
Citation: Zhang, H.; Cao, J.; Zheng,

D.; Yao, X.; Ling, B.W.-K. Deep

Learning-Based Synthesized View

Quality Enhancement with DIBR

Distortion Mask Prediction Using

Synthetic Images. Sensors 2022, 22,

8127. https://doi.org/10.3390/

s22218127

Academic Editors: KWONG Tak Wu

Sam, Yun Zhang, Xu Long and

Tiesong Zhao

Received: 2 October 2022

Accepted: 20 October 2022

Published: 24 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Deep Learning-Based Synthesized View Quality Enhancement
with DIBR Distortion Mask Prediction Using Synthetic Images
Huan Zhang , Jiangzhong Cao * , Dongsheng Zheng, Ximei Yao and Bingo Wing-Kuen Ling

School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
* Correspondence: cjz510@gdut.edu.cn

Abstract: Recently, deep learning-based image quality enhancement models have been proposed
to improve the perceptual quality of distorted synthesized views impaired by compression and the
Depth Image-Based Rendering (DIBR) process in a multi-view video system. However, due to the
lack of Multi-view Video plus Depth (MVD) data, the training data for quality enhancement models
is small, which limits the performance and progress of these models. Augmenting the training
data to enhance the synthesized view quality enhancement (SVQE) models is a feasible solution.
In this paper, a deep learning-based SVQE model using more synthetic synthesized view images
(SVIs) is suggested. To simulate the irregular geometric displacement of DIBR distortion, a random
irregular polygon-based SVI synthesis method is proposed based on existing massive RGB/RGBD
data, and a synthetic synthesized view database is constructed, which includes synthetic SVIs and
the DIBR distortion mask. Moreover, to further guide the SVQE models to focus more precisely on
DIBR distortion, a DIBR distortion mask prediction network which could predict the position and
variance of DIBR distortion is embedded into the SVQE models. The experimental results on public
MVD sequences demonstrate that the PSNR performance of the existing SVQE models, e.g., DnCNN,
NAFNet, and TSAN, pre-trained on NYU-based synthetic SVIs could be greatly promoted by 0.51-,
0.36-, and 0.26 dB on average, respectively, while the MPPSNRr performance could also be elevated
by 0.86, 0.25, and 0.24 on average, respectively. In addition, by introducing the DIBR distortion mask
prediction network, the SVI quality obtained by the DnCNN and NAFNet pre-trained on NYU-based
synthetic SVIs could be further enhanced by 0.02- and 0.03 dB on average in terms of the PSNR and
0.004 and 0.121 on average in terms of the MPPSNRr.

Keywords: synthesized view; quality enhancement; synthetic images; data augmentation

1. Introduction

With the development of video capture and display technology, a 3D video system
could provide people with a more and more immersive and realistic sensation, such as
six-degrees-of-freedom (6DoF) video, which is close to the viewing experience of people
interacting with the real world. However, along with the sensory impact of an immersive
visual experience, the associate data volume has increased dozens of times, which has
brought great challenges to the collection, storage, and transmission of virtual reality. In
order to alleviate the pressure of storage and bandwidth, it is necessary to increase the
compression ratio or use more sparse viewpoints to synthesize the virtual view/synthesized
view. These processes will inevitably bring distortion to the video and damage the visual
perception quality of users. To improve users’ visual experience, it is necessary to enhance
the image quality of the synthesized view.

In a synthesized view image (SVI), there exists compression distortion and synthesis
distortion caused by the DIBR process, and it is difficult for conventional image denoising
and restoration models to deal with or eliminate these distortions due to their complexity.
Learning-based image denoising and restoration models have been proved to be effective
in dealing with such distortion, better for their powerful learning ability. In SynVD-Net [1],
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the compression and DIBR distortion elimination in the synthesized video was modeled
as a perceptual video denoising problem, and a derived perceptual loss was derived
and integrated with image denoising/restoration models, e.g., DnCNN [2], a U-shape sub-
network in CBDNet [3], and a Residual Dense Network (RDN) [4], to enhance the perceptual
quality. In [5], a Two-Stream Attention Network (TSAN) was proposed by combining a
global stream which extracts the global context information and a local stream which
extracts the local variance information. Following [5], a Residual Distillation Enhanced
Network (RDEN)-guided lightweight synthesized video quality enhancement (SVQE)
method [6] was proposed which claims to address the huge complexities and effectively
deal with the distortion in the synthesized view. However, the existing Multi-view Video
plus Depth (MVD) database has few sequences; thus, few (insufficient) noisy/clean sample
pairs with various content are available for learning. This may hinder the ability of SVQE
models, and it may be unable to fairly evaluate the capabilities of SVQE models.

How to improve the SVQE model performance with limited training data remains
a non-trivial problem. There are different ways to improve the performance, such as
data augmentation, model structure regularization, pre-training, transfer learning, and
semi-supervised learning, among which the latter three learning-based techniques are
usually conducted with data augmentation. Because massive natural RGB or RGBD images
are easily accessible or available, in this paper, these data are utilized to simulate DIBR
distortion and construct the synthetic SVIs, based on which the SVQE models could be
first pre-trained and then fine-tuned on limited MVD data. In addition, in order to better
improve the quality of SVIs, the human perception toward the virtual view is considered
by embedding the DIBR distortion mask prediction network which could predict the
position of the DIBR distortion into the SVQE models. The major contributions of this
paper are threefold.

• A transfer learning-based scheme for the SVQE task is proposed, in which the SVQE
model is first pre-trained on a synthetic synthesized view database, then fine-tuned
on the MVD database;

• A synthetic synthesized view database is constructed in which a specific data synthesis
method based on the random irregular polygon generation method simulating the
special characteristics of SVI distortion is proposed, which has been validated on well-
known state-of-the-art denoising or SVQE models on public RGB/RGBD databases;

• A sub-network is employed to predict the DIBR distortion mask and embedded with
SVQE models using synthetic SVIs. The attempt of explicitly introducing the DIBR
distortion position information is proved to be effective in elevating the performance
of SVQE models.

The remainder of this paper is organized as follows. Section 2 reviews the related
work. The motivation and the proposed random polygon-based DIBR simulation and the
DIBR mask prediction methods are proposed in Section 3. Section 4 describes the datasets
preparation. Section 5 presents the substantial experimental results and detailed analyses.
Section 6 concludes the paper.

2. Related Work

In this section, the development of image denoising methods and SVQE models is first
reviewed, followed by a brief introduction of image data augmentation and data synthesis,
and ended with recent research works about distortion mask prediction in image denoising
or restoration.

2.1. SVQE Models

Image denoising or restoration is a classical image processing low-level task, which
attracts an enduring passion from academy and industry. The attributions of state-of-the-
art image denoising and SVQE methods are listed in Table 1. To begin with hand-crafted
feature-based methods, NLM [7] and BM3D [8] are the most classical conventional image
denoising methods which utilize the non-local self-similarity in images or image sparsity in
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the transform domain. Recently, with the development of deep learning, numerous image
denoising and restoration methods have sprung up like bamboo shoots. For example,
DnCNN [2], FFDNet [9], CBDNet [3], RDN [4], and NAFNet [10] were proposed succes-
sively with increasing denoising ability. These methods were initially proposed for uniform
noise, such as Gaussian noise and real image capturing noise. With the great success of a
transformer which has been applied into various computer vision tasks, transformer-based
networks, such as Restormer [11] and SwinIR [12], have been proposed for low-level image
processing tasks, e.g., real image denoising and image super-resolution. These transformer-
based image restoration networks could model long-range relationships in images, which
are beneficial to image restoration, especially for DIBR structure distortion. However,
the disadvantages are that they consume large computational resources and need a large
amount of data. In this paper, we mainly focus on CNN-based SVQE models.

For compression distortion caused by codec, VRCNN [13] and other compression
methods [14,15] were proposed to deal with the blocking artifacts and texture blur caused
by the compression. In the MVD-based 3D video system, a virtual view is synthesized by a
compressed texture and depth video through the DIBR process, which includes the uniform
compression distortion (mainly transferring from texture images) and irregular synthesis
distortion (mainly originating from the DIBR process and distorted depth images). To
improve the perceptual quality of SVIs during compression, Zhu et al. [16] proposed a
network which was adapted from a DnCNN network and utilized the neighboring view
information to enhance the reference synthesized view and refine the synthesized view
obtained from compressed texture and depth video. Later, Pan et al. proposed the methods
TSAN [5] and RDEN [6] to improve the SVI quality. To improve the perceptual synthesized
video quality, SynVD-Net [1] was proposed by deriving a CNN-friendly loss from the
perceptual synthesized video quality metric to reduce the flicker distortion. These SVQE
models could better enhance the SVI quality. However, due to the limited MVD data, the
potential of SVQE models may not be fully excavated.

Table 1. The attributions of state-of-the-art image denoising and SVQE methods.

Methods Hand-
Crafted

CNN-
Based

Transformer-
Based

General 2D
Images

Synthesized
Views Main Noise Types

NLM [7], BM3D [8] X X Gaussian noise
DnCNN [2], FFDNet [9], CBDNet [3],

RDN [4], NAFNet [10] X X
Gaussian noise, blur, real

image noise, low resolution
Restormer [11], SwinIR [12] X X
VRCNN [13], Zhu et al. [16],

TSAN [5], RDEN [6], SynVD-Net [1] X X
Compression distortion,

DIBR distortion

2.2. Image Data Augmentation and Data Synthesis

Image data augmentation has been widely used in learning-based computer vision
tasks, which includes basic (classic and typical) [17–20] and deep learning-based [21–24]
data augmentation methods. Basically, the basic data augmentation methods can be
categorized as data warping [17], e.g., geometric and color transformation [18], mixing
image [19,20], random erasing, and so on. These augmentation methods use oversampling
or data warping to preserve the label. The deep learning-based data augmentation methods
can be classified as GAN-based [21], neural-style transfer [22], adversary training [23,24],
and so on. The above data augmentation methods are general and could partially improve
the performance of related image processing tasks. Another common way for using limited
data in computer vision application is to use transfer learning to pre-train a model on a
large-scale external database or use domain adaptation methods. However, often there
is a certain feature gap between an external database or a pre-trained model and the
downstream specific tasks [25].

Recently, the domain-specific data synthesis methods which could utilize the strong
prior knowledge of target images are used in many tasks and have demonstrated its
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effectiveness in real image denoising [3], rain removal [26], shadow removal [27,28], and
other tasks [29,30]. Because real MVD data is limited, it is difficult to obtain real multi-
view data and the associated information, e.g., camera parameters and depth values, thus
making synthesizing an SVI thorny. To tackle this issue, a DIBR distortion simulation has
been proposed in some image quality assessment (IQA) studies for 3D synthesized images.
In [31], a DIBR distortion simulation was proposed so as to predict the DIBR-synthesized
image quality without a real time-consuming DIBR process. However, the virtual view
synthesis method utilizes wavelet transform to mix high-frequency signals near the texture
and depth edges and could not simulate the random geometric displacement distortion
caused by the depth value error. In [32], a DIBR distortion simulation was realized by
a hand-crafted and GAN-based method to solve the data shortage problem. The DIBR
distortion synthesized by a GAN may not well match the distribution of DIBR distortion
and it needs large data and data-labeling to train, which is troublesome. In this paper, we
aim to propose a simple data synthesis method for DIBR distortion simulation.

2.3. Distortion Mask Prediction

In some image restoration tasks, e.g., real image denoising [3], de-raining [33], or
shadow removal [28,34], the image restoration task is explicitly or implicitly divided into
two tasks, i.e., distortion mask (or labels) estimation and image restoration/denoising.
In [3], a noise estimation sub-network is embedded into an image denoising framework.
In [33], the de-raining network is composed of a rain density-aware network for the rain
density label prediction and de-rain network and were jointly learned. In [28], a novel
Dual Hierarchical Aggregation Network (DHAN) was proposed which can simultaneously
output a shadow mask and a shadow-erased image using the GAN-synthesized shadow
images. In [34], a distortion localization network is integrated with an image restoration
network to handle spatially varying distortion. These works [3,28,33] all used self-created
synthetic images except that pseudo distortion labels were used in [34].

3. Method

In this section, the motivation is first illustrated. Pipeline of DIBR distortion simulation
is then described, in which different kinds of local noise are compared and the proposed
random irregular polygon-based DIBR distortion generation method is introduced. Thus,
synthetic databases could be constructed with synthetic SVIs and corresponding DIBR
distortion masks. Last, the DIBR distortion mask prediction sub-network is introduced and
integrated with SVQE models based on the constructed synthetic SVIs. The definitions of
key variables and acronyms used in this section are listed in Table 2.

Table 2. Definitions of key variables and acronyms.

Variables Descriptions

Ds/Dt, χ, Ts/Tt The source/target domain, feature space, and source/target learning task, respectively
X = {x1, x2, . . ., xn} Data samples set, which ∈ χ

Ds = {(xs1 , ys1 ), (xs2 , ys2 ), . . ., (xsn , ysn )},
Dt = {(xt1 , yt1 ), (xt2 , yt2 ), . . ., (xtn , ytn )}

Ground truth/distorted image pairs for source/target learning tasks

I, Iδ, Ish, Isyn

A captured view image, I added with random noise, I added with synthetic geometric
distortion generated by the proposed random polygon method, and synthetic

synthesized image, respectively
M Mask indicating whether the area in I corresponds to strong depth edges

θi, ri, n, R The angle, the radius between the i-th point and assumed center point, and the number
of vertices, the average value of radius of the generated random polygon, respectively.

ε, σ
Random variables indicating the irregularity and spikiness of the generated random

polygon, respectively

MVD, SVQE, SVI, IQA Acronyms for Multi-view Video plus Depth, synthesized view quality enhancement,
synthesized view image, and image quality assessment, respectively
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3.1. Motivation

Nowadays, the Internet is abundant in high-quality specially constructed image
databases or user uploaded images/videos. Thus, it is easy to obtain enough data to
conduct the learning task, e.g., compressed image quality enhancement (denoted as task
Ts), by collecting original RGB images and producing their corresponding compressed
images by compression tools. Suppose a domain D which consists of data/feature space χ
and a marginal probability distribution P(X) [35], where X = {x1, x2, . . ., xn} ∈ χ. How-
ever, in an MVD video system, insufficient data are available to recover high-quality from
distorted synthesized images, i.e., synthesized view quality enhancement (denoted as
learning task Tt), which may weaken the performance of SVQE models. Confronted with
such situation that abundant image pairs Ds = {(xs1 , ys1), (xs2 , ys2), . . ., (xsn , ysn)} (ground
truth/distorted images) could be collected for Ts but limited image pairs
Dt = {(xt1 , yt1), (xt2 , yt2), . . ., (xtn , ytn)} could be gathered for task Tt, it may naturally
occur to people that transfer learning could be utilized to transfer from Ts to Tt, as shown
in Figure 1a. However, due to the discrepancy between Ds and Dt, the knowledge that
could be learned and transferred from task Ts may only be compression distortion elim-
ination knowledge, which may be suboptimal when applied on task Tt. In addition, the
compression distortion is relatively regular, while DIBR distortion in SVI is more irregular
and hard to handle.

To break the gap between domain Ds and Dt, and make better use of the big data in
domain Ds, a method is proposed to generate the synthetic noise simulating the DIBR
distortion, aiming that the knowledge of synthetic noise distribution could be approaching
true noise distribution in synthesized images, and thus could effectively utilize the massive
data in domainDt. As shown in Figure 1b, DIBR distortion simulation module is introduced
after image compression, and synthetic synthesized images are thus generated accordingly.

Figure 1. Transferring from learning task Ts to task Tt. (a) Compressed image quality enhancement
to synthesized image quality enhancement. (b) Synthetic synthesized image quality enhancement to
synthesized image quality enhancement.

3.2. DIBR Distortion Simulation

Figure 2 shows the pipeline of DIBR distortion simulation. Original images from
NYU [36] and DIV2K [37] databases (public RGB/RGBD databases) are first compressed
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by using codec with given Quantization Parameter (QP) parameter. The associated depth
images of the compressed images are available for RGBD images or could be generated by
mono depth estimation methods [38,39]. Then, the DIBR distortion will be generated along
the depth edges because depth edges are assumed to be the most possible areas where DIBR
distortion resides. Next, the proposed random irregular polygon-based DIBR distortion
generation method is employed on the compressed RGB/RGBD data. In this way, the
synthetic synthesized view database is constructed, which includes synthetic synthesized
images and corresponding DIBR distortion mask.

Figure 2. Overview of DIBR distortion simulation pipeline.

3.3. Different Local Noise Comparison and Proposed Random Irregular Polygon-Based DIBR
Distortion Generation

Figure 3a demonstrates the SVI with DIBR distortion of sequences Lovebird1 and
Balloons, such as cracker, fragment, and irregular geometric displacement along the edges
of objects. To investigate which kind of distortion resembles the DIBR distortion more, three
different noise patterns, e.g., Gaussian noise, speckle noise, and patch shuffle-based noise,
are compared. Gaussian noise is a well-known noise with normal distribution. Speckle
noise is a type of granular noise which often exists in medical ultrasound images and
synthetic aperture radar (SAR) images. Patch shuffle [40] is a method to randomly shuffle
the pixels in a local patch of images or feature maps during training which is used to
regularize the training of classification-related CNN models. Taking the DIBR distortion
simulation effects for Lovebird1 as example, as shown in Figure 3, different synthetic SVIs
are obtained by adding compressed neighboring captured views with Gaussian noise,
speckle noise, and patch shuffle-based noise along the areas with strongly discontinuous
depth, respectively. The real SVI is listed as anchor. Denote the captured view as I, then the
synthetic synthesized view by the random noise can be written as

Isyn = (1−M)� I +
M� (I + Iδ)

2
, (1)

where Isyn denotes the synthetic SVI, I denotes the compressed captured view images, 1
denotes the matrix with all elements as 1, M denotes the mask area corresponding to the
detected strong depth edges, � denotes dot product, and Iδ denotes the images added
with random noise, i.e., Gaussian noise, speckle noise, or the patch-shuffled version of I. It
could be observed that Isyn synthesized by Gaussian noise and speckle noise are not very
visually resembling synthesis distortion, and Isyn synthesized by patch-based noise exhibits
similar behaviors a little in the way that the pixels in a local patch appear as disorderly
and irregular.
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Figure 3. Comparison of DIBR distortion simulation effects by local random noise. (a,b) are SVIs
from sequences Lovebird1 and Balloons, respectively, and the enlarged areas are the representative
areas with both compression and DIBR distortion. (c–j) represent the DIBR distortion simulation
effects of rectangle areas in (a,b) by Gaussian, speckle, patch shuffle-based, and the proposed random
irregular polygon-based noise on compressed captured views of Lovebird1 and Balloons, respectively.

SVI with DIBR distortion can be viewed as the tiny movement of textures within
random polygon area along the depth transition area. To better simulate the irregular
geometric distortion, in this section, a simple random polygon generation method which
could control irregularity and spikiness will be introduced as follows. A random polygon
generation method could be found in [41]. Following the method [42], to generate a random
polygon, a random set of points with angularly sorted order would be first generated; then,
the vertices would be connected based on the order. First, given a center point P, a group
of points would be sampled on a circle around point P. Random noise is added by varying
the angular spacing between sequential points and the radial distance of each point from
the center. The process can be formulated as

θi = θi−1 +
1
k
4θi

4θi = U(
2π

n
− ε,

2π

n
+ ε)

k = ∑4θi/π
ri = clip(N(R, σ), 0, R)

, (2)

where θi and ri represent the angle and radius between the i-th point and assumed center
point, respectively. 4θi denotes the random variable controlling angular space between
sequential points, which is subject to a uniform distribution featured by the smallest value
2π
n − ε and largest value 2π

n + ε, where n denotes the number of vertices. Moreover, ri is
subject to Gaussian distribution with a given radius R as mean value and σ as the variance.
R could be used to adjust the magnitude of the generated polygon. ε could be used to
adjust the irregularity of the generated polygon by controlling the angular variance degree
through the interval size of U. σ could be used to adjust the spikiness of the generated
polygon by controlling the radius variance through the normal distribution. Large ε and σ
indicates strong irregularity and spikiness, and vice versa, which can be shown in Figure 4.
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Figure 4. Examples of generated random polygons. n denotes the number of vertices, ε denotes
irregularity, and σ denotes spikiness. (a) n = 6, ε = 0, σ = 0. (b) n = 6, ε = 0.5, σ = 0. (c) n = 6, ε = 0,
σ = 0.5. (d) n = 6, ε = 0.7, σ = 0.7. (e) n = 15, ε = 0.7, σ = 0.7.

Thus, the synthetic SVI composed by the proposed random polygon noise can be
obtained as Isyn = (1−M)� I +

M� (I + Ish)

2
Ish(ψ) = I(ψ + η)

, (3)

where ψ denotes the vertices set located in a local region generated by the random polygon
method, η denotes a random vector for all points of ψ to be bodily shifted in Ish. Ish is
fused with I in the strong depth regions. In Figure 3f,j, it can be observed that the DIBR
distortion generated by the activity of textures within random polygon area along the edges
resembles the distortion visually.

3.4. DIBR Distortion Mask Prediction Network Embedding

Existing IQA models for SVI demonstrate that DIBR distortion position determination
is the key procedure for quality assessment [43,44], which hints that knowing and paying
more attention to DIBR distortion position may elevate SVQE models in enhancing SVI
quality. Therefore, how to incorporate the DIBR distortion position into SVQE models
becomes a new issue. The intuitive way is directly integrating DIBR distortion position
with distorted image as a whole input. Figure 5a shows the sketch map of this way. It could
be validated by experiment in Section 4 that knowing DIBR distortion position is helpful
for synthesized image quality enhancement. However, the ground truth DIBR distortion
position is often not known, so the position has to be detected or estimated. Inspired by de-
raining [33] and shadow removal [28,34], SVI quality enhancement could be regarded as two
tasks, i.e., DIBR distortion mask estimation and image restoration/denoising. Reviewing
these works, there are three main possible ways to group mask estimation and image
restoration task network, i.e., successive (series) network, parallel network (multi-task),
parallel interactive network. The sketch map of these ways is demonstrated in Figure 5b–d.
In addition to different organization or design of networks, attention mechanism, such as
spatial attention [5], self-attention [10], or non-local attention [45], is also considered in
existing denoising or restoration networks. In this work, we mainly focus on networks
which explicitly combine the DIBR mask prediction and DIBR distortion elimination and
mainly test the successive (series) network shown in Figure 5b.
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Figure 5. Four possible ways of image denoising/restoration networks integrating with DIBR distor-
tion position. (a) Intuitive way of integrating ground truth DIBR distortion position. (b) Successive
networks with DIBR distortion prediction. (c) Parallel networks with DIBR distortion prediction.
(d) Parallel interactive network with DIBR distortion prediction.

4. Datasets Preparation

Two datasets, i.e., the RGBD database NYU Depth Dataset V2 [36] and the RGB
database DIV2K [37], were employed for synthetic SVI database construction for the pre-
training of SVQE models. MVD dataset from SIAT Synthesized Video Quality Database [46]
was used as the benchmark dataset for SVQE.

NYU-based synthetic SVIs: NYU Depth Dataset V2 consists of RGB and raw depth
images from various indoor scenarios captured by Microsoft kinect, which are originally
proposed for image segmentation and depth estimation. The database is comprised of
1449 labeled datasets and 407,024 unlabeled datasets. In our experiment, only 1449 la-
beled datasets of aligned RGB and depth images are employed. The resolution of the
images is 640 × 480. The images were compressed by X264 with QP, which was set
as 35, an intermediate distortion level. The NYU-based synthetic SVIs were generated
through Equations (2) and (3) on Y-component of compressed images.

DIV2K-based synthetic SVIs: DIV2K dataset consists of 1000 2K resolution RGB
images with various content which was proposed for super-resolution. In our experiment,
750 images were employed for training. The compression and DIBR distortion generation
procedures are the same as that in NYU Depth Dataset V2, and the QP was set as 45 for the
high-resolution images, because QP 35 is not noticeable for DIV2K dataset.

Example images of constructed synthetic SVIs based on NYU Depth Dataset V2 and
DIV2K are shown in Figure 6.

MVD: MVD dataset is the same as that in [1], and it includes 12 common MVD
sequences with a variety of content. Selected reference views were compressed and then
used to synthesize an intermediate view. Note 3DV-ATM v10.0 software [47] was used for
compression and VSRS-1D-Fast software [48] was utilized for the reference views to render
the intermediate virtual view. In experiments, five sequences were selected in training,
and the left seven sequences were used in testing. The testing sequences are denoted
as Seqs-H.264 for simplicity. In our test, we only trained and tested on the intermediate
distortion level, and 10 or 21 images were collected from the distorted video, which are
94 training frames in total. The detailed information about sequences, view resolution,
reference and rendered views, and compression parameter pairs (QPt, QPd) for reference
views of texture and depth videos can be referred to [1].

The detailed information of the two constructed synthetic SVI databases and MVD
database is demonstrated in Table 3. The origin databases and image resolution for gen-
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erating synthetic SVIs are listed, the contained noise in SVIs and the image numbers in
synthetic SVI databases for pre-training are also listed. Similarly, the related information of
real MVD dataset is presented.

(a) 

(b) 

Figure 6. Example images of NYU- and DIV2K-based synthetic image datasets. Zooming for
better viewing of synthetic DIBR distortion. (a) NYU-based synthetic images. (b) DIV2K-based
synthetic images.

Table 3. Dataset descriptions.

Datasets Origins/Benchmark Resolution Contained Noise Training Testing

Synthetic SVI datasets
(for pre-training)

NYU Depth Dataset V2 [36] 640 × 480 Compression and
synthetic DIBR distortion

1449 images /

DIV2K [37] 2K 1 750 images /

Real MVD dataset SIAT Database [46] 1920 × 1088
/1024 × 768

Compression and
DIBR distortion 94 images 1200 images

1 The images in DIV2K dataset are of various 2K resolutions, e.g., 1356 × 2040, 2040 × 1536, and 2040 × 960.
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5. Experimental Results and Analysis

In this section, the experimental configuration is first described. The proposed ran-
dom polygon-based noise for the DIBR distortion simulation is then verified. Afterward,
quantitative comparisons among the SVQE models are conducted based on with or without
using the SVI datasets generated by the proposed DIBR distortion simulation method. To
verify the effectiveness of the proposed scheme by embedding the DIBR distortion mask
prediction sub-network into the SVQE models, related experiments are also carried out.
The computational complexity comparisons are also described. Finally, the experimental
results are discussed.

5.1. Experimental Configuration

SVQE models and training setting: Four deep learning-based image denoising or
SVQE models, i.e., DnCNN, VRCNN, TSAN, and NAFNet, were employed as testing
models. The training scheme is that these models are first pre-trained on synthetic datasets
based on NYU-V2/DIV2K and then fine-tuned on the MVD dataset. The common settings
for training are that the patch size was set as 128 × 128 and the epoch size was set as
100 for pre-training and 30 for fine-tuning. The batch size was set as 128 for DnCNN
and VRCNN and 32 for TSAN and NAFNet. In addition, Adam was adopted as the
optimization algorithm with default settings, i.e., β1 = 0.9, β2 = 0.999, for DnCNN, VRCNN,
and TSAN; AdamW [49] was adopted as the settings, i.e., β1 = 0.9, β2 = 0.9, and weight
decay 1 × 10−5, for NAFNet. The initial and minimum learning rates were set as 1 × 10−4

and 1 × 10−6 for both DnCNN and VRCNN and 1 × 10−3 and 1 × 10−7 for NAFNet
while the learning rate was kept the same, i.e., 1 × 10−4, for TSAN. DnCNN, VRCNN, and
NAFNet were trained with the cosine decay strategy, and TSAN kept the default setting,
i.e., without using the cosine decay strategy. In addition, the cropped patches for training
were randomly horizontally flipped or rotated by 90◦, 180◦, and 270◦. The experiments
were conducted on an Ubuntu 20.04.4 operating system with an Intel Xeon Silver 4216 CPU,
64GB memory, an NVIDIA RTX A6000, and a PyTorch platform.

Evaluation metrics: PSNR and IWSSIM [50] are well-known and widely used metrics
for conventional 2D images. MPPSNRr [51] and SC-IQA [52] were proposed specifically
for DIBR distortion in SVIs and have achieved high correspondence between the predicted
quality scores and subjective scores, which may more truly reflect the perceptual quality of
synthesized views. In our experiments, both image quality metrics and SVI quality metrics
were used to measure the SVI quality.

5.2. Verification of Proposed Random Polygon-Based Noise for DIBR Distortion Simulation

In order to verify whether the random irregular polygon-based DIBR distortion gen-
eration method is necessary and effective, the database with only compression distortion
and the other three different noise patterns (i.e., Gaussian, speckle, and patch shuffle-based
noise) as the pre-trained database were employed as the comparison schemes. Note the
edge region was located in the same way as that of the proposed method in synthesizing
SVIs with other types of random noise. The DnCNN and NAFNet methods were first
pre-trained on the NYU database with different distortion schemes and then fine-tuned on
the MVD training set.

Tables 4 and 5 show the denoising performance of DnCNN and NAFNet on the MVD
testing sequences Seqs-H.264 among different distortion schemes, respectively. The best
and second results for each sequence and on average are highlighted in bold and the best
results are underlined again. In terms of both the image quality metrics (i.e., PSNR and
SSIM) and the SVI quality metrics (i.e., MPPSNRr and SC-IQA), it can be observed that
by pre-training on the NYU database with only the compression distortion could enhance
the distorted synthesized video quality on average as compared with the scheme without
pre-training. In addition, it could also be found that Gaussian, speckle, patch shuffle-based,
and the proposed random irregular polygon-based noise (denoted as randompoly) could
contribute to the quality enhancement of the distorted synthesized video. Statistically,



Sensors 2022, 22, 8127 12 of 21

by counting the number of occurrences of the best two results of each sequence and on
average in Tables 4 and 5, it could be found that the proposed randompoly noise achieves
the best, while the patch shuffle-based performs second. Therefore, it can be inferred that
by pre-training on large massive distorted images with different types of noise, the SVQE
models could learn more about how to restore images as compared with training on limited
MVD data. Our proposed random irregular polygon-based method which could reflect the
geometric displacement well is more appropriate to simulate the DIBR distortion, which
could greatly elevate the SVQE models’ ability.

To further validate the role of the proposed irregular polygon-based DIBR distortion
generation method, a visual quality comparison among different kinds of local noise and
SVQE models is performed. Figures 7 and 8 show the quality comparison of sequences
Dancer and Poznanhall2 on the pre-training NYU databases with the five different local
synthetic noises of the three SVQE models. It can be observed that when only pre-trained
on NYU with only compression distortion, the boundaries along the hands and fingers in
Dancer and the pillars in Poznanhall2 are clearer than that scheme without pre-training,
but they are not as clear as that pre-trained on NYU with other random distortion. By
contrast, the SVQE models with the proposed irregular random polygon-based distortion
could visually exhibit more pleasant denoised images, which have sharper and complete
object boundaries.

Table 4. SVQE performance comparison of DnCNN on Sess-H.264 by pre-training on synthetic
synthesized image database with different random noise types generated from NYU database.
‘Randompoly’ is the proposed DIBR distortion simulation method and highlighted. The best and
second results are highlighted in bold and the best results are underlined again.

Metrics Models Kendo Newspaper Lovebird1 Poznanhall2 Dancer Outdoor Poznancarpark Average

PSNR

w/o pre-train 33.58 29.79 31.98 34.94 30.90 33.15 30.96 32.19
Compress 34.05 29.93 32.15 35.31 31.89 33.73 31.50 32.65
Gaussian 34.12 29.96 32.21 35.31 31.97 33.64 31.51 32.67
Speckle 34.09 29.94 32.21 35.26 31.94 33.66 31.47 32.65

Patch shuffle 34.19 29.88 32.16 35.31 32.16 33.75 31.50 32.71
Randompoly 34.09 29.93 32.18 35.29 32.17 33.73 31.49 32.70

IW-SSIM

w/o pre-train 0.9318 0.9095 0.9402 0.9067 0.9332 0.9642 0.9215 0.9296
Compress 0.9365 0.9124 0.9420 0.9108 0.9421 0.9679 0.9253 0.9338
Gaussian 0.9355 0.9132 0.9424 0.9098 0.9433 0.9671 0.9249 0.9338
Speckle 0.9351 0.9136 0.9427 0.9087 0.9430 0.9675 0.9252 0.9337

Patch shuffle 0.9351 0.9136 0.9419 0.9094 0.9448 0.9675 0.9252 0.9339
Randompoly 0.9357 0.9132 0.9425 0.9100 0.9447 0.9678 0.9252 0.9342

MPPSNRr

w/o pre-train 36.62 31.53 36.05 37.73 29.40 34.42 34.27 34.29
Compress 36.98 31.98 36.58 37.82 31.99 35.10 34.79 35.03
Gaussian 37.05 32.07 36.58 37.71 32.38 35.02 34.79 35.09
Speckle 37.03 32.13 36.54 37.77 32.21 34.91 34.78 35.05

Patch shuffle 37.04 32.17 36.58 37.87 32.67 35.09 34.81 35.18
Randompoly 37.13 32.10 36.57 37.91 32.66 34.88 34.79 35.15

SC-IQA

w/o pre-train 19.77 17.06 19.32 20.32 15.66 21.86 16.56 18.65
Compress 20.22 17.55 19.76 20.45 18.01 24.48 17.39 19.70
Gaussian 20.26 17.55 19.88 20.49 18.06 23.96 17.46 19.67
Speckle 20.17 17.49 20.06 20.43 18.20 24.07 17.37 19.68

Patch shuffle 20.29 17.55 19.70 20.49 18.46 24.78 17.43 19.81
Randompoly 20.28 17.57 19.97 20.51 18.19 24.39 17.38 19.75
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Table 5. SVQE performance comparison of NAFNet on Sess-H.264 by pre-training on synthetic
synthesized image database with different random noise types generated from NYU database.
‘Randompoly’ is the proposed DIBR distortion simulation method and highlighted. The best and
second results are highlighted in bold and the best results are underlined again.

Metrics Models Kendo Newspaper Lovebird1 Poznanhall2 Dancer Outdoor Poznancarpark Average

PSNR

w/o pre-train 34.00 29.86 32.32 35.39 31.28 33.42 31.50 32.54
Compress 34.30 30.02 32.30 35.43 32.19 33.90 31.66 32.83
Gaussian 34.16 29.96 32.27 35.45 32.49 33.86 31.62 32.83
Speckle 34.26 29.97 32.35 35.40 32.35 33.66 31.63 32.80

Patch shuffle 34.29 30.07 32.32 35.40 32.41 33.86 31.66 32.86
Randompoly 34.27 30.04 32.42 35.41 32.59 33.89 31.66 32.90

IW-SSIM

w/o pre-train 0.9386 0.9136 0.9434 0.9151 0.9342 0.9671 0.9245 0.9338
Compress 0.9417 0.9156 0.9444 0.9158 0.9454 0.9694 0.9284 0.9373
Gaussian 0.9413 0.9163 0.9448 0.9166 0.9477 0.9691 0.9279 0.9377
Speckle 0.9414 0.9158 0.9447 0.9156 0.9463 0.9685 0.9272 0.9371

Patch shuffle 0.9413 0.9159 0.9441 0.9156 0.9468 0.9693 0.9280 0.9373
Randompoly 0.9416 0.9164 0.9456 0.9158 0.9488 0.9694 0.9285 0.9380

MPPSNRr

w/o pre-train 36.99 32.04 36.57 37.93 32.09 34.76 34.80 35.02
Compress 37.20 32.20 36.82 37.97 32.71 35.41 34.91 35.32
Gaussian 37.15 32.23 36.87 37.95 33.08 35.40 34.96 35.38
Speckle 37.22 32.23 36.86 37.95 32.97 35.44 34.84 35.36

Patch shuffle 37.25 32.27 36.85 37.87 33.14 35.51 34.90 35.40
Randompoly 37.27 32.11 36.64 38.04 33.11 35.48 34.96 35.37

SC-IQA

w/o pre-train 20.04 17.63 20.02 20.59 17.71 23.59 17.28 19.55
Compress 20.33 17.56 20.06 20.54 18.10 24.20 17.48 19.75
Gaussian 20.35 17.53 20.36 20.60 18.64 24.34 17.36 19.88
Speckle 20.39 17.50 20.48 20.59 18.35 23.53 17.47 19.76

Patch shuffle 20.46 17.57 20.04 20.59 18.43 24.51 17.48 19.87
Randompoly 20.55 17.61 20.34 20.65 18.97 24.30 17.50 19.99

Figure 7. Visual quality comparison of two denoising models, i.e., DnCNN, NAFNet, for SVQE of
Dancer with pre-training on synthetic synthesized image database with different random noise types,
i.e., compress, Gaussian, speckle, patch shuffle, randompoly (proposed DIBR distortion simulation
method), generated from NYU database. ‘Mask’ represents the denoising models that were further
integrated with a DIBR distortion mask prediction sub-network using synthetic images generated by
‘randompoly’ method.
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Figure 8. Visual quality comparison of two denoising models, i.e., DnCNN, NAFNet, for SVQE
of Poznanhall2 with pre-training on synthetic synthesized image database with different random
noise types, i.e., compress, Gaussian, speckle, patch shuffle, randompoly (proposed DIBR distortion
simulation method), generated from NYU database. ‘Mask’ represents the denoising models that
were further integrated with a DIBR distortion mask prediction sub-network using synthetic images
generated by ‘randompoly’ method.

5.3. Quantitative Comparisons among SVQE Models Pre-Trained with Synthetic Synthesized
Image Database

Tables 6 and 7 demonstrate the denoising/quality enhancement performance of four
SVQE models, i.e., DnCNN, VRCNN, TSAN, and NAFNet, on the synthetic synthesized
image database (generated from NYU and DIV2K) in terms of image quality metrics and
SVI quality metrics. The synthetic databases are termed as SynData for simplicity in the
following context. The original model names are used to denote the image denoising/SVQE
models only pre-trained on the MVD data, and model-syn-N/D is used to denote the image
denoising/SVQE models first pre-trained on SynData (NYU/DIV2K) then fine-tuned on
the MVD data. Compared to the scheme of four image denoising/SVQE models directly
trained on MVD data, it can be observed that four image denoising/SVQE models first
pre-trained on SynData then fine-tuned on MVD data can enhance the synthesized views
measured by PSNR, IWSSIM, MPPSNRr, and SC-IQA by large gains. Looking at PSNR
in Table 6, DnCNN, NAFNet, and TSAN could achieve gains of 0.51-, 0.36-, and 0.26 dB,
respectively, while VRCNN could only achieve a gain of 0.08 dB. It is also the same tendency
for the four models on the other three metrics. It can be found that the DnCNN and NAFNet
models could benefit most from the synthetic dataset on both image quality metrics and
SVI metrics. Similar findings can be also observed on DIV2K. In addition, because the
images in DIV2K have a 2K resolution, which is similar to that of MVD, and the number
of extracted patches from DIV2K is larger than that of NYU, using DIV2K as the pre-
trained dataset could have a better performance on average due to the large resolution and
larger training samples. The experimental results validate that the proposed SynData with
irregular polygon-based distortion could benefit the current SVQE models. In addition,
other conclusions could also be drawn. First, a larger synthetic database with the proposed
distortion could lead to a better SVQE performance of deep models. Second, different SVQE
models would benefit differently with pre-training on the proposed synthetic database.
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Table 6. SVQE comparison measured by image quality metrics among DnCNN-, VRCNN-, TSAN-,
NAFNet-based schemes by pre-training on synthetic databases from NYU and DIV2K on Seqs-H.264.
Model (DnCNN, VRCNN, TSAN, NAFNet) represents the baselines, and model-syn-N/D represents
the existing models (DnCNN, VRCNN, TSAN, NAFNet) combined with transfer learning scheme
using our proposed synthetic images. The performance gains of the proposed model-syn-N/D over
model are highlighted in bold.

Metrics Models Kendo Newspaper Lovebird1 Poznanhall2 Dancer Outdoor Poznancarpark Average

PSNR

DnCNN 33.58 29.79 31.98 34.94 30.90 33.15 30.96 32.19
DnCNN-syn-N 34.09 29.93 32.18 35.29 32.17 33.73 31.49 32.70 (+0.51)
DnCNN-syn-D 34.15 29.93 32.19 35.30 32.33 33.82 31.52 32.75 (+0.56)

VRCNN 33.90 29.84 32.09 35.14 31.52 33.28 31.36 32.45
VRCNN-syn-N 33.99 29.87 32.08 35.20 31.59 33.55 31.39 32.52 (+0.08)
VRCNN-syn-D 34.13 29.94 32.12 35.24 32.03 33.75 31.44 32.66 (+0.21)

TSAN 33.93 29.99 32.27 35.03 31.64 33.42 31.08 32.48
TSAN-syn-N 34.12 29.88 32.16 35.32 32.48 33.84 31.40 32.74 (+0.26)
TSAN-syn-D 34.20 30.04 32.30 35.38 32.45 33.80 31.53 32.81 (+0.33)

NAFNet 34.00 29.86 32.32 35.39 31.28 33.42 31.50 32.54
NAFNet-syn-N 34.27 30.04 32.42 35.41 32.59 33.89 31.66 32.90 (+0.36)
NAFNet-syn-D 34.40 30.09 32.34 35.51 32.73 34.04 31.71 32.97 (+0.44)

IW-SSIM

DnCNN 0.9318 0.9095 0.9402 0.9067 0.9332 0.9642 0.9215 0.9296
DnCNN-syn-N 0.9357 0.9132 0.9425 0.9100 0.9447 0.9678 0.9252 0.9342 (+0.0046)
DnCNN-syn-D 0.9377 0.9135 0.9436 0.9116 0.9454 0.9681 0.9261 0.9351 (+0.0056)

VRCNN 0.9324 0.9115 0.9406 0.9062 0.9401 0.9662 0.9227 0.9314
VRCNN-syn-N 0.9337 0.9121 0.9404 0.9068 0.9408 0.9666 0.9234 0.9320 (+0.0006)
VRCNN-syn-D 0.9336 0.9129 0.9410 0.9064 0.9449 0.9675 0.9240 0.9329 (+0.0015)

TSAN 0.9330 0.9138 0.9399 0.9066 0.9407 0.9665 0.9209 0.9316
TSAN-syn-N 0.9330 0.9138 0.9399 0.9130 0.9471 0.9665 0.9270 0.93433 (+0.0027)
TSAN-syn-D 0.9424 0.9160 0.9445 0.9151 0.9459 0.9686 0.9277 0.93716 (+0.0055)

NAFNet 0.9386 0.9136 0.9434 0.9151 0.9342 0.9671 0.9245 0.9338
NAFNet-syn-N 0.9416 0.9164 0.9456 0.9158 0.9488 0.9694 0.9285 0.9380 (+0.0042)
NAFNet-syn-D 0.9439 0.9171 0.9452 0.9169 0.9491 0.9702 0.9291 0.9388 (+0.0050)

Table 7. SVQE comparison measured by SVI metrics among DnCNN-, VRCNN-, TSAN-, NAFNet-
based schemes by pre-training on synthetic databases from NYU and DIV2K on Seqs-H.264. Model
(DnCNN, VRCNN, TSAN, NAFNet) represents the baselines, and model-syn-N/D represents the
existing models (DnCNN, VRCNN, TSAN, NAFNet) combined with transfer learning scheme using
our proposed synthetic images. The performance gains of the proposed model-syn-N/D over model are
highlighted in bold.

Metrics Models Kendo Newspaper Lovebird1 Poznanhall2 Dancer Outdoor Poznancarpark Average

MPPSNRr

DnCNN 36.62 31.53 36.05 37.73 29.40 34.42 34.27 34.29
DnCNN-syn-N 37.13 32.10 36.57 37.91 32.66 34.88 34.79 35.15 (+0.86)
DnCNN-syn-D 37.11 31.89 36.51 37.92 33.01 35.24 34.77 35.21 (+0.92)

VRCNN 36.89 32.06 36.54 37.78 31.69 34.69 34.71 34.91
VRCNN-syn-N 36.97 32.04 36.33 37.84 31.91 34.84 34.77 34.96 (+0.05)
VRCNN-syn-D 36.96 32.22 36.64 37.79 32.89 35.44 34.71 35.24 (+0.33)

TSAN 36.79 32.21 36.58 37.69 32.58 35.29 34.73 35.12
TSAN-syn-N 37.28 32.23 36.64 37.82 33.39 35.38 34.84 35.37 (+0.24)
TSAN-syn-D 37.26 32.06 36.65 37.89 33.43 35.33 34.87 35.35 (+0.23)

NAFNet 36.99 32.04 36.57 37.93 32.09 34.76 34.80 35.02
NAFNet-syn-N 37.27 32.11 36.64 38.04 33.11 35.48 34.96 35.37 (+0.25)
NAFNet-syn-D 37.46 32.22 36.83 38.00 33.52 35.55 34.89 35.49 (+0.47)
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Table 7. Cont.

Metrics Models Kendo Newspaper Lovebird1 Poznanhall2 Dancer Outdoor Poznancarpark Average

SC-IQA

DnCNN 19.77 17.06 19.32 20.32 15.66 21.86 16.56 18.65
DnCNN-syn-N 20.28 17.57 19.97 20.51 18.19 24.39 17.38 19.75 (+1.10)
DnCNN-syn-D 20.30 17.58 19.95 20.47 18.31 24.01 17.37 19.71 (+1.06)

VRCNN 20.11 17.46 19.51 20.27 18.14 22.88 17.30 19.38
VRCNN-syn-N 20.16 17.52 19.47 20.34 17.66 24.12 17.28 19.51 (+0.13)
VRCNN-syn-D 20.14 17.55 19.47 20.32 17.60 24.97 17.16 19.60 (+0.22)

TSAN 19.88 17.59 19.50 20.28 17.34 24.53 16.78 19.42
TSAN-syn-N 20.33 17.39 19.33 20.52 18.58 24.47 16.89 19.65 (+0.23)
TSAN-syn-D 20.34 17.57 19.75 20.66 18.55 23.72 17.14 19.68 (+0.26)

NAFNet 20.04 17.63 20.02 20.59 17.71 23.59 17.28 19.55
NAFNet-syn-N 20.55 17.61 20.34 20.65 18.97 24.30 17.50 19.99 (+0.44)
NAFNet-syn-D 20.65 17.60 20.04 20.74 19.15 25.05 17.59 20.12 (+0.57)

5.4. Effectiveness of Integrating DIBR Distortion Mask Prediction Sub-Network

To further improve the performance of the current SVQE models, the role of the DIBR
distortion mask by combining distorted SVIs directly with the ground truth DIBR distortion
mask as input to SVQE models was explored and tested. The performance of three DnCNN-
based schemes, i.e., DnCNN only trained on MVD (i.e., DnCNN) and DnCNN pre-trained
on the NYU (i.e., DnCNN-syn-N) and DIV2K databases (i.e., DnCNN-syn-D), are listed
as anchors. Table 8 shows that three corresponding DnCNN-based schemes with ground
truth DIBR distortion masks as input, i.e., DnCNN-GTmask, DnCNN-syn-GTmask-N, and
DnCNN-syn-GTmask-D, could elevate the distorted synthesized images largely by 0.42-,
0.37-, and 0.39 dB measured by PSNR, respectively. This implies that knowing where the
DIBR distortion resides is beneficial to denoise the DIBR distortion.

Table 8. SVQE comparison measured by PSNR among DnCNN-based schemes and that with ground
truth DIBR distortion masks on Seqs-H.264. DnCNN-syn-GTmask-N, and DnCNN-syn-GTmask-D
are abbreviated as DnCNN-syn-GM-N and DnCNN-syn-GM-D, respectively. The performance gains
of DnCNN-based schemes with ground truth DIBR distortion masks over DnCNN-based schemes
without masks are highlighted in bold.

Models Kendo Newspaper Lovebird1 Poznanhall2 Dancer Outdoor Poznancarpark Average

DnCNN 33.58 29.79 31.98 34.94 30.90 33.15 30.96 32.19
DnCNN-GTmask 34.35 30.13 32.16 34.60 32.61 33.59 30.85 32.61 (+0.42)

DnCNN-syn-N 34.09 29.92 32.18 35.30 32.14 33.74 31.50 32.70
DnCNN-syn-GM-N 35.20 30.72 32.44 35.09 33.05 34.00 31.03 33.07 (+0.37)

DnCNN-syn-D 34.12 29.91 32.16 35.32 32.29 33.79 31.53 32.73
DnCNN-syn-GM-D 35.35 30.83 32.51 34.92 33.22 34.17 30.86 33.12 (+0.39)

However, it is actually hard to know the exact position of the DIBR distortion. Thus,
similar to those rain or shadow removal works, the detection of the DIBR distortion could be
a choice. The noise estimation network used in CBDNet as the DIBR distortion estimation
network was employed and then combined with the denoising/SVQE networks to enhance
the quality of the outputs. Different from CBDNet, the local DIBR distortion is estimated
rather than the whole distortion map. In the experiments, two representative models,
DnCNN and NAFNet, were used, and both databases, NYU and DIV2K, were tested.
Table 9 shows the average denoising performance on Seqs-H.264 of DnCNN and also
NAFNet with and without the DIBR mask prediction network pre-trained on SynData
(NYU and DIV2K), respectively. It could be observed that with the DIBR mask estimation
network, the quality of the distorted SVIs by DnCNN and NAFNet could be elevated on
average in terms of the PSNR, MPPSNRr, and SC-IQA metrics, on both databases, except
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in IW-SSIM. In addition, the times when the deep models with the DIBR mask prediction
perform superior to that without the DIBR mask prediction are counted, and then the
surpassing degree is calculated. It can be obtained that the surpassing degrees for the
average is 0.69, and for 4/7 of all sequences it is above 0.50, which indicates that our
DIBR distortion prediction network works and can further enhance the performance with
proposed synthetic databases.

Table 9. SVQE comparison among DnCNN- and NAFNet-based schemes (model-syn-N/D) and that
with DIBR distortion prediction (model-syn-mask-N/D) on Seqs-H.264. Only when the SVQE models
with DIBR distortion prediction (highlighted bold) are superior than the same model pre-trained on
the same synthetic database, the results are highlighted bold.

Model PSNR IW-SSIM MPPSNRr SC-IQA

DnCNN-syn-N 32.70 0.9342 35.148 19.75
DnCNN-syn-mask-N 32.72 0.9341 35.152 19.80

DnCNN-syn-D 32.75 0.9352 35.208 19.71
DnCNN-syn-mask-D 32.78 0.9345 35.264 19.82

NAFNet-syn-N 32.90 0.9380 35.372 19.99
NAFNet-syn-mask-N 32.93 0.9380 35.493 20.00

NAFNet-syn-D 32.97 0.9388 35.493 20.12
NAFNet-syn-mask-D 32.98 0.9388 35.528 20.08

In Figures 7 and 8, it can be observed that part of the DIBR distortion region is repaired
while some imprecise repainting is introduced. For instance, the little finger is more clear
with the DIBR distortion mask than that without the DIBR distortion mask while some
additional noise is introduced along the arm. The reason may lie in that the DIBR distortion
prediction network could not precisely predict the DIBR distortion location. Therefore,
a more elaborately designed prediction network and architecture are needed for a better
SVQE performance.

5.5. Computational Complexity Analysis

To test the computational complexity of the proposed random polygon-based (ran-
dompoly) DIBR distortion simulation method, experiments on 100 randomly selected
images in the NYU Depth Dataset V2 were carried out on a desktop with a windows 10
operating system, an Intel i7-8750H CPU @ 2.20GHz, and the Matlab R2014a platform. As
shown in Table 10, compared with other random noise methods, the proposed random-
poly method for synthesizing a synthetic SVI takes about 1268.82 milliseconds (ms) on
average, while it costs about 60∼70 ms for other random noise generation methods. The
computing efficiency shall be further improved for the randompoly method in the future.
To test the increased time complexity of introducing a DIBR distortion mask prediction
sub-network into an SVQE model, experiments were conducted on the same configurations
mentioned in Section 5.1. The calculation time for a frame was averaged over 200 frames
for comparison methods. From Figure 9, it can be observed that compared with the original
SVQE models, the SVQE models combined with the DIBR distortion mask prediction
sub-network consume a little more time. Specifically, the time complexity of introducing
the DIBR distortion mask prediction sub-network increases about 1.34 ms (24.53%) and
5.70 ms (3.96%) for a resolution of 1024 × 768 and 4.49 ms (70.12%) and 14.57 ms (3.92%)
for a resolution of 1920 × 1088 for DnCNN and NAFNet, respectively, indicating that the
computational complexities depend on the complexity of the combined SVQE models and
image resolutions.
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Table 10. The computational complexity comparisons between different types of random noise for
DIBR distortion simulation (milliseconds (ms)).

Database Gaussian Speckle Patch shuffle Randompoly

NYU Depth Dataset V2 67.90 65.61 76.45 1268.82

Figure 9. Time complexity comparisons between SVQE models with and without DIBR distortion
mask prediction sub-network.

5.6. Discussion

Our proposed random irregular polygon-based (randompoly) DIBR distortion simu-
lation method demonstrates a superior performance than other kinds of random noise in
simulating the DIBR distortion. State-of-the-art denoising/SVQE models when pre-training
on synthetic SVIs generated by the proposed randompoly method bring large gains in the
SVQE performance, objectively and subjectively, than the denoising/SVQE models directly
trained on the real MVD dataset. In addition, the proposed DIBR distortion mask prediction
sub-network embedded with SVQE models could further enhance the SVQE performance.
In the future, a GAN-based or diffusion model-based DIBR simulation method is expected.
In addition, more deep investigation is demanded on how to augment images with DIBR
distortion and how to effectively introduce the DIBR distortion location information into
SVQE models. In addition, transformer-based denoising models for SVQE with synthetic
images could be investigated.

6. Conclusions

In this paper, a transfer learning-based framework for synthesized image quality
enhancement (SVQE) is suggested, in which SVQE models could first be pre-trained on
synthetic synthesized images (SVIs) based on substantial RGB/RGBD data, then fine-tuned
on real Multi-view Video plus Depth (MVD) dataset, and finally introduce a DIBR dis-
tortion mask prediction network together with SVQE models. Different kinds of random
noise in simulating DIBR distortion have been explored and validated that the proposed
random irregular polygon-based DIBR distortion method is more effective in improving
the performance of existing SVQE models. The substantial experimental results on the
public MVD sequences demonstrate that existing denoising/SVQE models could achieve
large gains by pre-training on synthetic images generated from the proposed random irreg-
ular polygon-based method in both image and SVI quality metrics and also demonstrate
superior visual quality. In addition, the combination of the DIBR distortion mask prediction
network with existing SVQE models has been proved valid for SVQE models.
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