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Abstract: In recent years, myoelectric control systems have emerged for upper limb wearable robotic
exoskeletons to provide movement assistance and/or to restore motor functions in people with
motor disabilities and to augment human performance in able-bodied individuals. In myoelectric
control, electromyographic (EMG) signals from muscles are utilized to implement control strategies
in exoskeletons and exosuits, improving adaptability and human–robot interactions during various
motion tasks. This paper reviews the state-of-the-art myoelectric control systems designed for
upper-limb wearable robotic exoskeletons and exosuits, and highlights the key focus areas for future
research directions. Here, different modalities of existing myoelectric control systems were described
in detail, and their advantages and disadvantages were summarized. Furthermore, key design
aspects (i.e., supported degrees of freedom, portability, and intended application scenario) and the
type of experiments conducted to validate the efficacy of the proposed myoelectric controllers were
also discussed. Finally, the challenges and limitations of current myoelectric control systems were
analyzed, and future research directions were suggested.

Keywords: myoelectric control; EMG-based control system; upper limb wearable robot; upper
limb exoskeleton; upper limb exosuit; biomechanical model; pattern recognition; machine learning;
reinforcement learning

1. Introduction

The demand for wearable robotic exoskeletons, more specifically upper limb rigid
wearable robotic exoskeletons and soft wearable robotic exosuits, has substantially grown
over the past few decades due to their promising applications across industry, and the
medical and military sectors. The exoskeletons contain rigid links and joints attached
to the user’s body, while exosuits use soft, flexible materials (such as fabric or soft poly-
mer) to interface with the user’s body [1]. The intended application scenarios for upper
limb exoskeletons and exosuits include: (i) power augmentation to enhance physical per-
formance or the capabilities of able-bodied individuals during strenuous or repetitive
physical tasks, (ii) assisting individuals with disabilities in performing activities of daily
living (ADLs), and (iii) the rehabilitation of patients with neuromuscular disorders through
therapeutic exercises [2].

The myoelectric control systems of upper limb exoskeletons are based on surface
electromyography (EMG) signals, which are the electric potentials directly measured from
skeletal muscles and that are generated from motor unit activation [3]. The generation
of EMG signals is controlled by the human brain through motion intention, and is regu-
lated by motor neurons in the spinal cord (Figure 1), which offers a means for detecting
the human motion intention before initiating a motion [4]. Compared to other control
systems, the critical advantage of myoelectric control is its timely detection of the user’s
motion intention leveraging electromechanical delay; the onset of motion intention can
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be detected about 50–100 ms earlier than the physical motion [5,6], giving time to control
the upper limb wearable robotic exoskeletons to allow for more adaptive and intelligent
human–robot interactions [7].
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Figure 1. The generation of electromyography signal corresponding to the muscle contraction.

The early stages of myoelectric control modalities for upper limb exoskeletons were
based on on-off/finite state control and proportional control [8,9]. Although they are fast,
reliable, and applicable for real-time operation, the number of movements generated by
these controllers is limited [10]. Therefore, they have been mostly utilized in supporting
simple upper limb functions such as elbow flexion/extension or power grip. Recent
advancements in machine learning (ML) and deep learning algorithms have made it
possible to decipher more complex movements over multiple DOFs (such as shoulder
motions) by extracting useful features from s-EMG signals [11]. Although they have
shown promising results in supporting complex, multi-DOF upper limb motions, their
development is still in the early phase.

Given the growing demand for exoskeletons, the number of publications on myoelec-
tric control systems for upper limb exoskeletons and exosuits has rapidly increased over the
past decade. It is therefore imperative to understand the latest trends and developments of
myoelectric control systems for upper limb exoskeletons and exosuits, and to analyze their
advantages and limitations in order to pinpoint the future directions for advancing this
field. However, to the best of our knowledge, there has not been any comprehensive review
that specifically focuses on the myoelectric control systems of upper limb exoskeletons and
exosuits. Therefore, this review provides a comprehensive overview that will serve as a
guidance for researchers and developers working in this field to address the challenges and
limitations of existing myoelectric control systems, which in turn will enhance the utility
and practicality of this technology and boost its real-world transition.

This review includes articles published in IEEE Xplore, Web of Science, and PubMed.
Because the search result indicates that 194 out of 228 research articles were published
between 2011 and 2021, this review will only focus on the research articles published during
this duration. This review particularly focuses on the state-of-the-art myoelectric control
systems designed for upper limb exoskeletons successfully implemented on a physical
platform, i.e., exoskeleton/exosuit prototypes, and validated experimentally. The rest of
the paper is organized as follows: Section 2 describes the methods used in conducting
the literature review (e.g., eligibility criteria, search query, and screening). Section 3
summarizes the results of crucial design aspects, different myoelectric control modalities,
and experimental validation methods found in the literature. Section 4 discusses existing
challenges and outlines future research directions, and Section 5 provides the conclusion.

2. Methods

The method used to search and to identify key literature pertaining to myoelectric
control systems on upper limb exoskeletons are described in this section. This process was
guided by the PRISMA method [12] for conducting a systematic review of the literature,
based on specific search criteria and objectives.



Sensors 2022, 22, 8134 3 of 31

2.1. Eligibility Criteria

The eligibility criteria of this survey include articles: (i) written in English, (ii) pub-
lished between 2011 and 2021, (iii) using s-EMG signals as inputs to control the upper limb
wearable robotic exoskeleton, and (iv) implementing the controller on a physical model
and conducting an experimental validation on human subjects. The time frame selected
for this survey (criteria (ii)) was to capture the most recent advancements in myoelectric
control systems for upper limb wearable robotic exoskeletons within the past 11 years.
In addition, criterion (iv) was set to preclude studies in which myoelectric controllers were
realized only in computational models or through simulation, since they cannot capture
some uncertainties and nonlinearities present in the human–robot interface in the real
world [13,14].

2.2. Keywords and Search Query

The research articles reviewed in this paper were collected from three databases: IEEE
Xplore, Web of Science, and PubMed, which are the database for the world’s highest quality
technical literature in engineering and technology (IEEE Xplore), the world’s oldest, most
widely used, and authoritative database of research publications and citations (Web of
Science), and the world’s largest free MEDLINE database for life sciences and biomedical
literature (PubMed).

All three databases accepted similar search queries and keywords with small vari-
ations (Table 1). The keywords used were: (i) Body segments: “Upper Limb”, “Upper
Body”, “Arm”, “Shoulder”, “Elbow”, and “Forearm”; (ii) Types of Exoskeletons: “exoskele-
ton”, and “exosuit”; (iii) Electromyography signal: “Electromyography”, “Myoelectric”,
“Myoelectric control”, “Surface Electromyography”, “EMG”, and “EMG”.

Table 1. Description of search query used in each database.

Database Search Query

PubMed

(((myoelectric OR electromyography OR EMG) AND (upper limb
OR elbow OR shoul-der OR hand OR finger OR wrist)) AND

(exosuit OR exoskeleton)) AND ((“2011/01/01”
[Date—Publication] : “2021/12/31” [Date—Publication]))

Web of Science

(((TS = (upper limb OR upper body OR wrist OR elbow OR
shoulder OR finger OR hand)) AND (TS = (electromyography OR

emg OR semg OR surface electromyography OR myoelectric))
AND (TS = (exoskeleton OR exosuit)) AND PY = (2011–2021))

NOT TS = (Passive)) NOT TS = (Lower Limb OR Hip OR Knee)

IEEE Xplore

(“All Metadata”: upper limb OR “All Metadata”: upper body OR
“All Metadata”: elbow OR “All Metadata”: shoulder OR “All

Metadata”: wrist OR “All Metadata”: hand OR “All Metadata”:
finger) AND (“All Metadata”: electromyography OR “All

Metadata”: emg OR “All Metadata”: EMG OR “All Metadata”:
myoelectric) AND (“All Metadata”: exosuit OR “All Metadata”:

exoskeleton)

The search query resulted in 180 articles, among which 90 were counted twice, as
they appeared from more than one database. In addition, based on criteria (iv), i.e., the
implementation and validation of the proposed myoelectric control system on a phys-
ical model, 30 articles were excluded. Finally, 60 articles were selected and reviewed
in this survey. Figure 2 illustrates the https://www.overleaf.com/project, (accessed on
12 September 2022) process of searching, screening, filtering, and the selection of articles to
be included [12].

https://www.overleaf.com/project
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Figure 2. Process of searching, screening, filtering, and the selection of research articles to be included.

3. Results

This result section contains the description and analysis of the included research
articles. A narrative style is adopted to present our results. The results are presented
based on four aspects: (i) a general description of information sources, (ii) different types
of myoelectric control systems, (iii) key design characteristics of the device (i.e., DOF,
portability, and intended application scenario), and (iv) types of experiments conducted to
evaluate the efficacy of the proposed controller.

3.1. Overview of Information Sources

A summary of the relevant characteristics of the 60 articles included in this literature
review is organized in Table 2, which includes: bibliographic citation and information
of authors of the article (Ref and Author), publication year of the article (Year), upper
limb segments assisted by the exoskeleton (Body Segment), types of myoelectric control
method (Control Method), portability of the device (Device Portability), supported degree
of freedom (DoF), intended application scenario (Application of Device), and number and
health condition of subjects in experimental validation (Experimental Subject).
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Table 2. General summary of the research papers included in this review. Corresponding to Citation of document, Author Info., Publish Year, Included Body
Segments, Type of Myoelectric Control System, Portability, DoF, Application of Exoskeleton, and Characteristics of Experimental Subject.

No. Ref and Author Year Body Segment Control Method Device Portability DoF Application of Device Experimental Subject

1 Ho et al. [15] 2011 Hand Threshold Portable 10 Rehabilitation 8 chronic
stroke subjects

2 Lenzi et al. [9] 2012 Elbow Proportional Fixed 1 Augmentation and
Assistance 10 healthy subjects

3 Gopura and
Kiguchi [16] 2012 Shoulder, Elbow, Wrist Neural Fuzzy Fixed 6 Rehabilitation 1 healthy subject

4 Kiguchi and
Hayashi [17] 2012 Shoulder, Elbow, Wrist Neural Fuzzy Fixed 7 Rehabilitation and

Assistance 3 healthy subjects

5 Pang et al. [18] 2012 Hand Machine Learning Portable 1 Rehabilitation 3 healthy subjects

6 Delph et al. [19] 2013 Hand Proportional Portable 1 Rehabilitation Not Specified

7 Loconsole et al. [20] 2013 Hand Machine Learning Portable 1 Rehabilitation 1 healthy subject

8 Su et al. [21] 2013 Elbow Machine Learning Fixed 3 Rehabilitation 1 healthy subject

9 Ngeo et al. [22] 2013 Hand Machine Learning Portable 3 Assistance 1 healthy subject

10 Ramos and
Meggiolaro [23] 2014 Elbow Model Base Portable 2 Augmentation 1 healthy subject

11 Kawase et al. [24] 2014 Elbow, Wrist Model Base Portable 6 Rehabilitation 6 healthy subjects,
1 SCI patient

12 Loconsole et al. [25] 2014 Elbow Model Base Fixed 1 Rehabilitation 1 healthy subject

13 Li et al. [26] 2014 Elbow, Wrist Machine Learning Fixed 2 Assistance 5 healthy subjects

14 Li et al. [ [27] 2014 Elbow Machine Learning Portable 1 Rehabilitation 6 healthy subjects
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Table 2. Cont.

No. Ref and Author Year Body Segment Control Method Device Portability DoF Application of Device Experimental Subject

15 Kirchner et al. [28] 2014 Elbow, Wrist Machine Learning Portable 4 Rehabilitation 8 healthy subjects

16 Buongiorno et al. [29] 2015 Shoulder, Elbow Model Base Fixed 4 Rehabilitation 3 healthy subjects

17 Riener and Novak [30] 2015 Elbow Threshold Fixed 7 Rehabilitation 3 healthy subjects

18 Krasin et al. [31] 2015 Elbow Threshold Portable 1 Augmentation Not specified

19 Leonardis et al. [32] 2015 Hand Machine Learning Portable 1 Rehabilitation
6 healthy subjects,

2 chronic
stroke patients

20 Ullauri et al. [33] 2015 Elbow Model Base Fixed 1 Rehabilitation 2 healthy subjects

21 Triwiyanto et al. [34] 2016 Elbow Proportional Fixed 1 Rehabilitation Not specified

22 Peternel et al. [35] 2016 Elbow Model Base Fixed 1 Rehabilitation and
Assistance 8 healthy subjects

23 Accogli et al. [8] 2017 Wrist, Elbow Machine Learning Fixed 4 Assistance 1 healthy subject

24 Lu et al. [36] 2017 Hand Machine Learning Fixed 5 Rehabilitation 8 healthy subjects;
2 SCI subjects

25 Li et al. [37] 2017 Elbow Model Base Fixed 2 Assistance 1 healthy subject

26 Hosseini et al. [38] 2017 Elbow Threshold Portable 2 Assistance 1 healthy subject

27 Mghames et al. [39] 2017 Elbow Proportional Portable 1 Augmentation 1 healthy subject

28 Hamaya et al. [40] 2017 Elbow Machine Learning Fixed 1 Assistance 5 healthy subjects

29 Yun et al. [41] 2017 Hand Machine Learning Portable 8 Augmentation 2 SCI Patients
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Table 2. Cont.

No. Ref and Author Year Body Segment Control Method Device Portability DoF Application of Device Experimental Subject

30 Irastorza-Landa
et al. [42] 2017 Wrist Machine Learning Portable 7 Rehabilitation 8 healthy subjects

31 Lambelet et al. [43] 2017 Wrist Proportional Portable 1 Rehabilitation 1 healthy subject

32 Lince et al. [44] 2017 Hand Proportional Portable 4 Rehabilitation 8 healthy subjects

33 Copaci et al. [45] 2018 Elbow Threshold Portable 1 Rehabilitation 1 healthy subject

34 Zeng et al. [46] 2018 Hand Machine Learning Portable 6 Rehabilitation 25 healthy subjects

35 Buongiorno et al. [47] 2018 Elbow Model Base Fixed 4 Augmentation and
Assistance 7 healthy subjects

36 Cisnal et al. [48] 2019 Hand Proportional Portable 10 Rehabilitation Not Specified

37 Jana et al. [49] 2019 Hand Machine Learning Portable 2 Rehabilitation 1 healthy subject

38 Trigili et al. [50] 2019 Elbow, Shoulder Machine Learning Fixed 4 Augmentation 10 healthy subjects

39 Lei [51] 2019 Elbow, Wrist Machine Learning Portable 1 Rehabilitation 4 healthy subjects

40 Wu et al. [52] 2019 Elbow Machine Learning Portable 1 Rehabilitation and
Assistance 5 healthy subjects

41 Xiao [53] 2019 Elbow Machine Learning Fixed 1 Rehabilitation 9 healthy subjects

42 Lu et al. [54] 2019 Hand Machine Learning Portable 5 Rehabilitation 12 SCI Patients

43 Secciani et al. [55] 2019 Hand Machine Learning Portable 4 Assistance 1 patient with
hand impairment

44 Burns et al. [56] 2019 Hand Machine Learning Portable 10 Rehabilitation 5 healthy subjects

45 Lu et al. [57] 2019 Elbow Machine Learning Portable 1 Assistance 5 healthy subjects

46 Li et al. [58] 2020 Elbow Machine Learning Portable 1 Assistance 10 healthy subjects
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Table 2. Cont.

No. Ref and Author Year Body Segment Control Method Device Portability DoF Application of Device Experimental Subject

47 Lotti et al. [59] 2020 Elbow Model Base Portable 1 Assistance 6 healthy subjects

48 Hosseini et al. [60] 2020 Elbow Threshold Portable 2 Assistance 4 healthy subjects

49 Da Silva et al. [61] 2020 Elbow Proportional Portable 2 Assistance 1 healthy subjects

50 Treussart et al. [62] 2020 Elbow Proportional Fixed 1 Augmentation 10 healthy subjects

51 Liu et al. [63] 2020 Elbow Model Base Fixed 1 Rehabilitation and
Assistance 5 healthy subjects

52 McDonald et al. [64] 2020 Elbow Machine Learning Portable 4 Rehabilitation 10 healthy subjects,
1 SCI patient

53 Castiblanco et al. [65] 2021 Hand Neural Fuzzy Portable 4 Rehabilitation 4 stroke patients and
3 healthy subjects

54 Liu et al. [66] 2021 Elbow Machine Learning Portable 1 Rehabilitation 20 healthy subjects

55 Yang et al. [67] 2021 Elbow Machine Learning Portable 1 Rehabilitation 10 healthy subjects

56 Zhou et al. [68] 2021 Shoulder Machine Learning Fixed 5 Rehabilitation 18 healthy subjects

57 Cisnal et al. [69] 2021 Hand Threshold Portable 5 Rehabilitation 10 healthy subjects

58 Xiao et al. [70] 2021 Hand Machine Learning Fixed 7 Rehabilitation 9 healthy subjects

59 Liu et al. [71] 2021 Shoulder, Elbow Proportional Portable 2 Augmentation 3 healthy subjects

60 Xie et al. [72] 2021 Hand Model Base Portable 8 Rehabilitation Not specified
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In addition, we conducted a bibliometric analysis of the selected articles and plot
(Figure 3) to present the network of relationships between the keywords of the myoelectric
control system and upper limb wearable robotic exoskeletons associated with the docu-
ments examined. The bibliometric analysis reveals the evolution of the topics related to the
myoelectric control system of upper limb exoskeletons over time, and their connections
with other key terms.

thumb

power-assist

power assistance

onset detection

myoelectric control

modeling emg-angle

intention recognition

hemiplegia rehabilitation trai

hand/wrist exoskeleton

force estimation

electromyographic (emg)

electromyogram

biomechanics

bilateral training

bilateral rehabilitation

biceps/triceps
assistive rehabilitation

assistive devices

wearable robotics surface emg

soft exoskeleton

motion intention

human-robot interfaces

surface electromyography

exoskeletons

upper limb

hand exoskeleton

emg

rehabilitation

electromyography

semgexoskeleton

VOSviewer

Figure 3. The chronicle evolution of the topics related to the myoelectric control system of up-
per limb exoskeleton and interrelationship between each keywords. The map is generated with
VOSViewer [73].

3.2. Taxonomy of the Myoelectric Control System for Upper Limb Robotic Wearable Exoskeletons

The myoelectric control system is designed to detect the movement intention of the
user by deciphering the EMG signals generated in skeletal muscles. Among the reviewed
literature, different modalities of myoelectric control systems for upper limb exoskeletons
were identified (as shown in Figure 4), which include: (i) Threshold-based control (12%,
seven articles), (ii) Proportional Control (18%, ten articles), (iii) biomechanical model-based
control (18%, ten articles), (iv) machine learning and deep learning-based control (47%,
twenty-eight articles), and (v) neural-fuzzy control (5%, three articles). The ML and deep
learning-based myoelectric control systems were further sub-categorized into (a) pattern
recognition or classification-based control, (b) simultaneous or regression-based control,
or (c) reinforcement learning-based control.
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Machine Learning 

Neural Fuzzy

Proportional

Control Methods

47%
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18%

18%

12%
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Threshold

Figure 4. The percentage distribution of various types of myoelectric control systems among the
included research literature, which includes biomechanic model-based, machine learning-based,
proportional, threshold-based, and neural-fuzzy-based myoelectric control systems.

3.2.1. Threshold-Based Myoelectric Control

Threshold-based myoelectric control is a method that regulates specific control rules
by comparing the amplitude [31] or statistical features [15] of EMG signals with certain
thresholds to assist the user (as shown in Figure 5). The studies at [38,60] implemented
threshold-based myoelectric control to assist the user in the flexion and extension of the
forearm with different loads in hand. The proposed controller utilized a Double Threshold
strategy based on EMG signals corresponding to Bicep Brachii (BB) and Triceps Brachii
(TB). When the user tried to flex his/her arm with a load, the EMG signal corresponding to
BB exceeded its threshold value (i.e., the amplitude of BB signal at the no-load condition)
which activated the exoskeleton to support the user in the intended motion. Similarly,
during forearm extension motion under load, the EMG signal corresponding to TB was
greater than its threshold (i.e., the amplitude of TB signal at the no-load condition), which
triggered the exoskeleton to assist the user during the performance of extension. Experi-
ments in [38,60] validated the proposed control strategy under various load conditions with
the same threshold values. It was demonstrated that the exoskeleton could successfully
assist the user in supporting the motion by reducing his/her muscle effort, showing the
adaptability of this strategy under different load conditions.

Signal
Preprocessing

Raw
EMG(n) Finite State Machine/

Threshold of EMG
Amplitude

s(t)

Motor
Torque

if NoDetect the Motion 
Intention Again

R
aw

 
EM

G
 (n

+1
)

Robot
Actuator and 

Controller

if YesHuman Arm 
with Wearable 

Robot

Brain

Motion
Intention

EMG
Electrode

Figure 5. The conceptual block diagram for threshold-based (On-off/Finite State Machine) myoelec-
tric control system.

To improve the accuracy of threshold-based control, [30,45] utilized sensor fusion
methods are utilized to determine thresholds to modulate assistance. In [45], signals from
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both EMG and force-sensing resistors (FSRs) were used to detect the user’s motion intention.
By measuring the contact force between the user and the robot, FSRs were utilized to detect
the user’s motion intention. When both EMG and FSR signals exceeded their thresholds,
the assistance of a wearable robotic exoskeleton was engaged. In [45], the end-effector
position (measured by IMU sensors), joint torques (estimated from force/torque sensors),
and EMG signals were used in the sensor fusion method. The proposed control strategy
in [30] was intended to assist patients with upper limb impairment in pointing his/her arm
to the desired position; therefore, a fusion of end-effector position with joint torques and
EMG signals enabled the user to track his/her desired trajectory more accurately. Same
as [45], the conditions for controlling assistance in [30] were the end-effector position not
being at the target position, and both joint torques and amplitudes of EMG signals being
greater than their threshold values. Overall, threshold-based myoelectric control systems
have the lowest computational cost. However, this control strategy can only support a
limited number of movements at a time and is sequential in nature, unlike the continuous
natural movement of the human upper limb.

3.2.2. Proportional Myoelectric Control

Proportional myoelectric control utilizes a transfer function to continuously map the
processed EMG signals to the dynamics of upper limbs (e.g., force, velocity, position, etc.),
then uses it as a control input to assist the user in performing a specific movement (as
shown in Figure 6). Whether the EMG signal is directly mapped to the desired joint angle
or torque, this control scheme is divided into direct and indirect proportional control.
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Brain

Motion
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EMG
Electrode

Figure 6. The conceptual block diagram for proportional/directed myoelectric control system.

Direct proportional control scales the processed EMG signal to the muscle effort be-
cause the amplitude of EMG signals infer the amount of muscle contraction [56,57] and
estimate the generated joint torque [58]. Based on this notion, one can develop a direct
myoelectric control system that maps the amplitude of EMG signals with a scaling factor to
estimate the user’s effort, which can then be used as a control input. The implementation of
a direct proportional myoelectric control system for upper limb wearable robotic exoskele-
tons was first introduced by Lenzi et al. [9]. This work used a proportional gain as a scaling
factor to estimate the user’s effort using EMG signals. The estimated user’s effort was then
used as input to control the assistance of a 1-DOF elbow exoskeleton. The proportional gain
was tuned manually with the control goal of the gravity compensation of the arm and the
carried load, while performing repetitive arm motions. The experiment showed an average
reduction of 31% in the user’s muscular effort, with acceptable accuracy in maintaining
the desired trajectory. In addition to [9,74], a similar approach has been implemented by
other studies [19,43,44,48] on hand and wrist exoskeletons, and similar performances of
controllers were found. However, in these studies, an additional low-level controller was
required to regulate the actuator. In [34], the amplitude of EMG signals was scaled to the
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duty cycle of a PWM controller, and the myoelectric control system was directly able to
regulate the actuator. Compared to [9,19,43,44,48], the subsequent approach required less
computational power, improving the exoskeleton’s portability and useability.

Linear transfer functions were used to map the EMG signals in [9,19,43,44,48], but [62]
used a nonlinear transfer function to represent the relationship between joint torque and
EMG signal [75]. This nonlinear function was derived using experimental data; therefore, it
is expected to provide more accurate joint torque estimation. Apart from using a nonlinear
transfer function for joint torque estimation, the myoelectric control system in [62] also im-
plemented a neural network model to estimate the direction of joint torque using the EMG
signal. Other studies implementing indirect proportional control in the literature [39,61]
utilized an admittance control system to map the EMG signal to the desired joint kine-
matics (i.e., joint angle or angular velocity). Compared to direct proportional myoelectric
control systems, indirect myoelectric control systems have been shown to improve the
trajectory tracking performance of the upper limb wearable robotic exoskeletons. Overall,
proportional myoelectric control is easier to implement and shows robust performance
in assisting the user in performing simple motion tasks such as elbow flexion/extension.
The limitation is that it is not suitable for supporting complex, sophisticated multi-joint
motion tasks in patients with upper limb impairment.

3.2.3. Biomechanical Model-Based Myoelectric Control

A biomechanical model-based control system employs a musculoskeletal model to
map the EMG signals to the desired control inputs, where the human musculoskeletal
model is represented by a mechanical multi-body system actuated by muscle segments (as
shown in Figure 7). Hill’s Muscle Model was the only biomechanical model identified in
the reviewed literature that was utilized in myoelectric control of upper limb exoskeletons.
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Brain

Motion
Intention

EMG
Electrode

Figure 7. The conceptual block diagram for bio-mechanics model-based myoelectric control system.

The survey results indicated that only a small portion of the reviewed articles (about
18%, 10 articles) used biomechanical model-based myoelectric control systems, and most
were intended for power augmentation. The first implementation of Hill’s Muscle Model
in the myoelectric control system was presented by [76] to control a single DOF upper limb
exoskeleton to assist the user in elbow flexion/extension. The control system used Hill’s
Muscle Model to estimate the moment generated by the Bicep Brachii and Triceps Brachii
medial-head muscles as a primary input to the controller. The exoskeleton’s kinematic
and dynamic effects were examined experimentally on the assisted arm segments [77].
The results showed a reduction of around 86% in muscular activity and joint torque using
the assistive system.

The authors in [59] also implemented a similar approach to develop an adaptive
biomechanical model-based myoelectric control system for a one-DOF upper limb exosuit.
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The purpose of the proposed myoelectric controller was to estimate the joint torque without
using the inverse dynamic model. Instead, Hill’s Muscle Model was implemented to map
the EMG signal to the joint torque, and then the estimated joint torque was used as control
inputs to a closed-loop admittance controller to detect motion intention and to compensate
for the estimated joint torque. Their experimental results indicated that the proposed
myoelectric control system had an average coefficient of determination (r2) 0.87 ± 0.04
(mean ± SD) across different human subjects, which demonstrated the robustness of
the proposed system. Furthermore, for elbow motion assistance under various loads,
the average r2 was 0.92 ± 0.03, which demonstrated the good adaptability of the system.

One limitation of Hill’s Muscle Model is that there are situations when it cannot yield
an accurate detection of the user’s motion intention [78]. For example, there are cases where
muscle activations occur without necessarily involving joint movement (e.g., isometric
contraction) [79]. Therefore, a myoelectric control system using Hill’s Muscle Model
could misinterpret the user’s motion intention, resulting in incorrect control commands.
To address this limitation, Lotti et al. [59] introduced an additional encoder installed at the
elbow joint to detect the kinematic velocity of elbow flexion/extension, then used them
as another input signal for the controller. On the other hand, Liu et al. [63] introduced
another biomechanical model-based myoelectric control system with the capability of
movement onset detection, but only with the use of the EMG signal as input. The proposed
myoelectric control system in [63] combined Hill’s Muscle Model with a support vector
machine (SVM) to control an upper limb exoskeleton for load-lifting assistance. The Hill’s
Muscle Model was used to map the EMG signal to the joint torque and it was used as
the control command, similar to [59]. In addition, an SVM-based binary classifier was
also incorporated for detecting the movement onset, and it activated the actuator once the
movement onset was detected. Compared to [59], the integration of Hill’s Muscle Model
and an SVM-based classifier eliminates the delay in the control system while ensuring
its accuracy. However, some limitations of the approaches in [59,63] include repetitive
calibrations for different subjects and/or tasks, a long setup time, a high computational cost,
and a lack of continuous control [80], and it requires many muscle segments for complex
joints (e.g., shoulder joint) [81].

To reduce the setup time and to use fewer numbers of muscle segments for the
shoulder joint muscle, ref. [23,29] used an optimization algorithm to tune the parameters
in Hill’s Muscle Model. Different from the conventional calibration approach that used
the human’s anatomical model [82], this work measured the arm’s gravitational torque
and derived the expression of muscle torque from Hill’s Muscle Model, and then it used a
Genetic Algorithm (GA) to optimize the parameters of the muscle model by minimizing
the difference between the gravitational torque and muscle torque. Another study in [47]
compared the performances of the GA and Linear Optimization Algorithms in tuning
the parameters of Hill’s Muscle Model. The results indicated that Hill’s Muscle Model,
tuned using a GA, showed a higher accuracy in estimating the joint torque (R2 = 0.9
for GA vs. R2 = 0.8 for Linear Optimization). Furthermore, compared to [59], which
required one extra session to calibrate the muscle model, the GA optimizer in [23,29] only
required two minutes to find the optimal parameters of the muscle model. Even though
the work in [23,29] significantly reduced the calibration time compared to [59], the results
still showed an average reduction of 67% in the user’s muscular effort for the load lifting
task, and an average increase of 8% in the R2 score after the GA optimization.

The research articles mentioned above use Hill’s Muscle Model to estimate the joint
torque; however, it can also be used in the myoelectric control system for other purposes.
For example, ref. [37] developed a human-in-the-loop adaptive impedance control system
for an elbow exoskeleton. The exoskeleton in [37] is designed for upper limb rehabilitation;
therefore, both the predefined trajectory and the EMG signals were used as the control
command. To adapt the control gains to the human muscle’s impedance, this work used
Hill’s Muscle Model to calculate the muscle stiffness in real time, which is proportional to
the joint torque from the measured EMG signals. The benefit of such adaptive impedance
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control systems in the upper limb rehabilitation task is the accuracy of its output trajectory
with respect to the desired trajectory (which is almost close to 100%).

Furthermore, ref. [35] used the EMG signal and Hill’s Muscle Model as a bio-feedback
of the myoelectric control system. Hill’s Muscle Model was still used as a joint torque
estimator in this work, similar to [29,47,59]. However, it used a predefined trajectory as
a control command, and the goal was to minimize the biofeedback measured from the
EMG signal. The minimization of biofeedback is targeted to reduce the error between the
predefined trajectory and the actual trajectory.

As validated in many studies [24,29,35,37,47,59,63,72] the model-based myoelectric
control systems are effective and versatile in controlling upper limb wearable robotic
exoskeletons using EMG signals as the control input. Nonetheless, some limitations in the
model-based myoelectric controls remain, such as a high computational cost, requiring
repeated calibrations, and not being robust to unmodeled and/or external disturbances.

3.2.4. Machine Learning-Based Myoelectric Control

The machine learning approach has been employed in upper limb exoskeletons to
predict the movement pattern from EMG signals using various modalities. Such modalities
of the myoelectric control system use the statistical features of the preprocessed EMG
signals, such as root mean square (RMS), wave length (WL), and mean absolute value
(MAV) [83] as inputs to different machine learning models, detecting the type of movement
via classification model [21,49], measuring the arm’s joint angle or joint torque via regres-
sion model [27,32], and minimizing muscle effort during assistance with reinforcement
learning [40] (as shown in Figure 8).
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Figure 8. The conceptual block diagram for deep learning/machine learning model-based myoelectric
control system.

1. Pattern recognition or classification-based myoelectric control
In the myoelectric control system, the classification model can detect the type of move-
ment corresponding to the input EMG signal. For example, ref. [49] implemented the
SVM algorithm to predict whether the user’s finger is in motion or not via the root
mean square features of the EMG signal; the authors in [21] implemented a type of
decision-tree algorithm named MCLPBoost to predict whether the elbow and wrist are
performing downward or upward movements. In the abovementioned studies, only a
single type of classification algorithm was used, and a comparison between different
algorithms was not conducted. To compare the performance of different classification
algorithms implemented on a hand exoskeleton, the authors in [84] compared the
accuracy of four classification algorithms, i.e., SVM, artificial neural network (ANN),
linear discriminant analysis (LDA), and K-nearest neighbors (KNN), to predict the
EMG features to five types of hand movements, and then used the classification result
as an input of the assistance controller. The results showed that SVM had the best
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accuracy among those four in predicting the type of hand movements. To improve the
performance of the classification model, studies such as [8,50] compared two types of
classifiers with same algorithm but different input signals. The type 1 classifier used a
single channel EMG signal but converted it to 14 different statistical features; the type
2 classifier used EMG signal from five channels and only converted them to a single
statistical feature. Both type 1 and 2 classifiers were designed to detect if the arm was
in motion or not. The results indicated that the type 1 classifier had higher accuracy,
but the type 2 classifier had less latency. Refs. [8,50] indicated that extracting the
EMG signal to multiple features can improve the accuracy of a classification model.
Another two studies [28,52] used a sensor fusion method that used both EMG and
electroencephalography (EEG) signals to improve the accuracy of the classification
model, and [46] implemented a threshold method in which the signal amplitudes
must be greater than a predefined threshold in order to be input to the classification
model. Such a threshold method can prevent misclassification and can improve the
accuracy of myoelectric control systems.

2. Regression-based Myoelectric Control
The regression model represents the relationship between input and output data as a
function that is trained with a pre-collected dataset. Compared to the classification
model, which can only detect discrete motions, the regression model can output
continuous variables with the statistical feature of the EMG signal as input, such as
joint angle and joint torque. The regression models can be constructed using different
approaches, such as linear regression, ANN [27], and Kalman Filters [57]. Because of
the nonlinearity of the EMG signal, the articles included in this review only used
ANN or the Kalman Filter as the regression model.
Among the included articles, ref. [27] implemented a machine learning-based myo-
electric control system to control an elbow exoskeleton by training a back propagation
neural network (BPNN) to estimate joint angle from the statistical feature of the user’s
EMG signal, and showed that the regression model could accurately estimate the
user’s joint angle. Another application of such machine learning-based myoelectric
control systems was bilateral hand training with a wearable hand exoskeleton, which
used the statistical feature of an EMG signal from an unimpaired hand to estimate
the magnitude of the assistive force, to train the impaired hand. In this review, re-
search articles such as [18,20,22,32,46,56,69], used neural network-based regression
models as a myoelectric control system to control a hand exoskeleton for training
different parts of the impaired hand. On the other hand, ref. [57] used a Kalman
filter-based regression model to compute the joint torque based on the EMG signal.
Compared to the neural network model, the Kalman filter model does not need much
time, nor extensive datasets to train the model. Moreover, tuning the Kalman filter
model for different users only requires the measurements of a few sets of joint torque
under different positions. Although the regression model in [57] reduced the effort in
training the model, its accuracy and efficacy in assisting the upper limb were similar
to that of the neural network-based regression model. Based on the adaptive and
robust regression model developed in [57], ref. [52] integrated a neural network and
a Kalman filter-based regression model in which the neural network took multiple
variables as inputs, which includes processed EMG signals, the joint torque estimated
by the Kalman filter, and the joint angle and joint angular velocity measured by the
IMU sensor, to control the motion of the upper limb exoskeleton. The myoelectric
control system proposed in [52] achieved a better accuracy and efficacy compared to
the previous regression models explained above.

3. Reinforcement Learning-based Myoelectric Control
In addition to the classification and regression model, the reinforcement learning
model was also used in the myoelectric control system in the reviewed articles. Unlike
the classification and regression models, the reinforcement learning model is trained
with a reinforcement learning algorithm that uses a smart agent to learn the optimal
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policy while interacting with an environment. During the process of reinforcement
learning, the smart agent exerts an action on the environment, based on its observation
of the environment (state) as feedback, and then the environment returns a score
to evaluate the agent’s action (reward). Based on the reward returned from the
environment, the agent optimizes its policy toward the direction of greater reward [85].
In the field of wearable robotics, reinforcement learning has been used in prosthetic
control (e.g., [86]), lower limb exoskeleton control (e.g., [87]), and joint torque es-
timation (e.g., [88]). Compared to other types of control methods used in EMGs,
the reinforcement learning algorithm reflects the interaction between humans and
the environment. In addition, reinforcement learning can provide an optimal control
policy without the knowledge of the environment, which is ideal for use in complex
and uncertain environments. Hamaya et al. [40] used a reinforcement learning al-
gorithm called Probabilistic Inference for Learning Control (PILCO) to control an
elbow exoskeleton. The state vector consisted of the kinematics of the elbow joint and
EMG signals, and the reward was related to the difference between the desired and
actual trajectory. The PILCO algorithm implemented the Gaussian process to learn the
probabilistic dynamic model of the human–exoskeleton interface through the states
collected during human–exoskeleton interaction, then evaluated the control policy
using the learned probabilistic dynamic model, and finally optimized the control
policy through the policy gradient method [89]. This method offered a faster training
time as compared to other machine learning myoelectric control systems.
As mentioned above, the ML-based myoelectric control schemes show promising
results in increasing the accuracy and reliability of myoelectric control of an upper
limb wearable robotic exoskeleton. However, some limitations exist in the ML-based
myoelectric controls, such as a limited implementation in multi-DOF upper limb
wearable robotic exoskeletons [9], poor performance in online training of the machine
learning model [90], and high computational cost [53].

3.2.5. Neural-Fuzzy Myoelectric Control

The neural-fuzzy-based myoelectric control system is another scheme for controlling
an upper limb exoskeleton-type exoskeleton. According to the theory of modern artificial
intelligence, neural fuzzy is defined as the combination of a neural network and fuzzy
logic [91]. The fuzzy logic outputs the control command while the neural network tunes
the fuzzy logic iteratively, which allows for training of the fuzzy logic during use (i.e., fuzzy
modifier) (as shown in Figure 9).
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Figure 9. The conceptual block diagram for neural-fuzzy-/fuzzy-logic-based myoelectric
control system.

José et al. [92,93] first introduced the neuro-fuzzy myoelectric control system, where
the fuzzy logic consisted of “IF <premise set> and THEN <consequent set>” statements,
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and the fuzzy modifier was a fully connected neural network. The premise set in this
fuzzy logic consisted of the motion status of EMG signals from eight muscles, and the
consequent set included the desired motor torque and the gain of controllers. The fuzzy
logic needed to be tuned by the neural network using the EMG signals. The tuning
process was similar to training a neural network that uses backpropagation and activation
functions. Since the fuzzy logic is trained each time before making a control command, it
makes it adaptive to various environments. This type of neuro-fuzzy myoelectric control
system has been adopted by [16,92], and the results have shown that it reduces the user’s
muscle activation during various activities of daily life. However, the notable downside
of this approach is that the fuzzy logic becomes complicated as the number of DOFs of
the exoskeleton increases. When a exoskeleton has multiple DOFs, the number of fuzzy
logics will increase exponentially, consequently increasing the difficulty in implementing
and training fuzzy logics.

To improve the compatibility of the neuro-fuzzy myoelectric control system for higher
DOF exoskeletons, a different type of fuzzy logic was implemented on a 7-DOF upper-limb
exoskeleton [17], which represented fuzzy logic as a matrix product of the EMG signal
from 16 channels and the weights of each neuron in the fuzzy modifier. Similar to other
studies, the fuzzy modifier was a fully connected neural network tuned every time before
running. The experiment of this study showed that under the assistance of a wearable
robotic exoskeleton, the muscular efforts of each muscle segment were reduced.

3.3. Key Design Characteristics

This section presents the literature research for the design aspects of upper limb
exoskeletons that are equipped with the myoelectric control system, which include degrees
of freedom, portability, and the application of upper limb exoskeletons.

3.3.1. Degrees of Freedom

As shown in Figure 10a, 13% (seven articles) of the studied articles have worked
on controlling two DoF systems. Additionally, 3%, 15%, and 27% (1, 9, and 16 articles,
respectively) of the explored studies pertain to the three, four, and greater than four
DoF robots. Considering the single DoF exoskeletons (42% of the reviewed papers and
25 articles), many have exclusively studied the flexion and extension of the elbow joint
(Table 2). During testing protocols, they may require the subjects to make different selected
angles wearing the arm device while handling varying load weights [9,35]. The biceps
muscle responsible for elbow flexion and extension motion would then be used as the
control signal. In some studies, while flexion actuation is achieved through the device,
gravity is responsible for extension actuation [23,25]. Many papers have focused on the
actions of the fingers or that of the wrist (Table 2), within their robotic hand device. A hand
exoskeleton can be activated simply through two independent DoFs, one for the thumb
and one for the four fingers’ flexion/extension [65]. Alternatively, for grasping movement,
the thumb can passively be fixed to its position [20,32]. Soft robotic gloves are also a
popular field of research, where the production of sufficient forces to grasp objects through
the robotic glove is studied [19].

3.3.2. Portability of Upper Limb Robotic Wearable Exoskeletons

Among the reviewed literature, 63% (37 articles) of studies developed upper limb
exoskeletons with portable structures, while the remaining ones presented fixed upper
limb robots (as shown in Figure 10c). Portability is an important design requirement for ex-
oskeletons that have intended applications in the performance augmentation of able-bodied
individuals or for the assistance of older adults and patients with neuromusculoskeletal
disorders in activities of daily life. For rehabilitative use, exoskeletons need not be essen-
tially portable if they are being utilized in clinical environments or therapeutic institutes.
However, the portability of rehabilitative robots is desired for home-based rehabilitation en-
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vironments since they can provide ease of access and more flexibility to the user, compared
to stationary robotic systems.
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Figure 10. (a) The percentage of the degrees of freedom for the upper limb exoskeletons in the
included research literature; (b) The percentage of the applications of the upper limb exoskeletons in
the included research literature; (c) The percentage of portability of the upper limb exoskeletons in
the included research literature.

The majority of studies that presented portable upper limb robots were based on
hand exoskeletons [15,18–20,22,32,41–44,46,48,49,54–56,65,69,72]. There were also a num-
ber of studies that developed portable exoskeletons/exosuits to support elbow move-
ment [17,23,27,31,38,39,45,52,57–61,64], or both hand and elbow motions [24,28,51]. Only
one portable exoskeleton was found in the literature that provided power assistance for the
flexion/extension movement of both elbow and shoulder joints [71]. Most of the portable
upper limb robots mentioned above had self-contained architecture. Only a few powered
exoskeletons assisting elbow movement [24] or elbow–shoulder movements [71] required
the user to wear backpack support while operating the device.

When an upper limb exoskeleton is designed to support movements of more
than one joint, the number of required actuators and the weight of the robot both in-
crease. Therefore, most of the exoskeletons supporting motions of two or multiple joints,
such as shoulder–elbow [29,47], elbow–wrist [8,26], or shoulder–elbow–wrist [16,17],
found in the literature, were not portable. Apart from that, some studies also men-
tioned fixed exoskeletons supporting a single joint motion, which were mainly elbow
exoskeletons [9,17,21,25,30,33,34,37,40,47,53,62,63] (except one shoulder exoskeleton in [68]
and one hand exoskeleton in [36]), which were not portable because of their high weight-
to-power ratio.

3.3.3. Application of Upper Limb Robotic Wearable Exoskeletons

The potential application scenarios identified in the reviewed literature can be broadly
categorized as rehabilitative use (58%, 34 articles), assistive use (30%, 18 articles), and hu-
man augmentation (12%, eight articles) (as shown in Figure 10b). Rehabilitative upper limb
exoskeletons can aid patients with motor disabilities in performing therapeutic exercises,
in order to restore/improve the motor functions in their impaired limbs. A total of 58%
(34 articles) of the exoskeletons in the reviewed papers were intended for rehabilitation
scenarios, assisting the patient in performing different single or multiple joint motions
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(some examples include [15,16,21,24,29,68]). The benefits of wearable robot-assisted reha-
bilitation compared to traditional physical therapy include the provision of repetitive and
intensive training to the patient, lessening the physical burden of the therapist, and of-
fering an effective means of objectively quantifying the patient’s progress before and
after training [1].

About 30% (18 articles) of the reviewed literature developed assistive upper limb
wearable robotic exoskeletons (e.g., [22,26,36,41]), which were intended to support people
with neuro-muscular conditions (such as stroke, spinal cord injury, muscle weakness, etc.)
as well as older adults in performing the activities of daily living (ADLs). Such assistive
robots may enable users to regain some of their functional independence, facilitate their
participation in daily activities and overall, enhance the quality of their lives. Furthermore,
some wearable robotic exoskeletons (e.g., [17,35,63]) have been designed for rehabilitation
and assistance scenarios to be utilized in physical therapy in clinical environments, or to
provide assistance during ADLs.

Only 12% (eight articles) of the reviewed exoskeletons were developed for potential
application in human performance augmentation [31,39,50,71], which can enhance the
strength, endurance, or physical capabilities of healthy individuals during repetitive and/or
strenuous tasks in factories, warehouses, or military bases or excursions. Using these
devices can reduce the risk of developing musculoskeletal disorders in industry workers
and military personnel, as well as reducing their metabolic costs during lifting or carrying
of heavy loads.

3.4. Human-Subject Evaluation of the Myoelectric Control System

Among the reviewed literature, nine studies tested their prototypes on subjects with
neuro-muscular impairment (either stroke or SCI patients) [15,24,32,36,41,54,64,65], while
the remaining ones performed experimental validations on healthy subjects. The validation
tests found in the reviewed studies can be broadly grouped into the following categories:
(i) kinematic evaluation, (ii) user’s effort evaluation, (iii) ML model performance evaluation,
and (iv) clinical assessment.

The controller performance was tested in many studies using kinematic evaluation,
where the most commonly used outcome measures identified were trajectory tracking
performance (i.e., joint angle tracking) and velocity [9,16,17,21,22,24,57,61,62,65,67]. Sev-
eral studies tested the proposed controller’s efficacy by evaluating the user’s effort in
performing a specific movement or task [9,17,23,57,60,63]. To do so, EMG signals from
relevant muscles were measured during static/dynamic tasks to estimate muscle activation
and EMG-derived joint torque. Then, comparisons were made among different scenarios
(such as not wearing the exoskeleton, wearing it without assistance, and wearing it with
assistance under the same or different loads) to quantify the reduction in muscle effort.
In addition, a few studies utilized isometric contraction tests to evaluate the effect of the
developed prototype on muscle fatigue [23,64]. Classification accuracy and confusion
matrix outcomes commonly evaluated the ML-based myoelectric control systems’ perfor-
mances and computation times (or latencies) [18,63,64,67–69]. Only one study evaluated
the learning time for a model-based reinforcement learning framework, and found that
the proposed method could learn the proper assistive strategy after only 60 seconds of
user–robot interaction [40].

Only one study [15] performed a clinical assessment on eight chronic stroke subjects
using the Fugl-Meyer Assessment (FMA) and the Action Research Arm Test (ARAT) to
evaluate the improvement in hand and upper arm functions, respectively, after 20 sessions
of hand exoskeleton-assisted training. In addition, the Sollerman Hand Function Test was
used in another study [41] to evaluate the hand performance of two SCI patients with and
without wearing the active hand exoskeleton.
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4. Discussion

In this review, myoelectric control systems designed, implemented, and validated on
upper limb exoskeletons, especially the rigid-link exoskeleton and exosuit, were classified
into threshold-based, proportional, biomechanical model-based, machine learning-based,
and neural-fuzzy myoelectric control systems. In addition, each control modality provided
details on the control methods, performance, and limitations. These existing myoelectric
control systems show promising outcomes, demonstrating enhanced human–robot interac-
tions, robot intelligence, and adaptiveness to the user, task, and environment compared
to traditional control systems without using electromyography. However, several chal-
lenges and limitations are commonly discussed and explored in the articles associated
with myoelectric control systems applied to upper limb wearable robots. The limitations
and challenges extracted from the included research articles suggest that future studies of
myoelectric control systems for upper limb exoskeletons should focus on narrowing the
gap between laboratory studies and clinical applications. Further studies are needed to
investigate the myoelectric control system of upper limb exoskeletons in clinical environ-
ment. This chapter discusses the research questions and tasks for future research works to
narrow the gap between laboratory studies and clinical applications, which include (1) the
robustness of machine learning-based myoelectric control, (2) the calibration procedure
of the biomechanical model-based myoelectric control system, (3) the implementation of
myoelectric control systems to a high degree-of-freedom wearable exoskeleton, (4) the
incorporation of safety requirements in myoelectric control systems, (5) a clinical assess-
ment of assistive and rehabilitative wearable exoskeletons based on myoelectric control
systems, and (6) the incorporation of human-centered myoelectric control. These are crucial
barriers to the effective use of myoelectric controls on upper limb wearable exoskeletons,
warranting further research.

4.1. How Can We Improve the Robustness of Machine Learning-Based Myoelectric
Control Systems?

The robustness of the myoelectric control system relates to its capability to resist
disturbance from and within the environment on electromyography signal [94]; such a dis-
turbance is generally caused by muscle fatigue [95], electrode shift [96], and changes in EMG
patterns over time [97]. The number of studies using machine learning (ML)-based myoelec-
tric control systems has significantly increased over the past decade, showing promising
performance from preliminary/pilot testing in laboratory settings. However, none of these
ML-based myoelectric control systems have yet studied approaches to improving their
robustness. To bridge the gap between experimental research and commercial/clinical
applications, machine-learning-based myoelectric control systems should focus on devel-
oping an accurate control scheme under a well-controlled laboratory environment and
improving the robustness under real-world environment [98].

Within the reviewed research articles that implemented machine-learning-based my-
oelectric control systems in this review, commonly reported issues include varying char-
acteristics of EMG signals between different physiological conditions, noise/artifacts,
and muscle fatigue that cause variants in the EMG signal, and electrode shifts during or
between sessions. However, none of the research articles included in this review specif-
ically addressed these issues. Existing studies on the myoelectric control of prosthetics,
teleoperate robotic arms, and the pattern recognition of EMG signals have already inves-
tigated such issues. For example, [99] explored the property of muscle coordination in
the frequency domain, and introduced a novel feature of the EMG signal to improve the
accuracy in classifying movement intention from the EMG signal to incorporate variations
in the EMG signal. The authors in [100] used a post-processing method to enhance the
robustness of the classifier against the variant in the EMG signal caused by muscle fatigue
and noise/artifacts. The authors in [101] investigated the optimal distance between EMG
electrodes and the feature selection method for myoelectric pattern recognition under the
impact of electrode shift, and provided solutions to improving the robustness of myoelectric
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pattern recognition in the presence of an electrode shift [94]. The behaviors of all time and
frequency domain EMG features are evaluated to classify upper limb motions. Based on
the abovementioned research, the potential approaches for improving the robustness of ma-
chine learning-based myoelectric control systems include the use of more efficient features,
reducing the impact of EMG electrode shifts, and improving the data collection protocol or
signal processing method to enhance the robustness of the machine learning model. Further
investigation of the combination of the abovementioned robustness-improving methods
and myoelectric control systems and their performance on the upper limb exoskeleton
are needed. One of the open questions is to investigate the performance of an upper
limb exoskeleton with a machine learning-based myoelectric control system while using
different time-domain and frequency-domain features. This is because the results of our
literature research indicate that most of the included research articles use the common types
of features such as root mean square (RMS), mean absolute value (MAV), and zero crossing
(ZC). Instead, the selection of EMG features for future studies should be expanded to all
time-domain and frequency-domain features [102] and evaluate the performance of the
human–exoskeleton system. With the improved myoelectric control system, the effective-
ness of assisting the patient in regaining upper limb functionalities in rehabilitative training
will be increased, as well as the potentiality for reducing the occurrence of musculoskeletal
disorders. Furthermore, a possible shifting of EMG electrodes during use and its associ-
ated effects on myoelectric control performance should be examined. For example, while
training and evaluating machine learning-based myoelectric control, the EMG electrodes
can be placed slightly differently to improve the overall robustness of the model. Moreover,
training protocols for a machine learning-based myoelectric control system is also less well
studied For example, [103] used EMG signals collected in 21 days to train a classification
model that showed that the EMG signal collected in the long term even decreased the
accuracy of classification. This suggests that there is a need to investigate training proto-
cols that generate the most optimal dataset to train machine learning-based myoelectric
control systems.

In addition to the above mentioned research fields, future research should also explore
the implementation of sensor fusion methods and their contributions to improving the
robustness of machine learning-based myoelectric control systems. The sensor fusion
of myoelectric control systems refers to the combination of sensors different from the
EMG sensors to achieve a better accuracy and a better inference on the user’s movement
intention. In this review, some research articles implemented sensor fusion methods to
improve the accuracy of the myoelectric control system [28,30,45,52]. Some articles have
benchmarked the performances of myoelectric control systems with sensor fusion by
comparing them with those without sensor fusion [28]. Among the included articles that
have studied sensor fusion methods, the human–robot interactive force measured by the
FSR sensor, joint kinematics measured by the IMU sensor, and brain signal measured by
electroencephalogram (EEG) sensor were the major signals that were combined with the
EMG sensor. Identifying the optimal set of different sensor inputs and utilizing sensor
fusion will lead to an enhancement of the accuracy and robustness of machine learning-
based myoelectric control system. Furthermore, all such studies implemented the sensor
fusion method for the machine-learning-based myoelectric control system, and the results
have demonstrated the superior performance of myoelectric control systems with the
sensor fusion method. However, not only the machine-learning-based myoelectric control
system, but other types of myoelectric control can also work with sensor fusion methods
control systems [63,104].

4.2. How Can We Improve the Calibration Procedure of Biomechanical Model-Based Myoelectric
Control Systems?

The parameters of the human musculoskeletal models implemented in myoelectric
control systems vary between users. Therefore, repetitive customization and calibration
are required before each use, significantly affecting the practicality of wearable exoskele-
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tons using biomechanical model-based control, and limiting their translation from in-lab
assessment to real-world applications. The calibration of the musculoskeletal model needs
additional experiments before its use as the anatomical model of the limb. For example,
in [59], a motion capture system was utilized to facilitate the calibration procedure. First,
the kinematic data of users were collected using the motion capture system while perform-
ing the designated motions. Then, a biomechanical simulator (OpenSim) was used to scale
a generic musculoskeletal model with the captured data to calibrate the biomechanical
model in the myoelectric control system. This process consumes a significant amount of
time and cannot be conducted by the users themselves. Some included articles investigated
different approaches to simplify the calibration procedures; for example, ref. [29] imple-
mented a data-driven optimization method to calibrate the musculoskeletal model, and [47]
measured the gravity and interaction torque under various load conditions and used them
to optimize the parameters of the musculoskeletal model using the Genetic Algorithm.
Both approaches have demonstrated much easier calibration procedures than model-based
myoelectric control systems within the included articles [23–25,33,35,37,59,63,72].

Although the included articles have made many efforts to simplify the calibration pro-
cedure [29,47] and significant improvements have been achieved, implementing the generic
musculoskeletal model to the myoelectric control system of the upper limb exoskeleton
has not been explored. Unlike the subject-specific musculoskeletal model, which is cali-
brated for a single human user, the generic musculoskeletal model is calibrated using the
data collected from a group of humans. Compared to the subject-specific musculoskeletal
model, the generic musculoskeletal model is less accurate but has better adaptability to
different human users. However, Turvey [105] studies mentioned that the performance
of a generic musculoskeletal model-based myoelectric control system for a simulated up-
per limb prothesis was similar to the myoelectric control system with a subject-specific
musculoskeletal model. The factors contributing to the reliability of generic musculoskele-
tal model-based myoelectric control are still unclear. However, possible factors include
(1) co-adaption between human and myoelectric control systems and (2) conserved biome-
chanical action during motions. Therefore, instead of focusing on how to improve the
calibration procedure of biomechanical model-based myoelectric control systems, future
studies could also investigate the questions relevant to the generic musculoskeletal model
for biomechanical model-based myoelectric control systems of upper limb exoskeletons;
for example, the researchers can use different approaches to form a group of human subjects
to collect the biomechanical data for a generic musculoskeletal model, and to investigate
the impact of various human subject groups on the accuracy of the generic musculoskeletal
model. Furthermore, future studies could also study the co-adaption between human users
and biomechanical model-based myoelectric control systems. Only [9] within the selected
articles studies the co-adaption between the human user and the proportional myoelectric
control system, and the co-adaption between the human user and biomechanical model-
based myoelectric control system is still unexplored. However, as the exoskeleton is a
symbiotic robot that requires a close interaction between humans and the exoskeleton, un-
derstanding the co-adaption between human and biomechanical model-based myoelectric
control systems can help researchers to improve the robustness and adaptability of myo-
electric control systems, and also to accelerate the development of generic musculoskeletal
model-based myoelectric control systems of upper limb exoskeletons.

4.3. How Can We Implement Myoelectric Control Systems for High Degree-of-Freedom (DOF)
Upper Limb Exoskeletons?

Most papers have explored only a single DoF control scheme, rather than the simulta-
neous control of multiple DoFs, due to its relative simplicity, while a multiple DoF system
could render the enhanced adaptability of the robot. Compared to a single DoF actuation
control, the simultaneous control of multiple DoF is challenging in practice. Having more
than a single DoF requires the exoskeleton joint motion controller to properly coordinate
the desired limb motion. During complex motions, including cyclic tasks (e.g., table wiping



Sensors 2022, 22, 8134 23 of 31

or cutting vegetables), the frequencies of different joint movement trajectories must be
synchronized to produce the robot’s desired periodic motion. However, in the conventional
EMG-based control methods, e.g., where a single (or a pair of) muscle activity is mapped to
a single DoF actuation, joints with only a few DoF can be controlled because of their low
motion complexity. Similarly, a fuzzy controller’s rules would become convoluted with an
increased number of DoF and/or periodic motions. For the more involved and higher DoF
movements, such as that of the hand, a machine learning-based myoelectric muscle motion
pattern recognition has proven to be a reliable method due to its characteristics previously
detailed in Section 3.3.2 [54]. In addition, an EMG signal is usually not limited to the data
generated by one muscle, and could also be reflecting the activity of the neighboring mus-
cles in the area, the so-called crosstalk issue [106]. Therefore, the fact that different muscles
are associated with different motions leads to difficulty in the unequivocal association of
the EMG signal with motion. Estimating a single joint angle with little influence of a change
in other joints’ positions and reducing crosstalk is the best practice [24]. Additionally,
high computational costs remain another barrier in the physical implementation of such
detection methods into real-time embedded systems.

To provide effective assistance in ADLs, an upper limb wearable exoskeleton must
have a high number of DoFs, and a controller to coordinate those motions while requiring
the user to put in a minimum of effort. Therefore, dimensionally reducing the control
problem can be a possible approach. In one study, to dimensionally reduce the essential
control inputs, a 10-DoF (independently actuated) whole-hand exoskeleton took advan-
tage of kinematic synergies—a collection of relatively independent degrees of freedom
behaving as one functional unit [105]—enabling the researchers to test different synergies
or control approaches [56]. They experimented with three synergies related to the thumb,
index, and remaining three fingers’ independent flexions/extensions. Researchers have
successfully controlled the hand exoskeletons to perform common hand gestures for all the
fingers, excluding the thumb, as the complex motion of the thumb imposes difficulties on
the mechanical structure design [44,65]. It remains a challenge to design mechanisms for
all fingers to build a complete hand exoskeleton that provides rehabilitation for different
grasping movements.

Finally, the number of actuators increases with the number of DoFs, causing limitations
in wearability and portability as it increases the weight, cost, and size. Therefore, reducing
the number of DoFs; for example, mechanically coupling a few joints with small ranges
of motions or requiring low actuation forces, can make the device simpler and more
lightweight. One drawback of this solution is that it can limit the flexibility and possible
motion patterns of the system. Another possible solution can be having fewer actuators
than the number of DoFs, which is known as the under actuation strategy [44].

4.4. How to Incorporate Safety Requirements in Myoelectric Control Systems?

Safety is a critical requirement for upper limb exoskeletons, particularly for active
powered systems. For assistive and rehabilitative applications, it is essential to ensure the
safety of the patients so that these robots will not cause a risk of injury during use. Existing
exoskeletons in the literature mainly focus on implementing safety measures in mechanical
design, such as installing mechanical stops, rotation limits, or force limits to guarantee that
there is no excessive range of motion movements or excessive force applied to the user [2].

However, such mechanisms cannot always fully warrant the safety of the user in the
presence of unknown large parameter variances, hardware failures, or actuator defects [107].
Therefore, control strategies that can effectively compensate for different uncertainties and
external load disturbances might substantially contribute towards improving the safety
of the user while performing motions/tasks wearing the robotic exoskeleton. Given the
inherent variability of EMG signals (arising from changes in arm posture, electrode reposi-
tioning, fatigue etc.), one possible approach can involve applying data fusion techniques
on EMG signals to reduce the potential errors of motion estimation. In [108], two data
fusing algorithms, Variance Weighted Average (VWA) and Decentralized Kalman Filter
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(DKF), were proposed for the myoelectric control of a robotic arm, in order to improve its
reliability under electrode faults and noisy environments.

For machine learning- or deep learning-based myoelectric control systems, imple-
menting post-processing techniques, such as multiwindow smoothing and confidence
estimation, may also improve the reliability of the controller [109]. Multiwindow smooth-
ing approaches can reduce potential estimation errors by utilizing EMG signals from
successive sliding windows [110], while confidence estimation is used to analyze the
confidence of classification results so that uncertain decisions can be detected and elimi-
nated [111]. Furthermore, using adaptive control with real-time learning and prediction
can also help in increasing the fault tolerance of the proposed system [112]. Future studies
may consider focusing on how to improve the safety measures in wearable exoskeletons
from both mechanical and controller design perspectives to enhance the reliability and
fault-tolerance of upper limb exoskeletons for real-world applications.

4.5. How Can We Improve Experimental Validation and Clinical Assessment Methods for Assistive
and Rehabilitative Exoskeletons Based on Myoelectric Control Systems?

The myoelectric control systems reviewed in the literature were tested in laboratory
settings, mostly on able-bodied users. Although many studies showed good preliminary
results with healthy subjects, to transition from laboratory to real-world assistive and
rehabilitative applications, these prototypes need to be further tested on large-scale clinical
populations to address inter- and intra-subject variability issues. Because the voluntary
muscle contraction level and muscle fatigue endurance may vary between healthy and
neurologically impaired subjects; thus, it might impact on the efficacy of the proposed
control method in assisting the intended motion/task of subjects with motor disabilities
with high accuracy and reliability, despite achieving desired results with healthy users.
For example, in [36], the overall average controller accuracy for a hand exoskeleton was
98.1 ± 4.9% among neurologically intact subjects. However, when tested on SCI subjects,
the controller accuracy was found to be lower (90.0 ± 13.9%). Similarly, in [64], the average
classification accuracy of the proposed EMG-based classifier for an upper limb exoskeleton
was lower among the SCI group (85%-95% for single-DoF and 60% for multi-DoF) compared
to able-bodied participants (99% for single-DoF and 90% for multi-DoF). These findings
highlight the importance of experimental validation of myoelectric control systems on a
clinical population to evaluate the controller performance in the presence of neurological
impairment. Furthermore, while interpreting study outcomes, the different level of motor
impairment among clinical subjects should also be taken into account (as performed in [32]),
particularly in those cases where patients with different neurological conditions or motor
function levels are recruited for testing.

Experimental validation methods for rehabilitative exoskeletons in the reviewed liter-
ature have mostly been limited to evaluating trajectory tracking performance, movement
execution velocity, user’s effort, and joint torque estimation for one session of lab assess-
ment. Although these outcome measures may indicate the functionality of the physical
model and the efficacy of the control system in assisting the user in performing a certain
movement or task, it might not completely reflect the effectiveness of the robot-assisted
training in improving the motor function of subjects with neuro-muscular disorders. Since
clinical validation studies of myoelectric control systems for upper limb exoskeletons are
still in their infancy, the focus should be given to performing experimental validation with
control groups at least, to provide stronger evidence for the effectiveness of robot-assisted
training. In addition, there is a possibility that the classification accuracy of ML-based
myoelectric control might not be strongly associated with the training effectiveness. For ex-
ample, in [113], the real-time testing of myoelectric control prosthetics on trans-radial
amputees with virtual arm showed that the completion rate of predefined hand motions
was 55% on average, despite obtaining 85% classification accuracy for the pattern recogni-
tion method. This suggests that this proposed pattern recognition-based myoelectric control
was not able to reliably control real-time hand grasp, even with good classification accuracy.
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Clinical assessment tests are useful in evaluating the efficacy of myoelectric control-
based exoskeletons in achieving desired outcomes among neurologically impaired patients.
For example, in [41], the Sollerman hand function test was used to assess the performance
of a hand exoskeleton in improving hand functions required for common ADLs among
SCI subjects. Also, in [15], the Fugl-Meyer Assessment (FMA) and the Action Research
Arm Test (ARAT) were used to evaluate the effect of an upper limb exoskeleton on upper
limb functions and hand functions among chronic stroke patients, respectively. The results
showed that the motor functions of the subjects on the hand and upper limb significantly
improved after 20 sessions of robot-assisted hand functions task training. Therefore, future
studies should consider incorporating multiple robot-assisted training sessions, followed by
clinical assessment tests, to evaluate the robustness and effectiveness of rehabilitative upper
limb exoskeletons in restoring upper limb functions in patients with motor disabilities.

4.6. How Can We Develop a Human-Centered Myoelectric Control System Instead of a
Task-Centered Myoelectric Control System?

The research literature included in this systematic review has shown innovative ideas
for using EMG signals to control an upper limb wearable robot. However, the presented
control modalities can be broadly categorized as using a machine learning model or a mus-
culoskeletal model, using EMG for the continuous control of assistive torque (proportional),
and starting the assistance of a wearable robot if the EMG signal satisfies certain conditions
(neural fuzzy and threshold). Despite these articles demonstrating promising results, these
myoelectric control systems are developed to map the user’s movement intention from the
EMG signal to a specific task, and then to control the wearable robot to complete this task.
The wearable robots controlled by such types of myoelectric control systems only focus on
finishing the assigned tasks, and are unable to perceive the feedback of the user. However,
the wearable robot and human physically interact in a bidirectional approach; therefore, un-
derstanding the feedback of the human by developing a human-based myoelectric control
system can improve adaption and synchrony between the human and the wearable robot.

Different from the existing literature, the human-based myoelectric control system
should focus on fulfilling the human’s motion intention, which can be achieved by mini-
mizing human effort (e.g., metabolic cost, muscle activation/fatigue, etc.). For example,
when controlling an upper limb wearable robot to help the human to lift a heavy load,
the myoelectric control system should no longer estimate the load from the EMG signal
and control the robot to output the corresponding assistive force to compensate for the
gravitational load. Instead, the myoelectric control system will control the wearable robot
to output a proper amount of assistive force to minimize the amplitude of the human’s
EMG signal. Compared to the conventional control approach, the human-based myoelectric
control system is adaptive to the variant of EMG signal, which reduces the dependency
on calibration. As a matter of fact, such an approach has been introduced by [114] to
control an upper limb wearable robot to compensate for the gravity of the human arm.
However, ref. [114] only validates the proposed control system in a simulation environ-
ment. Within the included literatures, ref. [40] used a model-based reinforcement learning
algorithm to learn the control strategy of the upper limb wearable by minimizing the
amplitude of EMG signal. However, such a model-based reinforcement learning algorithm
requires a significant amount of computational power. Furthermore, ref. [35] studied
a myoelectric control system based on a similar concept, but used the musculoskeletal
model to convert the EMG signal to the muscle force before using it as a control command.
Moreover, the abovementioned myoelectric control systems are only developed for human
power augmentation by compensating gravitational loads. Therefore, the applications of
human-based myoelectric control are largely unexplored. Further studies should consider
exploring the application of such control schemes on more dexterous motions, more com-
plicated scenarios such as rehabilitative training, and the control system that requires less
computational power.
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5. Conclusions

The myoelectric control systems have shown their efficacy for use in the upper limb
exoskeletons to enhance human–robot dynamics and interactions. This review focused on
identifying and categorizing key control strategies employed in myoelectric control sys-
tems implemented on upper limb exoskeletons. The overview of each myoelectric control
system was presented, highlighting their control performance and accuracy, as well as their
limitations and challenges. Some future research directions are proposed: improving adap-
tiveness across different users, tasks, and environments, myoelectric control systems for
multi-joints and/or bilateral arm assistance, improving robustness against the disturbance
in the real-world application, developing a human-centered myoelectric control system,
and improving its safety features through a human subject evaluation process. It was
noted that comparably less work has been performed to exploit a human-centered myo-
electric control system, and fewer validated models exist in the literature. This warrants
further research to assess the applicability of a human-centered myoelectric control system
to control upper limb wearable exoskeletons. Further, all myoelectric control systems
discussed in this review were evaluated in laboratory settings, and mostly on healthy
able-bodied individuals, limiting their implications on clinical applications. Nevertheless,
the rapid evolution and the many variations of myoelectric control systems observed in
recent years suggest that it is the most promising strategy for the intelligent, adaptive,
robust, and human-in-loop control of upper limb exoskeletons.
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