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Abstract: This paper proposes an integrated panoramic sun sensor (IPSS) for the small spherical
satellite Q-SAT that has been working in orbit since 2020. IPSS is essentially a set of temperature-
compensated photoelectric cells distributed on the spherical surface of Q-SAT. Compared with
traditional sun sensors, IPSS has full spherical coverage of 4π so that the sun vector from any
direction can be inversed. The mechatronic design and mathematical model of the proposed IPSS are
presented. In-depth error analyses in terms of albedo effect, sampling error, parameter deviation, etc.
are carried out. IPSS can provide a sun vector inversion accuracy of 1.5◦ where albedo disturbance
does not dominate. Simulation results show that the measurement of IPSS together with a COTS
magnetometer can support the three-axis attitude determination of satellites in various orbits and
can adapt to the seasonal variations of subpolar points. Ground experimental results and on-orbit
data have also verified the feasibility and performance of IPSS. Although the panoramic sun sensor
is designed for the small spherical Q-SAT, it can also be applied to other satellites with limited
power budgets.

Keywords: Q-SAT; spherical satellite; attitude determination and control; IPSS; sun sensor

1. Introduction

This paper proposes the development and verification of an integrated panoramic sun
sensor that can support satellite attitude determination with full spherical coverage. The
background of the research is a spherical satellite called Q-SAT aimed at joint estimation of
upper atmospheric density and long-wave gravity field in low-Earth orbit [1–5]. Q-SAT
was launched atop the CZ-2D rocket on 6 August 2020, and has been working well for more
than two years. The main payload of Q-SAT is a dual-frequency GNSS receiver, which
provides cm-level orbit determination after postprocessing [3]. The precise orbit is used
to inverse the aerodynamic drag force applied to Q-SAT, and thus the upper atmospheric
density. The atmospheric density is related to the drag force as

adrag =
1
2

CD
A
M

ρV2 (1)

The key parameter in the formula is the area-to-mass ratio A
M in the windward direc-

tion. To minimize the error in this parameter, Q-SAT is designed to be spherical so that the
area-to-mass ratio is constant under any attitude. The design of each subsystem of Q-SAT
including the Attitude Determination and Control (ADC) subsystem must satisfy the goal
of the spherical structure. Q-SAT has three axes stabilized to the Earth to keep the antenna
pointing for telemetry and GNSS signal acquisition. The sun and geomagnetic vectors are
used as the references for attitude determination to reduce the cost and power consumption
(limited budget for body-mounted solar arrays) compared with more accurate star sensors.
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There are various types of sun sensors, which differ in their technology and perfor-
mance characteristics such as field of view (FOV), accuracy, power consumption, and size.
The sun presence sensor is the simplest form that can only provide binary outputs and thus
is insufficient for attitude determination. Digital sun sensors [6,7] have the highest accuracy
up to about 0.01◦. They usually achieve the measurement of sunray angles according to the
spotted CCD images formed by sunlight illumination through masks of various shapes.
However, digital sun sensors always suffer from the problem of a constrained field of
view and relatively large power consumption due to their camera-like working principle.
Typically, a digital sun sensor has a field of view up to 100◦, and several sun sensors have
to work concurrently to provide full spherical coverage [8]. The application of multiple sun
sensors can further increase power consumption. Analog sun sensors [9] work by using
the principle of the photoelectric effect and the cosine law of light intensity to calculate the
sunray incidence. It requires at least 3 non-coplanar solar cells to determine the sun vector
without uncertainty. When more valid solar cells are available, higher accuracy and stability
can be achieved. Analog sun sensors are especially sensitive to albedo effects [10] and
temperature variations. They are not as accurate as digital sun sensors. After correction,
analog sun sensors can achieve an accuracy of up to 1.0–2.0◦ when albedo reflections do
not dominate. Although multiple solar cells are still required to provide full coverage, their
power consumption is much smaller.

Considering the limited power budget and the less demanding task of the ADC
system of Q-SAT, analog sun sensors are used. However, installing multiple commercial-
off-the-shelf (COTS) sun sensors on the satellite surface will break the spherical structure.
The COTS sensors can also take over a large part of the surface area that could have been
used for mounting solar arrays. To address the problem, we developed IPSS to measure the
sun vector in the satellite body frame. Extensive analyses, simulations, and experiments
are carried out to verify the performance of the proposed IPSS. Q-SAT has 991 solar cells
mounted on its spherical surface, among which 16 are used for the panoramic sun sensor.
The 16 solar cells are evenly distributed so that at least 4 of them can be used under any
attitude, providing enough redundancy and accuracy. Compared with COTS products,
the panoramic sun sensor can be mounted in between the solar arrays and only occupies
0.78% of the surface area. To summarize, the proposed IPSS has the following advantages.

(1) IPSS has a panoramic field of view of 4π and can work under any attitude;
(2) When a subset of solar cells is damaged, IPSS can still provide reliable measurement;
(3) IPSS has a negligible power consumption;
(4) The spherical structure is maintained to the most compared with COTS products.

This paper focuses on the mechatronic design, mathematical modeling, error analysis,
and verification of IPSS. Although IPSS is designed for the small spherical satellite Q-SAT,
it can be applied to any satellite that has a limited power budget and does not require very
high attitude determination accuracy.

The rest of this paper is organized as follows. In Section 2, the system overview,
mechatronic design, and the sun vector inversion methods of IPSS will be introduced.
In Section 3, we will give an in-depth error analysis of IPSS in terms of albedo effect,
sampling error, parameter deviation, etc. Redundancy analyses are also presented in
Section 3. Simulation and experiments that evaluate the overall design and the on-orbit
performance of IPSS will be discussed in Section 4. Finally, we summarize in Section 5.

2. Mechatronic Design and Modeling of IPSS

In this section, an overview of the layout and working principle of Q-SAT will be
introduced briefly. The mechatronic design as well as the sun vector inversion methods of
the proposed IPSS will be presented in-depth.
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2.1. Overview of the Small Spherical Satellite Q-SAT

The structure, layout, and body frame definition of Q-SAT are shown in Figure 1.
Q-SAT is a small spherical satellite with a diameter of 510 mm and weighs about 23 kg.
The satellite consists of two hemispherical shells, an equatorial ring, and a cuboid central
frame to install various onboard devices. The hemispherical shells are sculpted from
single blocks of aluminum alloy to guarantee machining accuracy and overall strength.
20 pentagonal and hexagonal plates are installed on each hemispherical frame to seal the
structure. Both hemispheres are attached to the equatorial ring, which also connects the
cuboid central frame and the separation system. To guarantee the spherical structure, solar
arrays are mounted on the surface of the two hemispheres. Q-SAT works in a 500 km
sun-synchronous orbit. The specifications and orbit parameters of Q-SAT are summarized
in Table 1.

The spherical Q-SAT was launched as a secondary payload, which is a challenging
task. We have designed a customized electromagnetic separation system for Q-SAT to
address the problem [4,5]. To provide interfaces with the separation system, 4 protrusions
are designed around the equatorial ring of Q-SAT as shown in Figure 1. The separation
system has two main functions: locking and release. The locking state is achieved by
applying preloaded spring forces to the 4 protrusions which were also restricted by limit
blocks of the separation system. In the locking state, Q-SAT is fixed to the separation
system. Once the release signal is received, the separation system removes the limit blocks
concurrently by a series of delicate transmissions using electromagnetic forces. When the
limit blocks are drawn out, Q-SAT will be pushed into space by the preloaded spring forces.
Q-SAT was released 60 s after the main payload.

Usually, Q-SAT keeps three axes stabilized to the Earth with axis OZb pointing down-
ward to the Earth center and axis OXb pointing forward. It uses three orthogonal magne-
torquers and a bias momentum wheel installed in the body Y direction for active attitude
control. The bias momentum wheel works in a constant speed mode to provide extra stabil-
ity in inertial space to avoid attitude divergence under weak magnetic control. The sun
vector and geomagnetic vector are used as references to determine the three-axis attitude
of Q-SAT (only the geomagnetic vector is used when Q-SAT enters the shadow zone).
The reference vectors can be obtained from the sun ephemeris [11] and the International
Geomagnetic Reference Frame (IGRF) [12] with precise orbit data. The proposed IPSS and
a COTS magnetometer are used for the sun and geomagnetic vector measurement in the
body frame. As shown in Figure 1, solar cells marked in red are utilized for joint estimation
of the sun vector.

Figure 1. The structure, layout, and body frame definition of Q-SAT. Solar cells marked in red are
used for joint estimation of the sun vector.
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Table 1. Q-SAT Specifications.

COSPAR ID 2020-054B

diameter 510 mm
weight 23 kg

payload dual frequency GNSS receiver
separation system electromagnetic separation system

perigee 488.0 km
apogee 513.9 km

inclination angle 97.5◦

orbit period 84.5 min
semi-major axis 6871 km

2.2. The Integrated Panoramic Sun Sensor

As shown in Figure 2, the IPSS consists of 16 solar cells evenly distributed on the
spherical surface, 16 thermal resistors for temperature compensation, and corresponding
sampling circuits. The 16 solar cells are identical monocrystalline-silicon cells that are
widely applied in solar power stations. The sun vector can be determined uniquely from
at least 3 non-coplanar solar cells with valid measurements. IPSS is designed to have full
spherical coverage of 4π and thus can provide immediate sunray vector estimation under
any attitude. As to the other 975 cells for power supply, we use more energy-efficient triple
junction GaAs cells for the limited space to install body-mounted solar arrays.

Figure 2. The IPSS consists of 16 evenly distributed solar cells, 16 thermistors underneath each solar
cell, and corresponding sampling circuits.

The size of the solar cells is customized (20× 20 mm squares) to make the flat and rigid
cells applicable to be mounted on the spherical surface. We have cut local flat platforms
to ease the installation process of the 16 solar cells and to ensure the collinearity between
their normal and the designed local radial directions. Thermal resistors are installed just
beneath each solar cell to measure the time-varying temperature. The spherical structure
is made of aluminum alloy (1.5 mm thick with stiffeners) with low heat resistance so that
the measured temperature can reflect that of solar cells. The other 975 solar cells for power
supply are directly mounted on the spherical surface without flat platforms.

1. Photoelectric Model of the Solar Cell

The electrical characteristics of the solar cell can be modeled as an equivalent circuit
consisting of several ideal electronic components [13] as shown in Figure 3. According to
the equivalent circuit, the volt-ampere relationship of a solar cell can be formulated as

I = Iph(E, θ, T)− Id − Ish = Iph(E, θ, T)− Id,0

[
exp
(

V + IRs

nVT

)
− 1
]
− V + IRs

Rsh
(2)

where I and V are the output current and voltage across the output terminals, Iph, Ish,
and Id are the photogenerated current, shunt current and diode current respectively, Id,0,
VT , and n are the reverse saturation current, thermal voltage and ideality factor of the diode
(1 for the ideal diode) respectively, Rs is the equivalent series resistance, and Rsh is the
shunt resistor.
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Figure 3. The equivalent circuit of a solar cell consists of a constant current source, a diode D, a shunt
resistor Rsh, and a series resistor Rs. Resistor Rp on the right-hand side is the payload resistor.

Typically, the series resistance Rs is magnitudes smaller than the shunt resistance Rsh.
When the payload resistor Rp is small enough, the output current I can be very close to the
photogenerated current Iph. In such a condition, the electric characteristic of a solar cell in
Equation (2) can be simplified as a constant current source whose output is only related to
the light intensity E, incident angle θ, and temperature T.

I = Iph(E, θ, T) (3)

To validate this hypothesis, we tested the volt-ampere characteristic of each solar cell
under artificial sunlight in a dark room. The artificial sunlight has the same light intensity
and similar spectral distribution as the real sunlight in Earth’s orbit. Artificial sunlight is
cast perpendicularly to the solar cell, and the exposure time is kept very short so that the
temperature remains the same as the room temperature. Figure 4 gives the volt-ampere
curve of all 16 selected solar cells to set up the IPSS. The output current of each solar cell is
almost constant when the output voltage is below 0.45 V, which validates our hypothesis in
Equation (3). It is also worth mentioning that the type of solar cells can also influence the
result. We have selected solar cells that have strong constant current source characteristics.

Figure 4. The volt-ampere curve of each solar cell under perpendicular illumination of the artificial
sunlight. Solar cells with similar photoelectric characteristics are selected.

2. The Kelly Cosine Characteristic of the Solar Cell

The sunlight intensity in low-Earth orbit can be assumed to be constant within a certain
period of time (seasonal variation is about 3.4% due to the Earth’s elliptic orbit). Intuitively,
the output current of the solar cell should conform to the cosine low when illuminated with
different incident angles. However, the cosine relation is not exactly satisfied during ground
experiments. In cases where the incident angle θ is large, the output current deviates and is
slightly smaller than the reference cosine curve as shown in Figure 5. The experimental
data satisfies the so-called Kelly cosine characteristic of photovoltaic cells [14].
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Figure 5. Sampled voltage curve of a solar cell with various incident angles. The proposed empirical
formula fits the experimental data well. A 2−ohm precise resistor is connected in series to measure
the current.

We proposed an empirical formula to characterize the Kelly cosine relationship be-
tween the output current and the incident angle θ according to tremendous ground experi-
mental data.

Iph,T0 = max
(

Imax,T0cos(θ)− a · u(|θ| − θth)(|θ| − θth), 0
)

(4)

where Iph,T0 is the photogenerated current at standard temperature T0 (25 ◦C), Imax,T0 is
the reference photogenerated current when the sunlight is cast perpendicularly, θth is the
incident angle threshold, a is a parameter that characterizes the magnitude of the deviation
and is assumed to be a constant, u(·) is the step function. When the incident angle is larger
than the threshold θth, the photogenerated current gradually deviates from the standard
cosine curve.

As shown in Figure 5, the proposed empirical formula fits the experimental data well,
and is able to capture the Kelly cosine characteristic of the solar cell to be used. During
the experiment, a 2-ohm precise resistor is connected in series to measure the current
indirectly. The threshold angle θth is set to be 55◦. When the incident angle is smaller
than the threshold, the experimental data conforms to the standard cosine law. When the
incident angle is larger than the threshold, the experimental data can be modeled by the
empirical Formula (4) more precisely.

3. Temperature Correction

The photogenerated current of a solar cell is sensitive to variations in temperature.
The effect of temperature is approximately linear [15,16] and must be considered to ensure
the final accuracy of IPSS. The temperature compensation model of the output current is
formulated as a linear function.

Imax = Imax,T0 − K(T − T0) (5)

where Imax is the photogenerated current when the sunlight is cast perpendicularly, K is the
temperature compensation coefficient, and T is the measured temperature of the solar cell.

To sum up, the output current of a solar cell is modeled as a function of the incident
angle θ and temperature T as shown in Equation (6). With sampled current and temperature,
the incident angle θ of the sunlight can be inversed with a simple calculation. During the
calculation, measurements with small currents should be discarded since they can be
easily disturbed.

Iph = max
((

Imax,T0 − K(T − T0)
)
cos(θ)− a · u(|θ| − θth), 0

)
(6)
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2.3. The Sun Vector Inversion Principle

In this subsection, we focus on the sun vector determination methods based on
the proposed IPSS. The problem can be described as the estimation of the sun vector
in the satellite body frame according to the measurements of N solar cells with known
installation matrices. The observation model of the problem is straightforward, and can be
formulated as

cos(θi) = 〈~ni,~s〉, i = 1, 2, · · · , N (7)

where ~ni is the installation vector of the ith solar cell,~s is the sun vector to be estimated
in the satellite body frame, θi is the sunlight incident angle of the ith solar cell that can be
calculated using the empirical Kelly cosine Formula (4).

It is worth noting that not all measurements contribute the same to the final solution.
As shown in Figure 5, the solar cell has low sensitivity when θ is small, and high sensitivity
when θ is large. However, when θ is close to perpendicular, the measurement is more likely
to be disturbed. Considering the above factors, we propose a weighted method to calculate
the sun vector that can distinguish the contribution of each solar cell.

~s =
(

ATWA
)−1

WAT


cos(θ1)
cos(θ2)

...
cos(θN)

 (8)

where A = [~n1,~n2, · · · ,~nN ]
T is the set of installation vectors, W = diag(w1, w2, · · · , wN) is

the corresponding weight matrix. The weight can be selected with different strategies, such
as the square of the slop sin2θ or the simplest form as

wi =

{
1, θi ≤ θd

0, θi > θd
(9)

The Kelly cosine curve is very close to that of the standard cosine curve when θ does
not exceed the threshold θth too much. When calibrated parameters are not available, we
can also inverse the sun vector by assuming the outputs conform to the standard cosine
law and discard measurements with a large incident angle. Under such an assumption,
Equation (8) can be further simplified as

~s =
(

ATWA
)−1

WAT



Iph,1
Imax,T0−K(T1−T0)

Iph,2
Imax,T0−K(T2−T0)

...
Iph,N

Imax,T0−K(TN−T0)


(10)

where Iph,i and Ti are the sampled current and temperature of the ith solar cell respectively.
We have selected solar cells with similar photoelectric characteristics, so the same parameter
Imax,T0 is used. Although the second method in Equation (10) is a simplified version of
Equation (8), it is more robust to the seasonal variations in sunlight intensity and does not
require precise parameter calibration.

3. Accuracy and Redundancy Analyses of IPSS
3.1. Accuracy Analyses

The proposed IPSS is essentially a type of analog sun sensor. The performance of
IPSS is affected by a variety of factors such as sampling error, parameter deviation, albedo
effect, etc. A comprehensive list of factors is summarized in Table 2 and will be analyzed in
depth individually.
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Table 2. Summary of factors that affect the on-orbit performance of IPSS.

Category Factor Parameter Magnitude Introduced Error

sampling error current/voltage sampling error of solar cells I/V 2.5 mA/5 mV 1.04◦

temperature sampling error T <3 ◦C <0.64◦

manufacturing and installation installation matrix error of solar cells ~ni 0.5◦ 0.16◦

parameter error
resistance error of current sampling resistor Rp 0.5% 0.14◦

temperature compensation coefficient error K 10% <0.50◦

error in max. generated current at T0 Imax,T0 2 mA 0.48◦

albedo and seasonal variations Earth albedo effect E up to 40% depends
seasonal variations in sunlight intensity E 3.4% negligible

1. Sampling Error

The output current and temperature are the two raw measurements that need to be
sampled by the circuit. The magnitude of the sampling error directly affects the accuracy
of the final solution. A 2-ohm precise resistor is connected in series to each solar cell to
convert the output current to a voltage signal. Two 12-bit high-speed A/D converters with
8 channels are used to sample the voltage. The average of five consecutive samples is used
to improve the sampling accuracy and stability.

Experimental result shows that the average sampling accuracy is better than 5 mV,
which is about 1% of the maximum voltage of the solar cells. Monte Carlo simulations were
carried out to analyze the impact on the final sun vector solution. As shown in Figure 6,
the average sun vector inversion accuracy is about 1.04◦ considering a voltage sampling
error of 5 mV. If a digital amplifier is used to amplify the voltage signal, the accuracy can
be further improved.

Figure 6. The sun vector inversion accuracy considering voltage sampling error of various magnitudes.

In terms of temperature measurement, thermal resistors are mounted just beneath each
solar cell for temperature correction. The spherical structure of Q-SAT is made of aluminum
alloy (1.5 mm thick) with low heat resistance, and thus the measured temperature can
reflect that of the solar cells. The temperature compensation coefficients of the solar cells
are quite small (0.53 mA/◦C). Even if we consider a large temperature sampling error up
to 3 ◦C, the simulated error of the inversed sun vector is only 0.64◦, which is much smaller
than that introduced by the current sampling error.

2. Manufacturing and Installation Error

The second type of error source is the manufacturing and installation error. The man-
ufacturing error of the structure is quite small using a CNC machine and can be ignored.
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To minimize the installation error of the 16 flat solar cells on the spherical structure, we
have cut local flat platforms to ease the installation process and to ensure the collinearity
between the solar cells’ normal and the local radial direction. In such a condition, even if
the installation position of the solar cells deviates, the installation matrix can still be close
to the design value.

As shown in Figure 7, the installation error of solar cells has no significant impact
on the final solution due to the averaging effect of multiple solar cells. In cases where the
installation error reaches a large value of 0.5◦, the sun vector inversion accuracy can still
maintain 0.16◦.

Figure 7. The sun vector inversion accuracy considering installation error of various magnitudes.

3. Parameter Calibration Error

A few parameters of IPSS need to be set or calibrated before launch, such as the
resistance of the current sampling resistor Rp, the temperature compensation coefficient K,
and the reference photogenerated current Imax,T0 , etc. Their calibration error can also affect
the accuracy of the inversed sun vector.

For the voltage sampling resistor, we have selected resistors with precise resistance
that does not deviate more than 0.5% from their design value. Monte Carlo simulation
shows that the resistance error can only introduce a sun vector inversion error up to 0.14◦.
The temperature compensation coefficient error can be calibrated below 10%. The error
in K will have an equivalent impact as the voltage sampling error if only the solar cell’s
temperature deviates 50 ◦C from the standard temperature T0. Normally, the deviation is
much smaller according to the on-orbit data send back by Q-SAT.

In terms of the reference photogenerated current Imax,T0 , the error cannot be greater
than 2 mA if we set the value to the median of 169 mA as shown in Figure 4 (the constant
current ranges from 167 mA to 171 mA). Figure 8 gives the Monte Carlo simulation result
considering reference current error of various magnitudes. The error of 2 mA will introduce
a sun vector inversion error of 0.52◦. When the current error doubles, the sun vector
inversion error reaches 1.07◦. Therefore, it is quite important to select solar cells with
similar photoelectric characteristics.
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Figure 8. The sun vector inversion accuracy considering reference current error of various magnitudes.

The results of the above error analyses have enabled us to focus on critical areas of
IPSS to further improve its stability and accuracy.

4. Seasonal Variations in Sunlight Intensity and Earth Albedo Effect

The sunlight intensity has seasonal variations due to the elliptical orbit of the Earth
around the sun. Considering the eccentricity (e = 0.0167) of the Earth’s orbit, the magnitude
of variations can reach about 3.4% of the solar constant (or 46 W/m2). Solar activity may
also introduce a variation, but much smaller than that caused by the change in the sun-Earth
distance [17]. The sunlight intensity changes slowly around the year, and modified param-
eters can be uploaded to adapt to the variations. A more convenient and reliable approach
is to use the second sun vector inversion method (10), which is by nature insensitive to the
variation in light intensity. Mento Carlo simulation also shows that the seasonal variations
can have a negligible impact on the final solution if the second sun vector inversion method
is adopted.

The shorter-term light intensity variations in Earth’s orbit are caused by the albedo
effect [10] or the reflectivity of the Earth. The intensity of reflected sunlight depends mostly
on the ground surface property and the amount of cloud cover. The large area of ice
cover and cloud cover are the primary determinants of global albedo. Figure 9 presents
the albedo map collected by the Total Ozone Mapping Spectrometer Earth Probe (TOMS-
EP) program [18]. The albedo coefficient can be up to 90% in ice-covered areas such as
Antarctica and Greenland. It is also obvious from the map that the reflectivity has a large
dependency on latitude, and only a small dependency on longitude.

Figure 9. The average albedo coefficient measured by the TOMS−EP program.
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The impact of the albedo effect on IPSS is complex. The influence can be significant or
negligible depending on a variety of coupling factors such as the satellite’s orbit, the position
of the subsolar point, and climate change. Q-SAT works in a 500 km sun-synchronous orbit.
Figure 10 presents the albedo intensity distribution in various seasons and directions at an
altitude of 500 km. The reflected sunlight has the highest intensity in the zenith direction
and much smaller intensity in other directions. As shown in Figure 10a,d, the maximum
albedo intensity at the Spring Equinox is about 25% of the solar constant, while that at
the Summer Solstice can be up to 40% (about 540 W/m2). Figure 11 presents the change
of the albedo intensity with respect to altitude. The albedo intensity drops dramatically
with altitude and thus better performance of the proposed IPSS is expected for satellites in
higher orbits. This paper mainly focuses on the 500 km orbit, which is of reference value to
the applications of most small satellites.

Figure 10. The albedo intensity in various directions normalized with respect to the solar constant at
(a–c) the Spring Equinox and (d–f) the Summer Solstice at the altitude of 500 km.

Figure 11. The albedo intensity normalized with respect to the solar constant at various altitudes.

The impact of the albedo effect can be mitigated in two ways. The first approach
is to model and fit the albedo intensity, and try to remove the albedo components from
the coupled measurements. However, the Earth’s albedo is not a simple parallel light
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with constant intensity but a complicated diffuse reflection from almost all directions.
The time-variant climate change can also have a large influence which is hard to model.
Moreover, the first approach can be computationally intensive and may not be suitable for
real-time applications.

The second approach does not try to decouple the components but discards solar
cells (we have a total of 16 solar cells) with invalid measurements. As shown in Figure 12,
the satellite surface marked in red (φ = 136◦ at 500 km) is sheltered from the sun. Therefore,
solar cells in the red region do not provide any valuable clues. On the contrary, the satellite
surface marked in green (ψ > 44◦ at 500 km) cannot be influenced by the albedo effect. Solar
cells in the green region would provide the most valuable information. To mitigate the
influence, we set a threshold of valid measurement according to the maximum possible
reflection intensity (the threshold can have different values considering the orbit and
seasons) so that solar cells in the red region can be completely discarded. When an initial
attitude estimation is available, we can also discard the mostly corrupted measurements
in the yellow region according to the sun vector and the nadir direction in the satellite
body frame. As shown in Figure 13, by setting an appropriate threshold according to the
maximum possible albedo reflection, the mean sun vector estimation error drops from the
original 4.84◦ to 1.84◦ at the Spring Equinox and from 7.41◦ to 2.16◦ at the Summer Solstice.

Figure 12. The impact of Earth albedo on different solar cells. Ob M is the radius of the influence
area of the albedo effect, and Ob N is perpendicular to Ob M. Solar cells in red are sheltered from the
sunlight. Solar cells in green cannot be influenced by the albedo effect. Solar cells in the yellow region
can be influenced by both the sunlight and the albedo effect.

The results in Figure 13 have considered all factors listed in Table 2 that may have an
impact. The overall sun vector estimation accuracy is averaged better than 1.5◦ where the
albedo effect does not dominate. It is also worth mentioning that the overall error can be
up to 10◦ (mainly system error) when the albedo influence cannot be removed efficiently.
These cases are rare and can be only found in high-latitude regions (to be aware that the
Mercator projection has enlarged the area dramatically in polar regions) near Winter and
the Summer Solstice. For Q-SAT, the task of the ADC system is to keep the antenna pointing
for telemetry and GNSS signal acquisition. The simulation and on-orbit data in Section 4
show that the proposed IPSS is sufficient to fulfill the task.
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Figure 13. The sun vector inversion accuracy before and after invalid measurements culling. At the
Spring Equinox (a,b) the overall accuracy improves from 4.84◦ to 1.84◦. At the Summer Solstice (c,d),
the overall accuracy improves from 7.41◦ to 2.16◦.

3.2. Redundancy Analyses

The proposed IPSS not only has the merit of full spherical coverage, but also is
designed to be fault tolerant with redundant measurements. When a small subset of solar
cells is damaged, IPSS can still work with the rest measurements.

Figure 14 gives the number of available solar cells when different incident angle
thresholds are imposed. As shown in Figure 14b, at least 5 solar cells can still provide
valid measurements when a threshold of 75◦ (measurements less than 26% of the solar
constant are discarded) is imposed. Even though we set the threshold at the more critical
65◦ (measurements less than 42% of the solar constant are discarded), the number of valid
solar cells is still between 4 and 8.

Figure 14. Percentage of solar cells with valid measurement when the threshold of (a) 65◦, (b) 75◦

and (c) 85◦ are imposed respectively.
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4. Experimental Results and On-Orbit Performance

In this Section, ground experiments and simulations were carried out to evaluate the
performance of the proposed IPSS. To be more convincing, we have also presented the
on-orbit data to verify the overall design.

4.1. Ground Experiments with Artificial Sunlight

Artificial sunlight is used to test the performance of IPSS on the ground. As shown
in Figure 15a, solar cells are mounted on the spherical surface of Q-SAT where 975 are
used for charging and 16 are used to set up the IPSS. Figure 15b shows the scenario during
the ground experiment. Q-SAT was placed within a large black box with the body Y axis
pointing upward. The electric turntable downward Q-SAT can drive the satellite to rotate
360 degrees around its vertical axis with precise angular command. The artificial sunlight
is cast towards the center of Q-SAT horizontally. The uniform area of the artificial sunlight
is sufficient to cover the whole satellite. During the ground experiment, Q-SAT was rotated
30 degrees every 2 min, and the data was collected at 1 Hz.

Figure 15. Q-SAT before launch. (a) Totally 991 solar cells are mounted on the spherical surface. (b) Q-
SAT is undergoing the ground experiment to test the feasibility and performance of the proposed
IPSS using artificial sunlight.

Figure 16b,c give the sampled voltage and temperature of each solar cell during the
ground experiment. As shown in Figure 16b, the sampled voltage is larger than that in
Figure 5 since the artificial sunlight is not calibrated to but higher than the solar constant.
Therefore, the experiment can also test the performance of IPSS with sunlight intensity
variations. As is shown in Figure 16c, the temperature can be up to 70 ◦C after long-time
illumination. Figure 16a shows the sun vector inversion result where each red dot implies
an inversed sun vector in the body frame. It can be seen that the distribution of the results
has a small variation. IPSS is tested to have achieved an accuracy of 2.01◦ compared with
the reference angle provided by the electric turntable. The obtained accuracy is close to
that considering the albedo effect as shown in Figure 13. The reflection and occlusion of
the aluminum supporting structure have introduced the extra error, which resembles the
albedo in low-Earth orbit to some extent. When we remove the system error, the average
fluctuation of the inversed sun vector is around 1.5◦.



Sensors 2022, 22, 8130 15 of 20

Figure 16. Raw measurements of IPSS and the inversed sun vector in satellite body frame during
the ground experiment. (a) the inversed artificial sun vector in the satellite body frame. (b) sampled
voltage curves of solar cells in the upper hemisphere. (c) sampled temperature curves of solar cells in
the upper hemisphere.

4.2. Simulation in Various Orbits and Seasons

Simulations were carried out to verify the performance of IPSS to support three-axis
attitude determination and control of satellites in various orbits and lighting conditions.
We have considered several typical sun-synchronous orbits (local time of descending 12:00
and 18:00) and seasons (Spring Equinox and Summer Solstice). At the Summer Solstice,
the subsolar point coincides with the Tropic of Cancer, and thus can have a larger influence
on the IPSS when the satellite is in the Northern hemisphere.

During the simulation, IPSS and a simple magnetometer are used for attitude determi-
nation. A bias momentum wheel and 3 orthogonal magnetorquers are used for three-axis
attitude control. The core parameters in the simulations are kept the same as those of
Q-SAT, and are summarized in Table 3.

Table 3. Summary of the core parameters used in the simulations.

Parameter Value

satellite weight 23 kg

satellite inertial matrix

Ixx = 0.6349 kg ·m2

Iyy = 0.7960 kg ·m2

Izz = 0.6238 kg ·m2

Ixy = 0.0023 kg ·m2

Iyz = 0.0019 kg ·m2

Izx = −0.0086 kg ·m2

inertial matrix error of attitude filter 10%
magnetometer measurement error 250 nT

magnetic momentum of magnetorquer 3.4 A ·m2

inertial of the bias momentum wheel 1.067 × 10−4 kg ·m2

rotational speed of bias momentum wheel 2000.0 rpm
control frequency 1 Hz

Figure 17a,b give the simulation results at the Spring Equinox when the subsolar point
is exactly upon the equator. As shown in Figure 17a, the sun vector inversion error of IPSS
in the dawn-dusk orbit (18:00) is averaged 1.62◦. When the satellite is over the south polar
region, the error goes up to about 5◦ due to the strong albedo in Antarctica. The results are
consistent with the error analyses shown in Figure 13. In the dawn-dusk orbit, IPSS together
with a COTS magnetometer can achieve an average attitude determination accuracy of 0.32◦

after filtering (such as a gyro-free MEKF filter [19]). As is shown in Figure 17b, the mean
sun vector inversion error in the 12:00 orbit is 3.12◦. The error can exceed 5◦ at around 60◦

N and 60◦ S where the albedo reflection is coupled with the sunlight to the most. This is
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also consistent with the error analyses in Figure 13. The satellite can achieve an attitude
determination accuracy of 0.43◦ which is a bit larger than that of the 18:00 orbit (the attitude
determination error can occasionally exceed 1◦ when the sun and magnetic vector are near
parallel). It is worth mentioning that the errors introduced by the albedo effect are mainly
system errors that vary slowly. Therefore, the overall angular velocity estimation is quite
stable and accurate, and can be better than 0.01◦.

Figure 17. Performance of IPSS to support three-axis attitude determination in various orbits
and seasons. (a-1,a-2,a-3) 18:00 sun−synchronous orbit at the Spring Equinox. (b-1,b-2,b-3) 12:00
sun−synchronous orbit at the Spring Equinox. (c-1,c-2,c-3) 18:00 sun−synchronous orbit at the
Summer Solstice. (d-1,d-2,d-3) 12:00 sun−synchronous orbit at the Summer Solstice.
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Figure 17c,d show the simulation results at the Summer Solstice when the subsolar
point coincides with the Tropic of Cancer. As is shown in Figure 17c, the mean sun vector
inversion accuracy in the dawn-dusk orbit is 2.30◦. When the satellite is over the north polar
region, the inversion error can go up to 7◦ due to the strong albedo effect in polar regions.
For the dawn-dusk orbit, an attitude determination accuracy of 0.38◦ can be achieved
after filtering. In terms of the 12:00 orbit, the average sun vector inversion accuracy in the
southern hemisphere is improved, while that in the northern hemisphere is impaired since
the change of subsolar point. As is shown in Figure 17d, the final attitude determination
accuracy is not affected that much, and is averaged 0.61◦ after filtering.

The overall performance of IPSS in the simulation is summarized in Table 4. The above
simulation has verified the feasibility of the proposed IPSS. The measurement of IPSS can
also support the attitude determination and control system of satellites working in various
orbits and seasons. The average sun vector inversion accuracy of IPSS can be better than
1.5◦ when the albedo effect does not dominate. IPSS together with a COTS magnetometer
can achieve an attitude determination accuracy of 0.3–0.6◦ depending on the orbit type and
season. Since the albedo effect introduces mainly slowly varying system error, the estimated
angular rate is quite accurate. The overall simulation results are consistent with the results
of error analyses in Section 3.

Table 4. Summary of the performance of the proposed IPSS in simulation.

Season/Time of the Year Local Time of Descending Average Accuracy of IPSS
Attitude Determination Accuracy

Angle Angular Rate

Spring Equinox 18:00 1.62◦ 0.32◦ 0.0014◦/s
12:00 3.12◦ 0.43◦ 0.0007◦/s

Summer Solstice 18:00 2.30◦ 0.38◦ 0.0013◦/s
12:00 3.24◦ 0.61◦ 0.0013◦/s

4.3. On-Orbit Verification of IPSS

Q-SAT was launched atop the CZ-2D rocket on 6 August 2020, and has been work-
ing well for more than two years. Figure 18 gives the collected telemetry data when
Q-SAT passed Changsha ground station from 25 March 2021 03:04:45 UTC to 03:13:22
UTC. The maximum voltage of each solar cell is about 0.34V, and the sampling fluctuation
is about 5mV which is consistent with the experimental data shown in Figures 4 and 5.
The sampled temperature of the solar cell ranges from −25 ◦C to 25 ◦C. The temperature is
lower than that in Figure 16 due to the extremely cold background of the universe (about 3
Kelvin). Figure 18c shows the inversed sun vector expressed in the satellite body frame
calculated in real-time by Q-SAT.

The IPSS together with a COTS magnetometer, a bias momentum wheel, and three
magnetorquers compose the sensors and actuators of the ADC system. Their parameters
are the same as that listed in Table 3. Figure 19 presents the Euler angles (a) and angular
velocities (b) estimated in real time by Q-SAT. The Euler angles are defined with respect to
the orbital coordination system, while the angular velocities are defined with respect to
the inertial system. As shown in Figure 19a, the pitch angle never exceeds 0.5◦. The roll
and yaw angle exhibit a phenomenon of precession with an amplitude of about 3◦ due
to the gyroscopic effect of the bias momentum wheel and the small control torque of the
magnetorquers (about 1.5 × 10−4 N·m). The gyroscopic motion does not mean that the
attitude determination error has the same magnitude, but the actual attitude of Q-SAT
is determined by the intrinsic characteristics of the control framework. The estimated
angular velocity in the satellite body Y axis is averaged to be −0.61◦/s, which is closed
to the orbital angular velocity of Q-SAT (−0.67◦/s). Although Q-SAT is not equipped
with a high-precision attitude determination device such as a star sensor for comparison,
the smoothness of the estimated Euler angles and the consistency of the estimated angular
velocity in the body Y axis have verified the on-orbit performance of the proposed IPSS.



Sensors 2022, 22, 8130 18 of 20

Figure 18. Raw measurements of IPSS extracted from the real−time telemetry data from 25 March
2021 03:04:45 UTC to 03:13:22 UTC. (a) sampled voltage curves of the 16 solar cells. (b) sampled
temperature curves of the 16 solar cells. (c) the inversed sun vector in the satellite body frame
by Q-SAT.

Figure 19. The on−orbit attitude determination results are calculated in real-time by Q-SAT. The data
starts from 25 March 2021 03:04:45 UTC to 03:13:22 UTC. (a) The attitude is represented by Euler
angles (3-2-1) with respect to the orbital coordination frame. (b) The angular velocities are defined
with respect to the inertial system. The estimated angular velocity in the satellite body Y axis is close
to the orbital angular velocity of Q-SAT.

5. Conclusions

This paper has mainly discussed the design, modeling, error analyses, and on-orbit
verification of the integrated panoramic sun sensor (IPSS) atop the small spherical satellite
Q-SAT. IPSS is essentially 16 temperature-compensated solar cells mounted on the surface
of Q-SAT, which has maintained the spherical structure of the satellite for the most part.
IPSS is designed to be fault tolerant and has full spherical coverage of 4π. IPSS also has
negligible power consumption compared with more accurate digital sun sensors and star
trackers, which is crucial for satellites with limited power budgets. The mechatronic design
and mathematical model of the proposed IPSS are presented. In-depth error analyses and
ground experiments are carried out to validate the overall design. IPSS can provide a
sun vector estimation accuracy better than 1.5◦ when the albedo effect does not dominate.
Simulation results have also suggested that IPSS together with a COTS magnetometer can
achieve an attitude determination accuracy of 0.3–0.6◦ and 0.01◦/s in various orbits and
seasons. Although IPSS is designed for the spherical Q-SAT, it can also be used in other
small satellites that have limited power budgets and do not require very high attitude
determination accuracy.
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