid representations with specified
underlying geometry. Based on this observation, we abandon the exterior generic function,
instead using the local density feature function from 3.2 to obtain the convolved density
feature functions as follows:

H'p =Y e ™ p(k)gx (4)
k>0
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Because the above differential configuration of H' enables further associating the
negative Laplace Beltrami operator —A and constrains the initial condition as H? = p, a
heat process operator on manifold u, is provided by the heat equation

Ot(up) = —Axu 5)

Note that we do not simply apply the approximating algorithm from Section 3.2
in [27] to approximate the Laplace Beltrami operator; rather, we utilize the landmarks set
{Prandmark. }5:1 to compute the spectral decomposition, which only undertakes the role of
the skeleton to align samples into generic coarse underlying geometry while eliminating
the influences of extrinsic isometry. Specifically, we denote D and W as the diagonal degree
matrix and affinity matrix of the landmarks point set from regular spectral embedding
methods, with N being the length of the landmark sequence and € is the estimated width
parameter. The discrete approximation —A is provided by

1
Ne= ——  (D-W (6)
€Nlandmark ( )
and most importantly, the wavelet transform can be constructed and specifically parame-

terized as
Wy = {Wjp}_o U {A0} ?)

where Wy =1d — H 1 and the global low-pass filter is A ] = HZI. The diffusion time scale ¢,
which here indexes the geometric changes along the increasing width of receptive fields
and the wavelets to capture multi-scale information within each scale, can be computed by

w,=H?" - H? @®)

Then, with the defined wavelets, the first-order scattering moments can be computed
as follows:

Selj.al == [, [Wip(x)|"dx ©

where 0 < j < Jand 0 < g < Q indicate the scaling steps and higher order moments,
respectively; an absolute nonlinear operation on the coefficients provides the wanted
invariant property within this layer.

By iterating the above procedure, the resulting second-order output is

5ol /0] = [, Wy [Wip()||7d (10)

Finally, the gth zero-order moments are the integration on £;(M):

Sola) = [ lo(x) 7ex ay

and by concatenating these orders of moments as the overall representation of one sample,
they can be input into trained classifiers such as SVM or Neural Networks to accomplish
expression classification.

4. Experimental Results

For a fair comparison, we conducted experiments using the Bosphorus [13] and 3D-
BUFE [14] datasets and compared results with typical methods for 3D FER. The proposed
network was implemented on PyTorch [37] and trained on an i7-8700K CPU and a single
GTX2080TI GPU. The Bosphorus and Bu-3DFE datasets were utilized as the major material
for validation of our methods. One full ten-fold cross-evaluation procedure consumed
about 7 h on the Bosphorus dataset and 12 h on the BU-3DFE dataset, and the testing
procedure consumed 25 s on Bosphorus and 42 s on 3DBU for each procedure.
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4.1. Dataset Description

(1) The 3D-BUFE(Binghamton University 3D Facial Expression) dataset [14] contains
2500 facial expression models from 100 subjects (56 females and 44 males) with six
prototypical expressions: AN (anger), HA (happiness), FE (fear), SA(sadness), SU
(surprise), and DI (disgust). The performance evaluation was based on classifying
these six expressions.

(2) The Bosphorus dataset [13] contains 4666 scans collected from 105 subjects with six
expressions. It contains relatively more exterior variations (including head poses)
and occlusions (hands, hair, eyeglasses) in the samples. We followed the protocol
in [3,11,15], which utilizes 65 subjects with 7 expressions denoted as AN (anger), HA
(happiness), FE (fear), SA (sadness), SU (surprise), DI (disgust), and NE (neutral).

4.2. Evaluation Protocol and Metrics

Following the protocol in [3,15], we applied ten-fold cross-validation on both datasets.
To excavate convincing results, we divided each dataset into training/validation/testing
splits randomly according to their subjects. A Support Vector Machine (SVM) and full
connection network were used for training, with 70% subjects and 20% subjects taken as the
validation set and the remaining 10% as the testing set. The results obtained by comparing
the related methods are presented in Section 4.4.

For both models, we applied a hyper-parameter tuning process, mainly to the scat-
tering network, where | indicates the scaling parameter, Q indicates the statistical norm
parameter and k indicates the embedded dimension searched as the primary parameters.
For the fully connected network, we applied stochastic gradient descent as the optimizing
method. We generally set the learning rate as 0.001, batch size as 32, and weight decay
as 0.001 for both datasets. To complete the comparison we used the Adam optimizer,
but did not achieve a better result. For SVM, a Radial Kernel Function (RBF) SVM was
applied with a parameter grid search scheme with a range of penalty C and kernel width 1.
Further details about the parameter tuning process are provided in Section 4.3. The overall
prediction accuracy was defined as the mean accuracy of ten prediction times. Confusion
matrices for both datasets are provided in Section 4.4.

4.3. Hyper-Parameter Tuning Process

The typical size of a sample in Bosphorus and 3D-BUFE ranges from 8 k to 50 k; the
resolution of the local reference frame should not be too sparse, as in that case the local
feature may be too vague for finer deformations. However, increasing this value can lead
to greater computation complexity in the rate of O(n%); therefore, we assigned 10 x 10 x 10
as the general hyper-parameter of the local frame. Other than the frame resolution, major
the hyper-parameters can be divided into two kinds, namely, scattering and classifiers. We
began the process of hyper-parameter tuning on BOSPHORUS, with the procedural results
illustrated in Table 2. The experiments on 3D-BUFE inherited this setting, except for the
categories of labels, which were reduced from 7 to 6. The accuracy rate of facial expression
recognition during hyper-parameter tuning on the Bosphorus database is shown in Table 2.

Table 2. Recognition accuracy during the hyper-parameter tuning process.

Hyper-Parameters Accuracy

Ji 77.55%
74.46%
74.16%
72.34%
65.59%
Q (Norm) [0.5,1] 74.46%
[0.5,1,2] 77.55%

[0.5,1,2,3] 72.3%

NN O

[0e}
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Table 2. Cont.

Hyper-Parameters Accuracy
k 6 77.55%
10 70.28%
type of eigenvalues smallest magnitude (SM) 77.55%
smallest magnitude (LM) 73.75%
Optimizer Adam 75.41%
Momentum 77.55%
Classifier svC 74.46%
ISTC [33] + Full connection network 77.55%

4.4. Model Evaluation

The training loss and accuracy curves on Bosphorus are illustrated in Figure 5, and
the confusion matrix is in Figure 6. The training loss and accuracy curves on 3D-BUFE
are illustrated in Figure 7, and the confusion matrix is in Figure 8. While the training
loss decreased to about 0.15 within 30 epochs and then slowly converged at about 0.1
in 50 epochs on Bosphorus, the training loss decreased at a relatively slower pace at the
beginning period on 3D-BUFE, then eventually converged at around 0.25. The accuracy
with both datasets continued to grow within 40 epochs, then began to swing, and finally
converged within a small district. For validation, the shape of the loss curve on Bosphorus
has a better outlook, although the results with the testing set indicate a difference in terms
of vision. This may be related to the scale difference between these two datasets, with more
realizations in 3D-BUEFE effectively reducing overfitting during the training procedure.

100
F2.0
80 1
r15
.‘a_o‘. 1 —— Bosphorus:train accuracy
o 60 ! —— Bosphorus:val accuracy 0
= '. -=-- Bosphorus:train loss 3
o LI} --- Bosphorus:val loss r1.0
2 '1"‘
40 i
E y
4 b - 0.5
Wil '
P
b y sl
20 lf‘frﬂﬂ.sw.al,.,l.m“m \lqu‘-&:*:kw Aol WM
F 0.0
T T T T
0 20 40 60 80 100

Number of Epochs

Figure 5. Loss and accuracy on Bosphorus dataset.

The overall testing accuracy was 77.55% on the Bosphorus dataset; the best results were
achieved with pure point cloud coordination information, which led to an improvement
over the other techniques of around 8%. The results of the comparison are stated in Table 3
along with the modalities used in each method.

The confusion matrix on the Bosphorus dataset is shown in Figure 6; we compared
individual expression recognition accuracy with others methods, and the superior per-
formance of our model can be seen on Anger (AN) and Sadness (SA). However, there is
room for improvement on Neutral (NE) and Surprise (SU). Note that the relatively lowest
accuracy on Neutral (NE) might be reasonably considered as a side proof for our theory
regarding the fact that the ‘averaged shape’ of all the other expressions may be around this
point. Furthermore, by looking into the samples from Bosphorus dataset one by one, we
noticed that the Fear (FE) and Surprise (SU) samples appear very similar, with mouths and
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eyes both wide open; only small-scale variations can be observed through deliberate obser-
vation, i.e., Surprise (SU) has a slightly more exaggerated degree. This may be related to
the limited amount of observations and additional constraining methods, e.g., the attention
mechanism may help with balancing.

Normalized confusion matrix

1.0
Anger 0.0 0.0 0.0 0.0 0.0 0.0
Disgust 0.0 0.0 0.8
Fear 4 0.0 0.3 0.0
o 0.6
"
= Happyq 00 0.0 0.0
E
= - 0.4
Sadness 4 0.0 0.0
Surprise 1 0.0 0.0 0.2 0.0 L 0.2
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Predict label

Figure 6. Confusion matrix on Bosphorus dataset for seven expressions.

The comparison with recent methods on the Bosphorus dataset is shown in Tables 3 and 4.
It can be seen that our method has improved performance when recognizing Anger (AN) and
Sadness (SA), while it has relatively poor performance on Fear (FE) and Neutral (NE). With
respect to the overall accuracy, our method achieves competitive performance with all the
other compared methods. It is notable that the use of 3D FER methods on raw point cloud
data and on data from other high-resolution sensors continues to progress; our method shows
that a more direct approach is possible.

Table 3. Comparison of classification accuracy with different methods on the Bosphorus dataset, the
best results in each expression are emphasized with boldface.

Method AN DI FE HA SA SU NE
Vretos et al. (2011) 0.708 0.585 0.431 0.923 0.508 0.477 -
Wang et al. (2013) 0.635 0.706 0.628 0.925 0.745 0.956 -
Azazi et al. (2015) 0.825 0.900 0.863 0.975 0.675 0.838 0.813
Hariri et al. (2017) 0.863 0.853 0.810 0.930 0.798 0.905 0.875
Nguyen et al. (2020) 0.700 0.619 0.573 0.930 0.486 0.775 0.748
Lietal. (2021) 0.870 0.897 0.835 0.998 0.898 0.917 -
Nguyen et al. (2021) 0.700 0.619 0.573 0.930 0.486 0.775 0.748

Ours 1.000 0.833 0.600 0.875 1.000 0.800 0.636
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Table 4. Protocol comparison with state-of-art methods on the Bosphorus dataset.

Method Accuracy Classifier/Feature Modality Recogm‘zed

Extractor Expressions
Vretos et al. (2011) 0.605 SVM 3D +2D 7
Wang et al. (2013) 0.766 SVM 3D mesh 6
Azazi et al. (2015) 0.841 SVM 3D +2D 7
Hariri et al. (2017) 0.862 SVM 3D mesh 7
Lietal. (2021) 0.903 Transformer 3D + 2D 6
Nguyen et al. (2021) 0.690 PointNet++ 3D point cloud 7
Ours 0.783 MST + NN 3D point cloud 7

The overall testing accuracy was 78.33% on the 3D-BUFE dataset, which is the best
result with pure point cloud coordination on 3D-BUFE. The results of the comparison are
stated in Table 5 along with the modalities used in each method. Note that beause the
resolution of 3D-BUFE samples is lower, around 8k-10k, the good results provide intuitive

evidence for the validity of our model on sparsely scanned samples.

1007 1.75
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F1.25
2 704
.E'E. —— 3D-BUFE:train accuracy
3‘ —— 3D-BUFE:wal accuracy L 1.00
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Figure 7. Loss and accuracy on the 3D-BUFE dataset.

Table 5. Comparison of classification accuracy with other methods on the 3D-BUFE dataset, the best
results in each expression are emphasized with boldface.

Method AN DI FE HA SA SU

Berretti et al. (2010) 0.817 0.736 0.636 0.869 0.646 0.948
Azazi et al. (2015) 0.787 0.901 0.737 0.935 0.837 0.945
Huynh et al. (2016) 0.913 0.952 0.867 1.000 0.875 0.957
Hariri et al. (2017) 0.880 0.947 0.917 0.978 0.853 0.983
Lietal. (2021) 0.871 0.885 0.863 0.973 0.877 0.980
Ours 0.627 0.789 0.788 0.805 0.844 0.889

The confusion matrix on the 3D-BUFE dataset is shown in Figure 8. We compared
individual expression recognition accuracy with other methods; acceptable performance of
our model can be seen on Sadness (SA) and Surprise (SU). The accuracy on Anger (AN)
has relatively weaker performance, with about 16% samples misrecognized as Disgust (DI)
and another 16% as Sadness (SA).
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Normalized confusion matrix
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Figure 8. Confusion matrix on 3D-BUFE dataset for six expressions.

The comparison with recent methods on the 3D-BUFE dataset is shown in Tables 5 and 6;
it can be seen that our method has comparable performance with SA and SU, as well as
with the other mixed modal methods. As discussed above, the size of 3D-BUFE samples
limits resolution ability, which may have led to the performance gap with other exterior
feature methods; however, it can be seen from the overall accuracy that the method can be
further developed.

Table 6. Protocol comparison with state-of-art methods on the 3D-BUFE dataset.

Method Accuracy Classifier/Feature Modality Recogm.zed

Extractor Expressions
Berretti et al. (2010) 0.775 SVM 3D mesh 6
Azazi et al. (2015) 0.790 SVM 3D +2D 6
Huynh et al. (2016) 0.927 CNN 3D +2D 6
Hariri et al. (2017) 0.862 SVM 3D mesh 6
Lietal. (2021) 0.908 Transformer 3D +2D 6
Ours 0.776 MST + NN 3D point cloud 6

4.5. Stability Against Perturbation of Landmark Positions

One interesting effect that may be related is that the choice of manual landmark
notation may lead to differences in performance. Because our approach relies on a coarse
underlying spectral representation as the entry used to parameterize subsequent scattering
networks, certain perturbations in landmark positions should bring about a marginal effect
on recognition results. In order to clarify the numerical difference between an accurate
landmark and a situation with detection error, we accomplished a controlled experiment
with additive white noise being added to the original manual landmark coordinates (x, y, z)
to imitate a noisy situation. Specifically, the variance of the noise distribution was set to
10% of the averaged mutual Euclidean distances of each set of landmark points. As a result,
we see a minor digression in overall accuracy (see Table 7), which nonetheless surpasses
the current best result with GDL in [11].
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Table 7. Comparison of results with noiseless and noisy settings.

Noise Cond. Datasets Accuracy Drop
Bosphorus 78.33% -
Noiseless
3D-BUFE 77.55% -
Bosphorus 73.15% 5.18%
Noisy
3D-BUFE 75.42% 2.13%

5. Conclusions

In this article, we have presented a geometric deep learning framework with the aim of
improving the recognition of 3D point cloud facial expressions with inherent and localized
geometric features. By creatively using a manifold scattering transform to construct the
general manifold as the coarse structure of an expressed face sample, our work succeeds
in capturing discriminative features from local pure point coordination signals, and out-
performs the current state-of-the-art competing approaches with PointNet structures. We
hope that our approach can inspire the research community to further propel research into
achieving greater Facial Expression Recognition capability with high-resolution sensed
data and the corresponding representation methods. The proposed solution for 3D FER
utilizing GDL methods to represent complex data in this paper indicates wider expansion
possibilities. We intend to expand this research to problems that share similar issues or
aspects, e.g., identity recognition and micro-expression recognition problems. In addi-
tion, more challenging environmental conditions may be thoroughly dealt with for better
real-time application.
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