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Abstract: This study designs a simple current controller employing deep symbolic regression (DSR) in
a surface-mounted permanent magnet synchronous machine (SPMSM). A novel DSR-based optimal
current control scheme is proposed, which after proper training and fitting, generates an analytical
dynamic numerical expression that characterizes the data. This creates an understandable model
and has the potential to estimate data that have not been seen before. The goal of this study was to
overcome the traditional linear proportional–integral (PI) current controller because the performance
of the PI is highly dependent on the system model. Moreover, the outer speed control loop gains
are tuned using the cuckoo search algorithm, which yields optimal gain values. To demonstrate the
efficacy of the proposed design, we apply the control design to different test cases, that is varied
speed and load conditions, as well as sinusoidal speed reference, and compare the results with those
of a traditional vector control design. Compared with traditional control approaches, we deduce
that the DSR-based control design could be extrapolated far beyond the training dataset, laying the
foundation for the use of deep learning techniques in power conversion applications.

Keywords: deep learning; deep symbolic optimization; closed-loop control; data fitting expression;
symbolic regression; metaheuristic algorithm

1. Introduction

Permanent magnet synchronous motors (PMSMs) have replaced DC and induction
motors in various industrial applications such as electric cars, washers, numerically con-
trolled machine tools, air conditioners, and robotics over the past two decades. PMSMs offer
various advantages including a simple structure, high efficiency, higher power densities,
low inertia, high torque-to-current ratios, and zero copper loss in the rotor winding [1,2].
Despite its benefits, the control of a PMSM to achieve high transient stability under all
operating conditions remains difficult. PMSMs are multivariable, non-linear, and strongly
coupled systems, which makes them particularly sensitive to parametric variations and
disturbances, making it challenging to achieve a good dynamic control performance.

Traditional proportional–integral (PI) control strategies are primarily used to control
PMSMs. However, the excellent performance of the system cannot be guaranteed because
of non-linearities in the dynamic model equations caused by the non-linear features of the
magnets and cross-coupling between the state variables [3,4]. Consequently, numerous
control approaches have been proposed in recent years including predictive current control,
artificial neural network (ANN) control, direct torque control, robust hysteresis current
control, and H∞ control [5–11]. The predictive current control method in [5] predicts the
current of the next sample and shows the fast convergence of the reference current to
the actual motor phase current. However, the performance degrades with the parameter
uncertainties [6]. The ANN-based control in [7,8] shows good performance. However, it
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is difficult to relate it to the network, making its application in scientific exploration chal-
lenging. In [9], the designed neural network (NN) exhibited good performance. However,
there is a limitation to employing such networks because neural network architectures are
typically difficult to understand, similar to a black box, difficult to interpret, and highly
dependent on the information of the gradient search. Moreover, tuning the hyperparame-
ters and weights is of primary concern because the accuracy of the network depends on
this. Thus, an interpretable model that can derive meaningful information from complex
datasets and extrapolate it outside the training dataset is required for machine learning
for wide application in science. Purely data-driven techniques can perfectly fit the system
dynamics. However, they only provide a black box model with low interpretability, rather
than analytical numeric expressions. Direct torque and hysteresis controls are simple to
implement. However, they have drawbacks, such as a variable switching frequency, large
torque ripple, and high sampling rates for digital implementation [9,10]. However, H∞
control has a better convergence rate and effectively rejects load disturbances, although it
is challenging to apply this to drive systems [11].

The modeling approach describes a model based on information obtained from the
input and output data of a real system. It is important to note that the accuracy of a
discovered model is highly dependent on the algorithms used to identify it and the data
collected. Various identification strategies such as neural networks, fuzzy logic, reinforce-
ment learning, and local linear regression (LR) have been proposed in the literature. Local
linearization (local linear regression), complex calculations, and low explainability (NN)
are common disadvantages of these approaches [12–15]. Artificial intelligence (AI) faces a
major issue in determining the underlying mathematical equations that describe a dataset.
This is a symbolic regression issue despite recent breakthroughs in training neural net-
works to solve complicated tasks such as ANN-based current control, ANN-based motor
parameter identification, ANN torque observers, and ANN-based sensorless speed con-
trol [16–18]. However, symbolic regression approaches based on deep learning have been
underexplored, particularly in power conversion applications. To the best of the authors’
knowledge, deep symbolic regression has not yet been used to design numerical models or
model-based control laws. Therefore, as the state-of-the-art, deep symbolic optimization is
employed to construct the proposed optimal current control design based on the analytical
model. Symbolic regression based on deep reinforcement learning was used to construct
an analytical model used for control design [19].

This study proposes an optimal current control design for the robust operation of
a motor drive under standstill and transient operating conditions. A deep symbolic op-
timization technique was evaluated for the current control mechanism. To construct an
analytical model that will replace conventional PI-based current control models, symbolic
regression aims to obtain the following numerical expression that best fits the dataset.
Deep learning combined with symbolic regression is employed. The goal is to construct a
small mathematical expression model using a large model, that is an NN. This architecture
exploits the representational capacity of a neural network to construct easy-to-interpret
expressions while nullifying the requirement of interpreting the network. The resulting
mathematical equation is easily readable. Moreover, an evolutionary algorithm, such as the
cuckoo search algorithm, is employed for gain tuning the speed loop control. The unique
contributions of this study are as follows:

(a) DSR-based optimal current controller;
(b) Training of the DSR-based controller on a recurrent neural network (RNN) in python;
(c) Utilization of an evolutionary algorithm for parameter tuning;
(d) Detailed study and performance analysis with a conventional control approach.

The remainder of this paper is organized as follows. The mathematical model of
the SPMSM in a synchronous reference frame is presented in Section 2. Field-oriented
control of the SPMSM using the conventional and proposed methods is described. The
data generation and model training strategies are discussed in Section 3. The test results
are presented in Section 4 under different operating conditions to demonstrate the fitting
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of the data and generate an analytical expression model. Finally, Section 5 presents the
conclusions of this study.

2. Mathematical Model of SPMSM

The stator and rotor of the PMSM are both connected by an air gap magnetic field,
which results in complicated electromagnetic interactions. The following assumptions
were used to simplify the analysis without impacting the control performance: (a) The
saturation of iron in the stator of the motor was neglected. (b) The effects of eddy currents
and hysteresis were not considered.

Continuous-time electrical and mechanical SPMSM models in the synchronous dq
reference frame were employed in this study and are defined as follows [20].

Ls
did
dt

= vd − rsid + ωeLsiq, (1)

Ls
diq
dt

= vq − rsiq −ωeLsid −ωeλm, (2)

and the electromagnetic torque production becomes

Te =
3
2

P
2
[λmiq]. (3)

The mechanical torque equation in the non-linear form is expressed as follows:

TL = Te − Bωm − J
ωm

dt
, (4)

where id and iq are the armature currents; vd and vq are the stator voltages; Ls denotes the
stator inductance; rs denotes the stator resistance; ωe is the electrical speed of the rotor.
ωeLsiq in (1) and (−ωeLsid − ωeλm) in (2) are dynamic coupling terms between the two-
phase voltages vd and vq. ωe = Pωm, where ωm and P denote the rotor mechanical speed
and pole pairs, respectively. λm denotes the flux linkage of the magnet. Te and TL denote
the electromagnetic and load torques, respectively. B and J are the viscous coefficient and
rotor moment of inertia, respectively.

3. Field-Oriented Control of SPMSM

The field-oriented control of an SPMSM comprises a cascaded control structure with
two individual PI controllers: one for the outer speed control loop and the second for
the inner current control loop. Employing vector control technology makes it possible to
achieve a robust dynamic performance of the SPMSM drive powered by a two-level three-
phase (2L3P) PWM inverter, as shown in Figure 1. This section describes the conventional
and proposed control schemes in detail. The results were used for the comparative analysis.
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Figure 1. SPMSM powered by the 2L3P PWM inverter.
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3.1. PI Speed Control Loop

In the application of electric motor drives, optimization-based control techniques are
a well-established topic of study. In this study, cuckoo, a search optimization algorithm,
was employed to tune the speed loop control gains, and tuned gains were used throughout.
The original cuckoo search (CS) algorithm, in [21], was relatively easy to tune and provided
only a small number of hyper-parameters. In this study, we slightly modified the algorithm.
The basic form of the algorithm that we used is shown in Algorithm 1. It should be noted
that we avoided the use of any metaphoric terms from the original algorithm’s literature
such as nests or eggs. The cost function was calculated as the integral time absolute error
(ITAE). We selected the ITAE as the error performance index because it focuses on more
accurate steady-state error-free control. Hence, we expected good overall optimization of
the speed control loop. It is calculated over a time interval as given in Equation (5). At each
data point, we took the residual difference between the reference and actual speeds as:

ITAE =
∫ ∞

0
t|ωre f

i −ωact
i |dt. (5)

In Equation (5), ω
re f
i is the reference speed and ωact

i is the achieved speed at the ith
time instant.

Algorithm 1 Cuckoo search algorithm

Input: (n, p, kmax)
Output: x0

1: Randomly initialize n candidates xi = (i = 1, 2, ..., n− 1)
2: Calculate the error fi of each candidate xi
3: Sort the population in ascending order of error fi
4: for (k = 0 : k < kmax) do
5: for (i = 0 : i < p ∗ n) do
6: Randomly pick a candidate xi with error fi
7: Generate xj by mutating xi using Equation (6)
8: Calculate error ej of xj
9: if (ej < fi) then

10: Replace xi with xj
11: end if
12: end for
13: Sort the population in ascending order of error fi
14: Randomly initialize (p ∗ n) worst candidates
15: end for

The algorithm used to tune the gain parameters for the speed control loop is described
as follows. In Lines 1–3, a population of n candidates is randomly initialized and arranged
in ascending order of their error scores. Lines 4–14 describe the main for loop that operates
for a defined number of iterations, kmax. Lines 5–11 perform a local search inspired by the
behavior of cuckoo birds. A new candidate was generated by mutation and was selected
randomly from the population using Equation (6).

xi(k + 1) = xi(k) + α⊕ Lévy(λ), (6)

where ⊕ denotes the elementwise multiplication. The random step length is drawn from a
Lévy distribution as follows:

Lévy ∼ u = t−λ, (1 < λ ≤ 3). (7)

The mutation is applied using the Lévy flight, which is a random walk, whereas the
random step length is drawn from the Lévy distribution given by Equation (7). If the
new candidate is more suitable, this replaces the previous candidate. Line 13 applies to
the parasitic operator; (p ∗ n) candidates with the worst error values were replaced by
randomly generating candidates according to probability p. This operator helps maintain
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diversity in the population. The best error function and gain values were obtained from
the aforementioned cuckoo search algorithm shown in Figure 2.

0 10 20 30 40 50
Iterations

3.9

3.92

3.94

3.96

3.98

4

Fi
tn

es
s 

Fu
nc

tio
n

ITAE vs Nos.of Iteration

X 50
Y 3.90414

(a) Best error

0 10 20 30 40 50
Iterations

0

10

20

30

40

50
Optimal Gains

X 50
Y 3.18084

X 50
Y 48.298

(b) Optimal gain values

Figure 2. Cuckoo search algorithm for speed control loop.

3.2. Conventional Current Control Scheme

The PI controller is a conventional control scheme, which is mostly employed in current
control owing to its easy implementation. PI controllers are highly model-dependent and
have parametric uncertainties. The performance of the control loop is degraded, which
affects the closed-loop control performance [22]. The transfer function employed to tune
the gain parameters was obtained without the inclusion of coupling terms, which caused
decoupling inaccuracies [23]. The transfer function of the plant utilized to tune the gain
parameters is as follows:

T(s) =
1

sLs + rs
, (8)

where s denotes the Laplace variable. The closed-loop transfer function of the current
control is derived as follows:

i(s)
i∗(s)

=
Kps + Ki

s2Ls + (rs + Kp)s + Ki
, (9)

where i is the actual motor phase current and i∗ is the reference motor phase current. The
output of the PI controller was a voltage command in the synchronous reference frame,
which was further transformed into the abc reference frame using the well-known inverse
Park transformation. Moreover, the controller aims to increase the accuracy by minimizing
the stability error and provides fast convergence to the reference currents. However, the con-
troller does not guarantee stability against load disturbances or input saturation limits.

3.3. Proposed Current Control Scheme

In artificial intelligence, identifying a tractable numerical expression that best explains
a dataset has been a long-standing problem in the generation of new physical knowledge
and insights; this challenge is known as symbolic regression [24]. Conventionally, symbolic
regression is performed using genetic programming, where the population of numerical
expressions is generated by employing metaheuristic algorithms to determine the best fit
of the data. Experimental data are used to extract the underlying laws of physical systems
using this method. However, genetic programming does not scale well with large systems
owing to the combinatorial scope of the issue and is prone to overfitting [25,26].

Deep symbolic regression (DSR) is a deep learning method for symbolic regression
based on the recently proposed policy gradients. DSR exhibits remarkable results in terms of
recovering symbolic equations compared to genetic programming in various test cases [19].
Here, we present the application of DSR for the design of an optimal current controller.
The algorithm takes advantage of the deep neural network and generates interpretable
and generalized models. An overview of the core algorithm is shown in Figure 3. The
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training was performed offline using Python by employing the inverse normalized mean-
squared error (INMSE) bounded by a sigmoid activation function. The risk-seeking policy
gradient computes the empirical quantile of the reward and filters out data with less reward
depending on the epsilon value. In the model structure, the space of the numerical equation
was discrete. However, in the model parameters, the space is continuous. Provided the
data (X, y), where at each point, Xj ε Rn and yj ε R, DSR seeks to determine the function
f : Rn → R that best fits the data.
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Figure 3. Deep symbolic regression core architecture.

A recurrent neural network (RNN) in the DSR outputs a distribution of the numerical
expressions. The expressions are chosen randomly from the distribution, instantiated,
and assessed to fit the dataset. This fitness was utilized as the reward signal to train the
RNN using a unique risk-seeking policy gradient technique, where the goal was to optimize
the best-case performance of the policy for the expected reward, unlike the best average
performance for the standard policy gradient. The RNN modifies the possibility of numeric
expressions in relation to its reward as training progresses, assigning higher probabilities to
better the numeric expressions. The reward function is computationally less expensive than
other techniques; we fed the input data to the sequential numeric expression generated
from the RNN. The predicted output values were compared with the true values with the
fitness function INMSE as a reward signal, which takes only a few microseconds. The final
expressions with a maximum reward 0.738 for the vd command reference and 0.7504 for
the vq command reference were obtained as follows:

v∗d = (−2x1 + x2 + x3)(x1(−4x1 + 4x2 + 2x3) + 4x1 − 3x2 − 2x3,

v∗q = 3x1(x2(−2x1 + 2x2 + x4) + 7x2 − sin(x1) + cos(x2), (10)

where x1 = ed, x2 = eq, x3 =
∫

ed, and x4 =
∫

eq, respectively.
The control scheme of the proposed DSR-based current controller is described as follows:

(a) Measure the current errors and their integration in the synchronous reference frame
at sampling time Ts.

(b) The integral error information is fed into the system, ensuring that there is no steady-
state error in the reference tracking.

(c) The DSR algorithm employing the risk-seeking policy gradient generates numerical
expressions that are easy to understand and fit the data.

(d) The generated expressions are employed in an online model as an optimal current
controller.

The test results are compared with those of conventional methods in the next section
to verify the effectiveness of the proposed control design.

4. Performance Analysis of Field-Oriented Control

The comprehensive analysis and comparison study of the proposed and conventional
closed-loop vector control of a surface-mounted permanent magnet synchronous motor
drive are presented in this section.
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4.1. Test Setup

To demonstrate the efficacy of the DSR-based optimal current control technique and
compare its performance with that of the traditional current control, we used Python
3.6 and Matlab Simulink (2022a) to implement the models, as shown in Figure 4. We
conducted training on the generated datasets. The training was performed offline, and the
mathematical model generated from the DSR was employed online. The model was
designed to acquire the reference voltage commands using the proposed and conventional
schemes on a laptop with an Intel® Core i7-1195G7 2.90 GHz CPU, 16 GB RAM, and
NVIDIA GeForce ® RTX laptop GPU 3050, running Windows10 64 bits.
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Figure 4. Conventional and proposed field-oriented control architecture of SPMSM.

4.2. Training Procedure

The training process consisted of three main steps:

(a) Data generation and processing using Matlab.
(b) Setting up a deep symbolic regression algorithm in Python, tuning the hyper-parameters.
(c) Generation of analytical, numerical expressions that fit the dataset.

To train DSR, datasets were generated by performing extensive Matlab simulation
tests using a linear controller as the baseline control scheme. Various reference signals
consisting of step, sinusoidal, and sawtooth signals were fed to the SPMSM controlled by
a linear current controller. The training dataset comprised 30 test scenarios. For each test
condition, the simulation was run under numerous operating conditions such as the input
reference signals, desired speed, load torque, and sampling time. The stored data with the
input features and their targets were employed for supervised learning to solve the non-
linear regression problems. The training was performed offline, employing both Matlab
and Python to generate an analytical–numerical model that fits the dataset. After proper
training, the generated analytical–numerical model was used by replacing the linear current
controller. To verify the performance of the proposed current control method, we evaluated
the dynamic performance of the SPMSM using the control parameters listed in Table 1, by
employing conventional and proposed current controls under various operating conditions.
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Table 1. SPMSM parameter values.

Parameter Description Value

Ts Sampling time 1 µs
Fpwm Switching frequency 10 kHz
rs Stator resistance 0.2 Ω
Ls Stator inductance 0.000835 H
λm Flux linkage 0.175 Wb
P Poles pairs 4
J Inertia 0.0027 kg·m2

B Damping coefficient 0.000049 Nsm−1

4.3. Test Results and Discussion

To demonstrate the efficacy of the proposed control design, different test cases were
studied, and the results were compared with those of the traditional control design.
The drive control parameters and optimization and deep learning hyperparameters are
listed in Tables 1 and 2. The gain parameters of the closed-loop vector control of the
outer loop were tuned offline by an evolutionary algorithm and employed online in the
closed-loop vector control. The data for the DSR training were generated by employing
a linear current controller, and the generated analytical expression was utilized online,
compared to a linear controller in the closed-loop control system. The test results of the
proposed and conventional linear control were compared, showing that the proposed
method converges to the data perfectly, as desired in PI control, but without the need for
any tuning parameters and fitting dataset online. These generated expressions are easy to
understand and can be utilized online in the control architecture. These expressions are
non-linear in nature and show good compatibility with the dataset compared to the linear
controller (PI). The test cases were as follows.

Table 2. Cuckoo optimization and RNN hyper-parameter values.

Parameter Description Value

kmax Maximum iterations 50
n Population size 15
p Parasitic probability 0.25
kpω Upper and lower bounds [0, 50]
kiω Upper and lower bounds [0, 10]
O Optimizer Adam
L Learning rate 0.001
C Cell LSTM
B Batch size 500
N samples 20,000
ε epsilon 0.2

Case I

The closed-loop control performance under a varied-speed input reference is shown
in Figure 5. Figure 5a shows the speed convergence for a varied-speed reference input.
The tuned gain parameters were used for the outer speed loop, which is responsible for
generating the quadrature reference current (i∗q ). The steady-state performance and speed
response at increasing load torque at 0.4 s show that the proposed closed-loop design
has less ripple and steady-state error than the conventional control design, as can be
observed in Figure 5b,c. The results of the proposed design show excellent standalone
and dynamic performance under various working conditions. Moreover, the generated
numerical analytical model is well fit to online data, as shown in Figure 5b–d, where the
controller converges to the reference values.
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(c) Electromagnetic torque signal under variable speed values
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Figure 5. Closed-loop field-oriented control of SPMSM under speed variations.

Case II

The closed-loop control performance under varied-load references with a constant-
speed input is presented in Figure 6. The load torque was gradually increased from 0 Nm
to 7 Nm at 0.3 s. At 0.4 s, the load torque decreased to 3 Nm and stayed at 3 Nm for
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approximately 0.1 s, then increased to 10 Nm and, finally, gradually decreased to 0 Nm at
0.8 s. In Figure 6a, under load variation, the speed error of the proposed control design was
lower than that of the conventional PI. Moreover, the current convergence to the reference
values and the torque ripples were lower in the DSR-based current controller than in the
PI-based current controller, as shown in Figure 6b–d. The proposed system provided better
readings, proving its dynamic performance under different operating conditions.

(a) Step speed reference
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Figure 6. Closed-loop control performance under load variations.
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Case III

Furthermore, in the third case, the parameters of the system were varied, keeping
the speed constant. Figure 7 shows the α − β stator current planes for the two control
strategies. The analytical model generated offline from the DSR fit the online data well
and converged the actual current signal to the current reference values. This shows that
the DSR-based current controller can replace the PI controller in which the performance
is highly dependent on the control gains. By replacing the PI with a DSR-based current
controller, the limitation of tuning the proportional–integral (PI) gains can be eliminated.

Figure 7. αβ stator current under variable load and speed reference.

Case IV

Figure 8 shows the speed responses of the conventional and proposed closed-loop
controls under a sinusoidal speed step reference. Initially, the load torque was 0 Nm.
At 0.4 s, the load torque was increased to 2 Nm, and the speed convergence is shown.
The proposed closed-loop controller had a high convergence rate compared to the conven-
tional closed-loop control design. Moreover, the results imply that the analytical model
converged efficiently to the desired input.
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  PI   1.83

Tl = 0Nm 0.4s Tl = 2Nm

Figure 8. Closed-loop field-orientated control performance: sinusoidal step input.

Case V

Finally, the performance of the controller was analyzed based on the change in the
sample time under load disturbance and speed variations, as shown in Figure 9. The sample
time was selected as 20 µs, as it can be clearly observed that the response of the proposed
design is better than that of the conventional design. Thus, the numeric expressions fit the
dataset online and neglected the impact of changing the operating conditions. The transient
response of these systems was considered, and the proposed design outperformed the
conventional PI control strategy.

The test results verified the effectiveness and usefulness of a non-linear controller
based on the DSR strategy. The quantitative performance analysis of both control designs
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is shown in Table 3. The generated models based on higher rewards were employed in this
study, and the models could extrapolate beyond the training dataset and fit the desired
reference data input online. The test results showed that the proposed algorithm had a
similar tracking performance with minimal speed error and torque ripple compared to the
linear controller.
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Figure 9. Load variation and sampling rate effect on closed−loop control.

Table 3. Comparison analysis of linear and data-driven control scheme.

Feature PI DSR

Plant model dependent independent
Tuning required N/A
Control dynamics good good
Speed and torque ripples high low
Computational burden low low
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5. Conclusions

A non-linear control design employing deep learning combined with symbolic re-
gression was implemented in this study. The DSR-based non-linear controller eliminated
the limitations of conventional linear control design, where the tuning gain parameters
were highly significant. Optimal gain parameters play an important role in the dynamic
and excellent performance of closed-loop linear control design. For the outer speed loop,
the gain parameters were tuned by the cuckoo search algorithm, which provided optimal
gains using fewer parameters than other metaheuristic schemes. The q-axis current was
generated from the outer speed loop, whereas the voltage commands were generated from
the DSR-based non-linear controller, whose main goal was to fit data that have never been
seen and converge the actual currents to the reference values, providing good dynamic
closed-loop control performance. The utilization of DSR for generating a numerical expres-
sion that provides voltage commands is the state-of-the-art in motor drive systems and
paves the way for the application of deep learning techniques in power energy conversion
applications. In the future, a deep symbolic optimization scheme will be studied for speed
sensorless mechanisms, as well as the classification of gating signals for 2L3P VSI. More-
over, the DSR will be optimized by tuning the hyper-parameters of the RNN to achieve
numerous better-generated expressions with higher rewards.
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