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Abstract: Concerns over fossil fuels and depletable energy sources have motivated renewable energy
sources utilization, such as solar photovoltaic (PV) power. Utilities have started penetrating the
existing primary grid with renewable energy sources. However, penetrating the grid with pho-
tovoltaic energy sources degrades the stability of the whole system because photovoltaic power
depends on solar irradiance, which is highly intermittent. This paper proposes a prediction method
for non-stationary solar irradiance. The proposed method uses an adaptive extreme learning machine.
The extreme learning machine method uses approximated sigmoid and hyper-tangent functions to
ensure faster computational time and more straightforward microcontroller implementation. The
proposed method is analyzed using the hourly weather data from a specific site at Najran University.
The data are preprocessed, trained, tested, and validated. Several evaluation metrics, such as the root
mean square error, mean square error, and mean absolute error, are used to evaluate and compare the
proposed method with other recently introduced approaches. The results show that the proposed
method can be used to predict solar irradiance with high accuracy, as the mean square error is
0.1727. The proposed approach is implemented using a solar irradiance sensor made of a PV cell, a
temperature sensor, and a low-cost microcontroller.

Keywords: solar; irradiance; prediction; machine learning; adaptive ELM; Najran; GHI

1. Introduction

Renewable energy sources have the potential to satisfy the future energy demand
because they are sustainable, clean, and cost effective. A study suggests that the path toward
100% of energy integration into the main grid is feasible in 2050 [1]. Several countries have
already built large-scale renewable energy projects to gain economic advantages and reduce
carbon footprint per capita [2]. The 300 MW Skaka solar PV project is launched in the first
phase of the National Renewable Energy Program (NREP) in Saudi Arabia [3]. The project
provides power to 44,000 houses and reduces carbon emissions by 606,000 tons/yr [4].
The second phase of the NREP includes seven solar PV projects with a total capacity
of about 2.98 GW, and the fourth phase of NREP includes four solar PV projects with
a full capacity of 1.2 GW. The Saudi Arabian 2030 vision aims to increase and diversify
energy sources.

Solar PV energy is suitable for Saudi Arabia because of the high solar radiation and
long average and peak hours [5]. However, residential solar PV in Saudi Arabia does
not contribute significantly to the total energy supply as in Germany. The Electricity and
Cogeneration Regulatory Authority (ECRA) introduced regulations for consumers who are
eligible to install grid-tied PV systems [6], where all bill calculations and a net metering
scheme are illustrated [7]. In a grid-tied PV system, the PV panels feed the electrical loads
when solar irradiance is available. During nights and when no solar irradiance is available,
the electric loads are fed by the main grid [8]. The connection of the PV panel to the main
grid impacts the voltage stability of the system and leads to disturbances [9]. Therefore,
several solutions have been introduced to mitigate the impact of penetrating the main
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grid [10], such as a meter data management system [11], smart transformers [12], smart
inverters [13], an outage management system [14], and solar irradiance prediction [15].
Both grid-tied and off-grid PV systems can be improved if information about the future
values of solar irradiance is accurately predicted [16]. That is, the charge controller will
have enough information and enough time to decide to charge or discharge a battery or to
run critical loads [17].

Several solar irradiance prediction methods have been introduced in the literature [18].
These methods are categorized based on either the prediction time horizon or the input
data type [19]. So, based on the prediction time horizon, the prediction types are short term
(e.g., five minutes ahead) or long term (e.g., one week ahead) [20]. The input of the pre-
dictors is historical data [21], meteorological data [22], or sky images [23]. Prediction solar
irradiance models are classified into physical, statistical, and empirical models. In physical
models, the GHI is modeled as a function of the tilt angle, DNI, or the DHI [24]. How-
ever, the error in simple physical model estimation is significant during cloudy days [25].
The empirical prediction models can be found in the literature and are often used to es-
timate monthly solar irradiance. The most widely used approach is a sunshine-based
predictive model [26].

Statistical models are the most widely used for short-term solar irradiance [27]. Com-
mon statistical methods are autoregressive moving average (ARMA) [28], Hidden Markov
Models (HMM) [29], and autoregressive integrated moving average (ARIMA) [30]. In these
approaches, the Yule–Walker method is used to identify the coefficients [31], and before
applying this approach, the time series should be tested for stationarity [32], which may be
a disadvantage. Support vector regression (SVR) is the most extensively used approach to
predict solar PV power [33]. The SVR algorithm is a supervised learning system. SVM is an
effective technique for classification and prediction. SVRs are designed to construct deci-
sion boundaries using the notion of decision planes [34]. Although it has been employed
in prediction, SVM may be incapable of extracting the time series’ long-term correlation
or the extremely short-term components. Prediction based on an artificial neural net-
work (ANN) [35] is used to relate the temperature and previous GHI values to predict
the next value. Other studies use the convolutional neural network (CNN) by analyzing
the spatiotemporal correlation of solar irradiance [36]. Most neural network-based ap-
proaches need training and backpropagation to update the weight and decrease the mean
square error.

Therefore, new approaches, such as extreme learning machine, have been introduced to
reduce the computation time and provide accurate results. However, the extreme learning
machine does not update the output weight in each iteration. Therefore, an online update to
output weight is needed. This paper presents an adaptive ELM approach implementation
to predict solar irradiance and how to update its weight online. The proposed method
differs from the original ELM in weight update and a buffer for the input values. The main
contributions of this paper are as follows:

• It proposes two different approaches to solar irradiance prediction. These two ap-
proaches can predict irradiance with high accuracy and relatively less computa-
tional time.

• It presents a effective method for online adaptation of the output weight of the ELM
method, which has less computational time.

• The developed models are trained, tested, and validated using local data with a
15 min/sample resolution.

• Implementation and testing of the adaptive ELM approach are carried out on a low-
cost microcontroller.

The rest of this paper is structured and organized as follows: Section 2 presents site
location and weather information, Section 3 presents some details about the theoretical
analysis of the proposed approaches, and Section 4 presents the prediction process and the
possibility of implementing low-cost hardware, and Section 5 presents the results of the
proposed approach. Finally, the conclusion and future work are presented in Section 6.
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2. Site Location and Data Acquirement

The site location used in this paper is Najran University in the southern part of the
Kingdom of Saudi Arabia. The University is located at latitude 17.63228 North, longitude
44.53735 East, and elevation of 1290 m above sea level. Figure 1 shows the location of the
Najran University and the weather station. The city’s climate and university surroundings
are considered continental and relatively dry. Several data sources were found on the
government website or weather websites. The data in this paper were obtained from Open
data by K.A. Care, which contains monthly samples from 2014 to mid-2016. The hourly
weather data can also be obtained from the National Solar Radiation Database (NSRDB) [37].

(a) (b)

Figure 1. Site location used in this study. (a) Najran University; (b) Solar and wind weather station.

Figure 2a shows the monthly average of the DHI, which indicates the amount of
solar irradiance that does not arrive directly on the PV panel. The temperature of the air
is shown in Figure 2b. The monthly average is between 15 C and 35 degrees. The peak
wind speed is the highest in April and August of every year, as depicted in Figure 2c.
The relative humidity data prove the continental climate, which is mostly less than 30%,
as shown in Figure 2d. Although several parameters are included in the dataset, the most
critical parameters in this study are the GHI, temperature, humidity, and wind speed.
Global horizontal irradiance (GHI) is the total amount of solar radiation falling on a
surface horizontal to the ground. Najran city has one of the highest monthly averages
of GHI, as shown in Figure 3a. The average value of wind speed is shown in Figure 3b.
The uncertainty and standard deviation of both GHI and DHI are shown in Figure 4.
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Figure 2. Monthly weather and diffused irradiance data of the Najran university. (a) The diffused
horizontal irradiance. (b) Air temperature. (c) Peak wind speed. (d) Relative humidity.
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Figure 3. Normalization energy sources data at the Najran university. (a) The global horizontal
irradiance in Wh/m2. (b) The average wind speed in [m/s] vs. wind direction.
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Figure 4. The standard deviation and uncertainty of the monthly (a) GHI (b) DHI.

3. Theoretical Illustration of Solar Irradiance Prediction Approaches

This section presents the theoretical background and mathematical formulation of the
proposed prediction approaches.

3.1. Extreme Learning Machine

One major disadvantage of the feedforward backpropagation algorithm is its slow
learning speed. Therefore, the extreme learning machine has been introduced to solve
computation and speed issues. The ELM was introduced in 2006 by Huang [38] and
was utilized in several applications ranging from speech recognition to image processing.
Figure 5 shows a basic ELM network, where ELM is a feedforward neural network that has
a single random hidden neurons layer. The main idea of this method is to find the weight
vector that maps the output y to the transformed input h. The reason that ELM converges
faster than the backpropagation algorithm is because of randomly hidden neurons. At the
same time, ELM can have a better generalization and avoid overfitting issues. According to
Bartlett’s theory, generalization performance is better when the training error is smaller.
Therefore, ELM can reach the slightest training error and can run extremely quickly [9].
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x2

x1

x3

Output layerHidden layerInput layer

Figure 5. Single-layer extreme learning machine.

Random Hidden Nodes for SLFNs

Let us suppose that we have N arbitrary number of samples (xi, yi) where x is the input
vector and yi is the output vector. The SLFNs with N hidden neurons can be mathematically
modeled as follows:

N

∑
i=1

βigi
(
xj
)
=

N

∑
i=1

βig(wi · xi + bi) = yj (1)

where w is the weight vector that connects the neurons in the hidden neuron with input
neurons, and β is the weight vector that connects the hidden neuron layer to the output
layer. The term (wi, xi) represents the inner product wi and xi. The N samples can be
approximated with the zero error means that makes the sum of the difference between the
predicted and actual value of the output equals zero, which is given by

N

∑
j=1

∥∥∥ypredicted − yactual

∥∥∥ = 0 (2)

The ELM algorithm is a straightforward and efficient way to train the single hidden-
layer neural network [39,40]. The algorithm of the ELM is illustrated in Algorithm 1.

Algorithm 1 ELM algorithm

1: Given training data samples (Xi, ti) and an activation function
2: Assign random input bias and weight (b, w)
3: Compute the output of the hidden layer
4: Compute the weight matrix β

3.2. Adaptive Extreme Learning Machine

As mentioned previously, the simple aim for ELM is to calculate the output layer β
that transforms the output of the hidden layer C to output Y. The figure shows the ELM
with a buffer contains several previous samples from the input parameters. Next, we show
the input

x = [GHI Temp humidity]n×z (3)
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where z is the number of input variables and n is the buffer size. The number of including
previous samples determines the buffer size. The input layer is multiplied by a weight
vector filled with random values, which is usually sampled from Gaussian random noise.
Figure 6 shows the adaptive ELM used to predict the time series. The multiplication is
mapped to the hidden layer through an activation function G(ai, x)

G(ai, x) = σ([GHI Temp humidity]n×z

Normal − dist(µ = 0, σ2 = 1)
...

Normal − dist(µ = 0, σ2 = 1)


z×1

). (4)

delay

delay

delay

x1(t)

x1(t−3)

x2(t)

x2(t−3)

x3(t)

x3(t−3)

t−4, t−3, t−2, t−1, t

Output 

layer
Hidden Layer 

(random weight)

Input Layer

GHI

Temperature

Humidity

Buffer

Figure 6. Extreme Learning Machine with time series input and sliding windows.

The output from Equation (4) is transformed by hidden layer C, which is formulated
as follows:

C(a, x) =

G(a1, x1) . . . G(aÑ , x1)
...

. . .
...

G(a1, xn) . . . G(aÑ , xn)


n×Ñ

(5)

The matrix C is the output of the hidden neurons. The output Y is calculated by
multiplying C with the output weight vector β, as follows:

Y = Cβ (6)

The aim is to predict the accurate value of solar irradiance, so the output weight matrix
needs to be determined. The output weight matrix can be solved using the least square
solution and can also be extended by a diagonal weight matrix .

β = (C>C)−1C>Y = (C>WC)−1C>WY . (7)

In light of newly generated sample data pairs, dividing the solution into offline and
online components would make it possible to reduce the need for processing power and
storage space. In order to do this, the matrices are first decomposed into an offline part and
an online part, which can be represented by:

C =

[
COF
CON

]
n×Ñ

W =

[
WOF 0

0 WON

]
n×N

Y =

[
YOF
YON

]
n×1

. (8)
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The derivation for the recursive least square method is quite similar to that of the
feedforward ELM, except it includes an additional weight to inversion part C>WC. The in-
version part is also denoted offline and online by C>WC, respectively. Therefore, the
inverted part of Equation (7) is simplified to:

KON = C>WC =
[
C>OF C>ON

][WOF 0
0 WON

][
COF
CON

]
= C>OFWOFCOF + C>ONWONCON = KOF + C>ONWONCON .

(9)

Similarly, the non-inverted part of Equation (7) can be simplified to:

C>WY =
[
C>OF C>ON

][WOF 0
0 WON

][
YOF
YON

]
= C>OFWOFYOF + C>ONWONYON

= KOFK−1
OFC>OFWOFYOF + C>ONWONYON

= KOFβOF + C>ONWONYON

=
(

KON −C>ONWONCON

)
βOF + C>ONWONYON

= KONβOF −C>ONWONCONβOF + C>ONWONYON .

(10)

Using Equation (10) to obtain the full online weight

βON =
(

K−1
ON

)(
C>WY

)
= βOF −K−1

ONC>ONWONCONβOF + K−1
ONC>ONWONYON

= βOF + K−1
ONC>ONWON(YON −CONβOF)

(11)

The online weight can be calculated without the requirement for the offline dataset.
The Ñ × Ñ sized K inverse can be computationally expensive. In order to reduce the
computations, a smaller-sized buffer for the previous value of the solar irradiance is used.
One can let P = K−1

POF = K−1
OF =

(
C>OFWOFCOF

)−1
(12)

PON = K−1
ON =

(
P−1

OF + C>ONWONCON

)−1
(13)

and apply the Woodbury formula on Equation (13) to get the following:

PON = POF − POFC>ON

(
W−1

ON + CONPOFC>ON

)−1
CONPOF . (14)

More simplification can be applied to the presented algorithm, but first, the term the
C>ONWON part is added to leaves the term of Equation (11) to Equation (14) and distributes
C>ON to get the following equation

PONC>ONWON =

[
POFC>ON − POFC>ON

(
W−1

ON + CONPOFC>ON

)−1
·CONPOFC>ON

]
WON . (15)

Equation (15) is clarified by substituting A = POFC>ON, B = CONA and then distribut-
ing WON to obtain the following equation:

PONC>ONWON = A
[

WON −
(

W−1
ON + B

)−1
BWON

]
. (16)

After further simplification, the following equation

PONC>ONWON = A
(

W−1
ON + B

)−1
. (17)
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The inverse relation between PON and K−1
ON is known. Therefore, PONC>ONWON =

K−1
ONC>ONWON. The online output weight can be solved by substituting Equation (17) into

Equation (11). The summary of the offline and online computation is illustrated in Table 1

Table 1. Summary of the offline and online computations.

Stage Equations

Initial Training (offline)
POF =

[(
C>OFWOFCOF

)−1
]

Ñ×Ñ

βOF =
[
POFC>OFWOFYOF

]
Ñ×1

Online Adaptive mode
A = POFC>ON, B = CONA

βON = βOF + A
(

W−1
ON + B

)−1
(YON −CONβOF)

Online Prediction GHI = Yn+1 = C(a, xn+1)βON

3.3. Feed Forward Neural Network Based Particle Optimization

This is similar to the conventional particle swarm optimization algorithm. However,
the particles are the neural network’s output, as shown in Figure 7. The algorithm completes
the search when the optimal weight is calculated. A similar approach is used in energy-
management systems with the Internet of Things (IoTs) [41], and in the prediction of the
composite behavior [42].

x2

x1

x3

x2 x1x3

Particle

Particle

Particle
Particle

Particle

Particle swarm 

optimization

Figure 7. Feed forward neural network trained with PSO.

4. Prediction Methodology

The prediction process is divided into three stages, as shown in Figure 8. The first stage
is preprocessing, where the data are prepared; the second stage is about training a machine
learning model. The last stage is the post-processing and the performance evaluation.
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Cleaning data and 

removing anomalies.

Removing non-useful 

data e.g. night hours 

Scaling or Normalization

Split data into training 

dataset, test dataset, and 

validation data set

Select implement the 

training approach

Denormalization, and 

rescaling data

Calculate actual data

Evaluate the performance 

Preprocessing Processing Postprocessing

  

Training

Figure 8. The prediction methodology, which consists of three stages.

4.1. Data Preprocessing and Data Cleaning

The dataset represents three years of weather samples; each year contains 17,520 sam-
ples. Raw data often contain errors and misreadings, which require preprocessing before
they can be used in model training. The first step is to clean the data from anomalous
sensor readings and missing data points with interpolated values. An example of incorrect
readings is when the GHI has negative values, where the minimum value of solar irradiance
is zero watts per square meter. Advanced techniques can also be used to clean the data,
such as incorporating maximum temperature and humidity change per day. After cleaning
the data, only valuable data and features are used. The useful data are the data points that
start from 6 a.m. to 8 p.m., only during the day. The season affects the sunrise and sunset
time, and the same goes for the peak hours. Figure 9a illustrates the irradiance before
removing irradiance, and Figure 9b shows the irradiance after getting rid of non-useful
irradiance data.

After cleaning the data and extracting valuable information, normalization is applied
to scale all data between two values. Normalization allows the model to be trained faster,
helps us avoid being trapped in local minima, and makes the gradient-based algorithms
treat all features equally. The normalization used in this study is between zero and one,
and the following equation is used to normalize the data.

˜GHI =
GHI−GHImin

GHImax −GHImin
(18)

where GHImin and GHImax are the minimum and the maximum values of the original GHI
dataset, respectively, and GHI and ˜GHI are the normalized and the denormalized value of
the solar irradiance, respectively. Similarly, the temperature and humidity follow the same
normalization process.
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(a)

(b)

Figure 9. The data cleaning process (a) the data before eliminating night hours (b) the data after
eliminating night hours.

4.2. Processing Stage

After preprocessing, the data are split into training, testing, and validation sets.
The training takes a major portion of the data, accounting for about 70% of the dataset.
The testing and validation account for 15% each. The adaptive ELM model begins by
populating the weight matrices with random numbers. The random numbers are used in
high precision to avoid the singularity. Then, the initial hidden layer matrix C is calculated
based on previous samples. Then, the buffer size is selected. It is usually selected based
on trial and error. Then, the computation initial training is completed using the equations
listed in Table 1. The online adaptive mode only needs initial training once, and there is no
need for previous results after that. The output weight matrix in online mode is calculated,
and then the next value of GHI can be calculated. Note that implementation of this method
on low-cost hardware depends on the complexity of the activation functions.

The activation function brings a degree of nonlinearity to the data, and several types
of activation functions use the exponent function. The most common are logistic function
and hyperbolic tangent activation function, and they are given in (19) and (20), respectively.
Note that some microcontrollers and digital signal processing devices will be significantly
slowed if assigned to calculate the exponential function. Therefore, an approximation
of the activation function can be used in this case to speed up the computation. Using
Padé approximation, the logistic and hyperbolic tangent are given in (21) and (22), respec-
tively. Figure 10 approximated functions fit well for the range from [−1, 1] and where the
activation function is used to form the network [43].

sigmoid(x) =
1

1 + e−x (19)

tanh(x) =
ex − e−x

ex + e−x (20)

f (y)sigmoid =
120 + 60y + 12y2 + y3

120− 60y + 12y2 − y3 (21)
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f (y)tanh =
y(y2 + 15)
6y2 + 15

(22)

(b)(a)

Figure 10. Padé approximation of the activation function. (a) Tanh activation function. (b) Sig-
moid function.

4.3. Post Processing Stage

The first step after we found the predicted values was to denormalize the data. Data
can be renormalized using the following equation

GHI =
( ˜GHI− ˜GHImin

˜GHImax − ˜GHImin

)
(23)

where ˜GHImin and ˜GHImax are the minimum and the maximum values of the normalized
GHI dataset, respectively. The GHI and ˜GHI are the normalized and the denormalized
value of the solar irradiance, respectively. Similarly, the temperature and humidity follow
the same denormalization process. The data are checked to see if there are no outliers or
negative values resulting from ill-conditioned matrices. The performance of a model can
be evaluated using various methods, such as the mean absolute error (MAE), the mean
squared error (MSE), and the root mean squared error (RMSE). They can be calculated
using (24)–(26), respectively. In hardware implementation and testing, only MSE is used,
which determines the quality of the predictor.

MAE =
1
n

n

∑
i=1
|GHIpredicted[i]−GHIactual[i]| (24)

MSE =
1
n

n

∑
i=1

(GHIpredicted[i]−GHIactual[i])2 (25)

RMSE =

√
1
n

n

∑
i=1

(GHIpredicted[i]−GHIactual[i])2 (26)

where n is the number of samples, GHIactual is the real values, and GHIpredicted is the output
values of the model.

5. Results and Discussion

The proposed algorithm is compared to several commonly used approaches, such as
ARMA and FFNN-based PSO. Figure 11 shows the samples of the data used in training and
testing. Each sample was taken 15 min after the previous one. The irradiance is less than
1150 W/m2, the maximum temperature is less than 43 degrees, and the humidity is mostly
less than 50%. Figure 12 shows the overall performance of the algorithm. The ARMA
has the fastest training time. However, it shows the worst performance, since the pre-
dicted output significantly differs from the actual values, especially during peak hours.
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The FFNN-PSO is an enhanced performance over the ARMA, but it takes a very long time
to train and test, and still, there are some significant mismatching results. The proposed
approach produces better results and requires less computation time compared to the other
techniques, as the predicted values are close to the actual values. The performance of the
previously mentioned algorithms is compared in terms of MAE, MSE, and RMSE, as shown
in Table 2. The ARMA approach has the worst performance as the MAE is 0.3124, MSE is
0.233, and RMSE is 0.4463. MAE of about 0.2675 indicates the FFNN-PSO performance,
MSE of 0.1880, and 0.3684 RMSE. The proposed method performs slightly better, where
the MAE is 0.2444, MSE is 0.1727, and RMSE is 0.3012. The proposed method’s predicted
samples are shown in Figure 13. The error, which is the absolute error, is shown in Figure 14.
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Figure 11. The data used in training and testing. (a) The GHI for a whole year. (b) The GHI for five
working days. (c) The temperature in degree celsius. (d) Relative humidity in percentage.
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Figure 12. The predicted samples of the ARMA, FNN-PSO, and the proposed method compared to
the actual values of GHI.
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Figure 13. The predicted samples of the proposed method compared to the actual values of GHI.
The samples are recorded every 15 min.
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Figure 14. The error in samples prediction of the GHI, which is the difference between the proposed
method’s output and the GHI’s actual values. Note that the samples are concentrated near 0, and the
maximum error is less than 250 W

m2 .

Table 2. Performance comparison between different algorithms.

Prediction Approach MAE MSE RMSE

ARMA 0.3124 0.2133 0.4463
FFNN-PSO 0.2675 0.1880 0.3684

Proposed method 0.2444 0.1727 0.3012

The adaptive ELM and FFNN-PSO are used as predictive approaches in hardware
implementation (Atmega328 and PC). The results are presented and compared to a linear
regression algorithm, as listed in Table 3. Different prediction times were experimented
with to show the correlation between the predicted value and the previous hours or time
horizon. It can be noticed that prediction in shorter time horizons yields better results.
Therefore, the trade-off between computation time and time horizon must be figured out to
obtain the optimized results. The adaptive ELM is implemented in real time to examine
the performance. Data were collected from 6:30 a.m. until 5:30 p.m. on 18 August 2022.
Figure 15 are samples of the graphs of data taken at a resolution of a single data point per
15 min. Data were acquired on the south side of the Engineering College building at Najran
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University. The results show the robust performance and ability to estimate the next value
of solar irradiance.
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Figure 15. The experimental results of GHI. The predicted results (dots) are read every 15 min and
compared to the actual GHI (solid line).

Table 3. Comparison of the experimental performance

Method Training Time Training MSE Testing Time Testing MSE

Initial ELM 0.0252 - 0.0046 0.2511
Adaptive ELM 0.2884 - 0.0062 0.2459
1 h regression 0.0022 0.3262 0.0007 0.4257
2 h regression 0.0094 0.4144 0.0005 0.4282
1 h NN PSO 30.5079 0.2320 0.0912 0.2552
4 h NN PSO 43.9875 0.1679 0.0020 0.2024

6. Conclusions

This paper presented a prediction approach based on an adaptive extreme learning
machine. The proposed algorithm works both offline and online, with reduced compu-
tational time and higher prediction accuracy. The dataset used in this study is based on
a local site at Najran University. Several preprocessing steps were taken to ensure the
training data are valuable, clean, and suitable for training predictive models. The offline
performance of the proposed approach yields the lowest mean square error, about 0.1727,
and the lowest mean absolute error, less than 0.25. Furthermore, the presented method can
be implemented on hardware, which can be tested in less than 0.0062s, with a mean square
error of about 0.2459. In the future, this method can be integrated into the whole energy
management system or utilities to enhance the performance of the power grid and allow a
higher level of renewable energy integration.
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Abbreviations
The following abbreviations are used in this manuscript:

ELM Extreme learning machine.
FFNN Feedforward neural network.
GHI Global horizontal irradiance.
DNI Direct Normal Irradiance letter acronym.
PSO Particle swarm optimization.
NSRDB The National Solar Radiation Database.
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