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Abstract: Image super-resolution (ISR) technology aims to enhance resolution and improve image
quality. It is widely applied to various real-world applications related to image processing, especially
in medical images, while relatively little appliedto anime image production. Furthermore, contempo-
rary ISR tools are often based on convolutional neural networks (CNNs), while few methods attempt
to use transformers that perform well in other advanced vision tasks. We propose a so-called anime
image super-resolution (AISR) method based on the Swin Transformer in this work. The work was car-
ried out in several stages. First, a shallow feature extraction approach was employed to facilitate the
features map of the input image’s low-frequency information, which mainly approximates the distri-
bution of detailed information in a spatial structure (shallow feature). Next, we applied deep feature
extraction to extract the image semantic information (deep feature). Finally, the image reconstruction
method combines shallow and deep features to upsample the feature size and performs sub-pixel
convolution to obtain many feature map channels. The novelty of the proposal is the enhancement of
the low-frequency information using a Gaussian filter and the introduction of different window sizes
to replace the patch merging operations in the Swin Transformer. A high-quality anime dataset was
constructed to curb the effects of the model robustness on the online regime. We trained our model
on this dataset and tested the model quality. We implement anime image super-resolution tasks
at different magnifications (2×, 4×, 8×). The results were compared numerically and graphically
with those delivered by conventional convolutional neural network-based and transformer-based
methods. We demonstrate the experiments numerically using standard peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM), respectively. The series of experiments and ablation study
showcase that our proposal outperforms others.

Keywords: super-resolution; anime image; swin transformer; image reconstruction; shallow feature;
deep feature; low-frequency information; high-frequency information; anime dataset

1. Introduction
1.1. Background

As the visual basis for human perception, images are essential for an individual
to observe, express, and transmit information. Image resolution, as a set of essential
parameters of images, is used to evaluate the richness of detailed information contained in
the image. Image resolution reflects the ability of an image to delineate detailed information.
High-resolution (HR) images typically contain greater pixel density, richer texture details,
and higher reliability than low-resolution (LR) images. However, in practice, many images
may be rendered in low resolution for various reasons (network bandwidth, memory
limitations). Therefore, the requirement of reconstructing HR images from LR images
through super-resolution techniques is significant. The strong demand for high-resolution
images also exists in anime.
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Anime combines graphic art, characterization, cinematography, and other forms of cre-
ative and individualistic techniques [1]. The earliest commercial anime in Japan dates back
to 1917. A distinctive art style emerged in the 1960s with manga artist Osamu Tezuka’s work
and spread over the following decades, developing a large domestic audience. With the
popularization and promotion of Japanese anime, Japanese anime with various themes is
respected and loved in Asia and worldwide. As of 2016, Japanese anime accounted for 60%
of global animated TV shows [2]. In 2019, the annual export value of Japanese animation
exceeded USD 10 billion. At the same time, with the improvement of image quality on
various playback platforms, people have higher and higher requirements for the resolution
of anime works. Anime works of different resolutions bring viewers different viewing
experiences. As shown in Figure 1, even for the same anime image, we prefer the image
with a higher resolution.

Figure 1. Anime image changes at different resolutions. The anime image resolution gradually
increases from left to right. The image is adopted from [3]. We were given authorization to use
an illustration copyrighted by Ms. Dai.

In addition to the influence of market requirements, anime creators and fans also
have specific needs for the super-resolution technology of anime images. Super-resolution
technology can help anime creators improve their works in higher resolution to meet
audiences’ needs. Considering the needs of various parties, this work focuses on the field
of anime image super-resolution and presents recent studies on image super-resolution
techniques through literature surveys in the following section.

1.2. Image Super-Resolution Technology
1.2.1. Fundamentals

Image resolution is the sum of the number of pixels in the image. Ten years ago,
320 px × 240 px resolution images were the mainstream in mobile phones, and their visual
aesthetics were incomparable to the 2K resolution that can be witnessed everywhere in
the digital world. Image super-resolution technology restores low-resolution images to
high-resolution images, enhancing visual aesthetics.

Methods for image super-resolution reconstruction can be roughly divided into
three categories: interpolation-based, refactoring-based, and learning-based methods.
The method based on interpolation mainly calculates the relative distance between the new
pixel and surrounding pixels and obtains the weight information according to the relative
distance. Combined with the weight information, the exact value of the new pixel can
be calculated. Common interpolation-based methods are nearest neighbor interpolation,
bilinear interpolation, Bicubic interpolation [4], and so on. Refactoring-based methods
are frequently used in image reconstruction, and common techniques include denoising,
deblurring, and upsampling. The basic idea is to simulate the loss of image resolution
in reality and find the factors that lead to the reduction of resolution through semaphore
analysis, then use these factors to restore the detailed texture of the image. For example,
in the iterative projection method [5], a high-resolution image is obtained by iterative
backprojection by estimating the error between the low-resolution image and the gener-
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ated image. In addition, statistical methods [6,7], patch-based methods [8,9], and sparse
representation methods [10,11] are also used for image super-resolution tasks.

The idea of learning-based image super-resolution methods is to reconstruct low-
resolution images into high-resolution images by learning the mapping relationship be-
tween low-resolution images and high-resolution images. Deep learning can adaptively
learn the end-to-end mapping relationship through the network, and it has become the
mainstream method in image processing. SRCNN [12] used the convolutional neural
networks (CNNs) for the first time in the field of image super-resolution reconstruction and
achieved some excellent results. Many CNN-based image super-resolution methods [13–18]
since then have also demonstrated the effectiveness of CNNs in this task. SRGAN [19] is the
first to introduce generative adversarial networks (GANs [20]) into image super-resolution
tasks. SRGAN is a perceptual-driven method and pays more attention to the perception
of the human eye. Since then, many GAN-based image super-resolution methods [21–23]
have demonstrated theeffectiveness of GANs in this task.

Although the CNN-based and GAN-based methods efficiently perform the image
super-resolution tasks, they usually need very deep networks to expand their receptive
fields. Therefore, researchers have turned their attention to the transformer model [24].
TTSR [25] proposes a novel texture transformer network for image super-resolution, where
low-resolution (LR) and reference (Ref) images are represented as query and key in the
transformer, respectively. This is the first time that the idea of a transformer has been
introduced into the field of image super-resolution. Since then, due to the outstanding
performance of ViT [26] and Swin Transformer [27] in the field of the classification task,
the two have also been introduced into the image super-resolution task [28,29].

1.2.2. State-of-the-Art Techniques

(a) Common network structures

Starting from the early convolutional neural network (CNN)-based SRCNN [12], vari-
ous deep learning methods have been applied to handle super-resolution tasks. The net-
work structure of these deep learning methods can generally be roughly divided into
four categories (Figure 2), namely, pre-upsampling SR, post-upsampling SR, progressive
upsampling SR, and iterative up-and-down-sampling SR [30].

The pre-upsampling network model (see Figure 2a) first performs upsampling and
then extracts deep features. It usually uses interpolation to implement upsampling opera-
tions to upscale the low-resolution image to the same size as the target image. The post-
upsampling network (see Figure 2b) is the opposite of the pre-upsampling network. It
places the learnable upsampling layer at the end of the network. A progressive upsam-
pling network (see Figure 2c) can be seen as the splicing of multiple post-upsampling
networks [31]. It performs this mainly to solve image super-resolution tasks at larger
magnifications. The iterative up-and-down-sampling network (see Figure 2d) alternately
builds up-and-down-sampling layers.

(b) Recent studies on image super-resolution reconstruction

A variety of learning-based methods have been applied to ISR reconstruction. In par-
ticular, there are three major categories: CNN-based, GAN-based, and recent promising SR
methods using a transformer.
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Figure 2. The network structure of super-resolution methods.

CNN-based: As for CNN-based methods, SRCNN [12] is the first one to use a con-
volutional neural network for ISR reconstruction. It uses a three-layer convolutional
neural network to simulate the process of traditional image super-resolution reconstruction.
Moreover, it achieves better results than traditional image super-resolution reconstruc-
tion. To improve its performance, there are many approaches, such as increasing network
depth [13,15] and applying residual or dense blocks [14,16,17]. By using a very deep model
consisting of 20 weight layers, VDSR [13] has better accuracy and visual effect. More-
over, the results show that deep networks with small convolution kernels can also obtain
large receptive fields. EDSR [14] removes batch normalization layers, saving memory and
speeding up computation. It has outstanding results and has become the reference model
of many other methods [17]. DRRN [16] reduces the training difficulty of the model by
introducing global residuals. In addition, a recursive recurrent unit is introduced, which
can deepen the network without too much computation. ESPCN [18] proposes a new
upsampling mode. The method proposed by ESPCN is a pixel rearrangement. It can extract
feature information from the LR image at the beginning and then extend the LR feature
information to the HR image through sub-pixel convolution.

GAN-based: Most of the previous CNN-based methods focus on maximizing the peak
signal-to-noise ratio (PSNR), equivalent to minimizing the mean squared reconstruction
error. Meanwhile, this also causes smoothing and blurring. Unlike human visual perception,
the reconstructed images cannot meet our expectations. Therefore, SRGAN [19] introduces
GAN [20] to the task of image super-resolution. ESRGAN [22] introduced the Residual-in-
Residu Dense Block and used the VGG features before activation to improve the perceptual
loss and achieved good results. Therefore, the PSNR of the output images is high, while
texture details are still not acceptable. As for GAN-based methods, they can generate better
images in visual effect. SRGAN is the pioneer that applies the GAN structure to tackle ISR
tasks. It aims to modify the object function, adding the content loss function. Then, several
variants have been proposed based on SRGAN.

Transformer-based: The two types of methods mentioned can only use local infor-
mation of the image, and they ignore the global interaction among the parts of the image,
resulting in low-quality restoration. The transformer is a new deep learning model that
adopts the self-attention mechanism, differentially weighting the significance of each part
of the input data. From the beginning, it has been a state-of-the-art method in natural
language processing. Recently, due to its ability to tackle long-term dependency problems,
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the transformer has become increasingly popular in computer vision tasks, such as object
detection, segmentation, classification, and ISR. It can exploit the input image’s local and
global information, which will add a more detailed effect to the output image. This break-
through attracts many scholars researching and introducing new network structures [28,29]
for ISR.

1.3. The Research Questions, Rationale, and the Context for the Study

Methods based on CNN and GAN achieve better results than conventional interpola-
tion methods. In order to obtain a larger receptive field, these networks leverage the deep
network. This also introduces inconvenience to the training of the network. In addition,
the actual receptive field size brought by deep networks is much smaller than the expected
receptive field size. This is why transformers (ViT, Swin, etc.) have strong performance in
downstream tasks because self-attention (the design form of query–key–value) is employed
to calculate global information. Below, we mainly discuss methods based on CNN and
GAN problems existing in the field of anime super-resolution. In addition, there is also the
problem of limitations in current anime illustration datasets.

1.3.1. Quality of Super-Resolution Images

(a) The interpolation-based algorithms will result in a serious blur effect when pro-
cessing edges and textures. The interpolation-based image super-resolution reconstruction
algorithm is a relative method compared with others, and has low complexity. However, it
is difficult to repair the high-frequency details of the image, leading to limited performance.
There are some standard interpolation-based methods such as neighborhood interpolation,
bilinear interpolation, and double legislative interpolation. They take the continuity of the
image as the premise, assume that the gray value of the image is continuous, and consider
that the gray value of the low-resolution image is the ideal sampling value. These methods
will generate blurred images (see Figure 3) as they continue to determine the pixel block
without saving the high-frequency information.

Figure 3. The blur result of interpolation-based algorithms. The image on the left is the original anime
image. The image on the right is the super-resolution anime image obtained by the interpolation
algorithm. The conventional interpolation algorithm does not consider the characteristics of the edge.
After the image was processed, the blurring phenomenon can be noticed at the edge, which affects
the quality of the image. The image is adopted from [3].

(b) There are image blurs, checkerboard artifacts, hallucinations, and line misjudg-
ments in deep-learning-based super-resolution algorithms. The convolution kernel de-
termines the receptive field of a convolutional neural network. The convolution kernel only
pays attention to the local information of the image each time. Therefore, the interaction
between the image and the convolution kernel is independent of the image’s content. This
also makes it difficult for the convolution operation to obtain the global information of
the image. Therefore, methods based on convolutional neural networks often suffer from
image blurring and the appearance of checkerboard effects.
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For example, Waifu2x [32] is an anime super-resolution method based on convolutional
neural networks. Subject to the shortcomings of the convolutional layer itself, the animation
images generated by Waifu2x are often blurred (see Figure 4b). Although image super-
resolution methods based on generative adversarial networks (GANs) have been proposed
to alleviate the above problems, the resulting hallucinations also bring significant challenges
to the SR task. For example, the Real-ESRGAN [23] model based on GAN achieves an
excellent visual effect when performing anime image super-resolution tasks, but there are
some hallucinations (see Figure 4c). The SwinIR based on the Swin Transformer improves
the details of the generated image by enhancing the global perception ability; however,
global awareness is reduced because it abandons the patch merging operation. Therefore,
these lead to some lack of details in the generated anime images (see Figure 4d).

Figure 4. The results of super-resolution methods. (a) Original high-resolution anime image. (b) SR
anime image generated by Waifu2x. (c) SR anime image generated by Real-ESRGAN. (d) SR anime
image generated by SwinIR (image restoration using Swin Transformer). For Waifu2x, the blur and
checkerboard artifacts problems are in the green and blue circles. For Real-ESRGAN, the circled area
shows the hallucinations problem. For SwinIR, the circled area shows the lack of detail, such as line
misjudgments. The image is adopted from [3].

(c) The ignoring of shallow features results in some missing details in the gener-
ated images. The features extracted by the shallow network are relatively close to the
input. It contains much low-frequency information. The low-frequency information of
the image refers to the rough outline of the image, and the low-frequency information of
low-resolution images and high-resolution images is similar. Unlike real-world images,
there is not a lot of texture information in anime images. On the contrary, low-frequency
information accounts for a large part. Therefore, the shallow features of anime images are
of great significance for the super-resolution task of anime images.

1.3.2. The Limitations of Anime Datasets

(a) Lack of paired low-resolution and high-resolution anime images. The research
interest in super-resolution tasks of anime images is not very high. Paired datasets do not
exist. In addition, some studies do not make the datasets they use open source. Therefore,
we must make our own paired data to facilitate our research work.

(b) Lack of high-quality anime data. Three major factors affect the development of
deep learning: algorithms, data, and computing power. All three are integral to any study.
Data are the foundation, and any research is inseparable from data support. The corre-
sponding research work cannot be carried out without a dataset. However, currently, there
are few datasets in the field of anime image super-resolution. The most common one is
Manga109 [33], but the number of samples it provides is only 109, and too few samples
are not conducive to the training of the network model. Although the large-scale dataset
Danbooru [34] provides larger-scale samples because the dataset is collected too randomly,
a large number of pictures contain many wrong pictures. This also makes it unsuitable for
our study. Meanwhile, in the case of limited computing power, using such a vast dataset
for model training is unsuitable. Therefore, designing an anime dataset that meets our
needs is necessary.
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1.4. Contributions and Paper Outline

Due to the solid global perception of the capabilities of Swin Transformer, this work
considers employing the advantages of Swin Transformer to the anime image super-
resolution task. In addition, we propose targeted methods to solve the problems combined
with the specific problems existing in the current anime super-resolution tasks. We state
our contribution in this paper as follows:

• We proposed an anime image super-resolution network structure based on Swin
Transformer.

• We modified the conventional Swin Transformer to improve the global awareness
capability of the feature extraction network.

• We strengthened the extraction of low-frequency information given the richness of
spatial information in anime images.

• Before the upsampling stage, shallow features were fused with deep features to
provide more detailed information for the final result.

• The experimental results were compared numerically and graphically with those
delivered by conventional convolutional neural network-based and transformer-
based methods.

• The series of experiments and ablation study disclose anime image super-resolution
tasks at different magnifications (2×, 4×, 8×).

• We constructed our anime dataset to compensate for the lack of anime super-resolution
task datasets.

• Our approach speeds up the creative cycle for creators who can create at a low-
resolution level and then revert to a high-resolution image.

This paper comprises five parts. Section 2 delineates the proposed method and
presents how the image resolution task is achieved. The detailed description of the applied
dataset is described in Section 3. Section 4 outlines the experimental results. Finally,
Section 5 presents the conclusions and discusses the possibilities for future works.

2. Proposed Methods

Our network model framework is mainly based on the post-upsampling SR framework.
The network mainly consists of three parts (see Figure 5). The first is the shallow feature
extraction part (based on CNN), the second part is the deep feature extraction network
(based on Swin Transformer), and the third part is the image reconstruction network (based
on PixelShuffle).

Figure 5. Overall network structure.
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2.1. Shallow Feature Extraction Network

Shallow features are image features extracted by the shallow network (based on CNN).
The receptive field of the shallow network is generally small. The overlapping area of the
receptive field corresponding to each pixel of the feature map is also small, which ensures
that the network can capture more detailed information in a spatial structure, for example,
image color, texture, and edge information.

In super-resolution tasks, the majority of previous studies ignore the significance of
shallow features, thus losing essential details. Shallow features extraction was introduced
in SwinIR [28], SMIR [29], and RND [35] for image super-resolution tasks. SwinIR and
SMIR use a convolutional layer to extract shallow features. Further, SFENet extracts shallow
features with two convolutional layers in RDN. Therefore, this idea inspired this work
and design of the corresponding shallow features for our specific anime image super-
resolution task.

Most anime images consist of simple lines and textures compared to general drawings.
Therefore, we should focus more on low-frequency information to extract the features of
anime images. Thus, in addition to the normal feature extraction layer (red frame), we set
a feature extraction layer for the low-frequency filtered data (green frame). Our shallow
feature extraction network part is mainly based on a convolutional neural network (see
Figure 6). Initially, the input image uses a convolutional layer with a 3 × 3 convolution ker-
nel to extract features. These features are then passed into three 3 × 3 convolutional layers
(red frame) and a Gaussian convolution kernel, followed by another three 3 × 3 convolu-
tional layers to obtain image features that retain low-frequency information (green frame).

Figure 6. Shallow feature extraction network structure.

Convolutional neural networks are more suitable for early vision processing, which can
produce more stable and high-quality results. In addition, our shallow feature extraction
network also includes processing low-frequency information of images. The low-frequency
information of the image often refers to the continuous gradient area in the picture. That
is, the image content within the edge is the low-frequency information. The image’s
low-frequency information is the image’s preliminary information, which contains the
rough outline and general appearance. In the high-resolution image reconstruction task,
the low-frequency information carried by the low-resolution image (LR) and the super-
resolution image (SR) is similar, so it is necessary to extract the low-frequency information.
Therefore, in our shallow feature extraction network, we increase the processing of low-
frequency information. After a layer of Gaussian filter, the low-frequency information is
well preserved, and the high-frequency information is filtered (see Figure 7). There are
not many detailed textures in anime images and many color areas are in blocks, so the
low-frequency information occupies a considerable part. Better utilization of low-frequency
information is helpful for subsequent image reconstruction work.
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Figure 7. Changes in the spectrogram before and after Gaussian filtering.

A low-resolution image (LR) is input as ILR ∈ RH×W×C(H, W, C represent the height,
width, and channel of the LR image, respectively). We use a single 3 × 3 convolutional
layer HLF1() of the first part to take its extracted features FL ∈ RH×W×C (see Figure 8):

FL = HLF1(ILR) (1)

In order to better preserve the low-frequency information of the image, we chose
to use a low-pass filter layer HLP(). The feature FL we extracted earlier will be input to
this layer.

FLow = HLP(FL) (2)

Figure 8. Feature maps extracted by different parts of the shallow feature extraction network.

In order to better obtain high-frequency features of images, we hope that the in-
put of our deep feature extraction network contains more texture detail feature changes.
In Alexnet [36], it is mentioned that the most original texture detail feature changes of the im-
age should be captured with large convolution kernels, such as 7 × 7, 11 × 11 convolution
kernels, to extract features. Large-sized convolution kernels can bring a larger receptive
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field but also introduce a larger amount of computation and more parameters, so we used
three 3 × 3 convolution kernels instead of 7 × 7 convolution kernels. We added three
convolutional layers HLF3() with kernel size 3 after both HLP() and HLF1().

Then, we continued to extract features (feature map shown in Figure 9), which is
mainly used to further extract the features of the low-resolution image (LR) and use them
as the input FLin ∈ RH×W×C (where C is the feature channel number) of the deep feature
extraction network.

FLin = HLF3(FL) + HLF3(FLow f ) (3)

Figure 9. Shallow feature map.

2.2. Deep Feature Extraction Network

Deep features are image features extracted by deep networks (based on Swin Transformer).
Each pixel contains information about its region or neighboring regions. Deep features are
relatively less fine-grained than shallow features but have rich semantic information.

2.2.1. General Definition

Swin Transformer [27] is a transformer model with a hierarchical design that includes
shifted window operations. It splits the image into windows of the same size and com-
putes self-attention only within the windows each time. In order to obtain more global
information, Swin Transformer proposes a shifted window operation. Restricting attention
computation to a window can introduce the locality of CNN convolution operations on
the one hand, and save computation on the other. In addition, the entire model adopts a
hierarchical design, including a total of four stages (see Figure 10).

Figure 10. Architecture of a Swin Transformer.

Each stage will reduce the resolution of the input feature map and expand the receptive
field layer by layer, such as CNN. The Swin Transformer layer in each Swin Transformer
block is an even number, that is, a Swin Transformer layer (STL) without the shifted window
and a Swin Transformer layer with the shifted window. Swin Transformer proposes a self-
attention model with shifted windows. Through the concatenated window self-attention
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operation and the shifted window self-attention operation, the Swin Transformer can
obtain a near-global attention capability while reducing the amount of computation from
the square relationship of the image size to a linear relationship, which significantly reduces
the amount of computation (i.e., improved model inference speed). The Swin Transformer
layer (see Figure 11) is the base layer in the Swin Transformer.

Figure 11. Two successive Swin Transformer layers. W-MSA is window self-attention mechanism.
SW-MAS is shifted window self-attention mechanism.

The feature vectors extracted by our shallow network are replicated in triplicate,
named Q, K, V. The specific calculation formula is as follows:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (4)

2.2.2. Swin Transformer Block (SWTB)

Our deep feature extraction network is mainly based on the Swin Transformer. We
removed the patch merging operation to keep our feature map size in a constant state.
Our deep feature extraction network is composed of four Swin Transformer blocks (see
Figure 12), and each SWTB has four Swin Transformer layers and a big attention layer.

Figure 12. Swin Transformer block (SWTB).

This is the same as the method used in the Swin Transformer; four layers of Swin
Transformer alternately use Swin Transformer layer without shifted window and Swin



Sensors 2022, 22, 8126 12 of 31

Transformer layer with shifted window. Nevertheless, we removed the parch merging
part of the Swin Transformer. This is because the parch merging operation in the Swin
Transformer is mainly proposed for classification tasks. Since we choose a post-upsampling
network structure, we do not want the feature map to keep shrinking in size during feature
extraction. The process of shrinking the feature map will bring about the exponential
growth of the feature dimension, which is a big test for the computer’s computing power.
In addition, reducing the feature map size requires subsequent upsampling operations.
Consecutive upsampling operations may cause checkerboard artifacts because the size
of the convolution kernel is not divisible by the stride, although it is possible to perform
the interpolation resize operation and then perform the deconvolution operation to avoid
this. However, the error introduced by the interpolation will lead to the degradation
of the quality of the generated image. Therefore, we choose to keep the feature map
size unchanged.

Although the Swin Transformer achieves a certain degree of global attention mecha-
nism through clever shifting, it is limited by the size of the window and cannot obtain a
global interaction to the greatest extent. To make up for this defect, the Swin Transformer
introduces a hierarchical design. It reduces the feature map size through continuous patch
merging operations. Thus, a larger receptive field can be obtained by using a window of a
certain size.

The patch merging operation is removed because we want the feature map size to
remain the same. This causes our receptive field to become very small. In order to solve
this problem, we add a big attention module to each SWTB. We do not increase global
awareness by reducing the size of the feature maps. We increase global awareness by
expanding the window (see Figure 13).

Figure 13. Self-attention window changes in a deep feature extraction network. In the beginning, we
divide the image into several small windows. In the last stage, we divide the image into four regions.

For example, in the beginning, we calculate the self-attention mechanism in a window
of 8 × 8 size. The image features extracted by the shallow feature network are imitated
into three copies, Q, K, and V. The weight coefficient is calculated by QK and weighted
with V. This way, our feature vector V contains the position information of different pixels
in the 8 × 8 area. If this area is enlarged, the range perceived by the feature vector V will
be enlarged.

Each SWTB has a 3 × 3 convolutional layer at the end to keep the number of channels
unchanged. In addition, we use residual connections in each SWTB. On the one hand, it
helps model training. On the other hand, it solves the problem of network degradation.

The input of the deep feature extraction network is FLin. Through this network, we
can extract the feature FHigh ∈ RH×W×C (see Figure 14).

FHigh = HHF(FLin) (5)

where FHF() is the deep feature extraction network, which contains four SWTBs. Each
SWTB is connected in series to gradually extract features Fi(i ∈ 1, 2, 3, 4).

Fi = HSWTBi (Fi−1)(i ∈ 2, 3, 4) (6)

FHigh = F4 (7)



Sensors 2022, 22, 8126 13 of 31

Figure 14. Deep feature map.

2.3. Reconstruction Network

Image super-resolution reconstruction based on deep learning requires upsampling
the image to obtain the output. Therefore, the image reconstruction network is mainly
based on the upsampling technique. Traditional upsampling techniques are mainly based
on interpolation. However, these interpolation methods will cause the image to be smooth
and blurry. Some even have severe loss of details. This is because the new pixels obtained by
the interpolation-based method ultimately depend on the surrounding pixel information,
which will inevitably lead to the above problems. Another standard method is to use
transposed convolution. The transposed convolution first fills the low-resolution image
with 0 and then obtains the output through the convolution to obtain the enlarged size
image. The neural network can learn the parameters of the transposed convolution, which
is widely used in the super-resolution task. Nevertheless, this method can easily lead to
uneven overlap on different axes, which leads to a “checkerboard effect” that impairs the
reconstruction performance.

Moreover, sub-pixel convolution [18] provides us with a new solution. The core idea of
the sub-pixel is to obtain a large number of feature map channels through the convolution
layer of the network and then arrange and tile these feature channels to obtain an image
of a predetermined size. Therefore, sub-pixel convolution can utilize more contextual
information to restore realistic details. It captures global features nicely. We combine the
previous shallow and deep feature information in the image reconstruction network (see
Figure 15). Suppose the final image is ISR, and Hrec is the reconstruction network.

ISR = Hrec(HLF3(FL) + FHigh) (8)

2.4. Loss Function

In order to reduce the pixel difference between the output image of the reconstructed
network and the accurate super-resolution image information, the similarity at the pixel
level is improved by reducing the L1 distance between the generated image and the actual
image of the training set. The L1 loss function can be expressed as

L1 =‖ Irec − IHR‖1 (9)
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Figure 15. An upsampling example of reconstruction work.

2.5. Network Parameter Settings

The ordinary convolution layer in the shallow feature network uses a 3× 3 convolution
kernel, the stride is 1, and the padding is 1. The Gaussian convolution layer uses a
5 × 5 convolution kernel, the stride is 1, and the padding is 2. The network parameters
of each SWTB in the deep feature extraction network are as follows: the window size
of the first four layers of STL is set to 8, and the window size of the last layer of STL is
set to a quarter of the input image size. The ratio of MLP (multilayer perceptron) is 2,
and we set the number of heads in multi-head attention to 6. We set the number of channels
of shallow feature extraction network and deep feature extraction network to 180, and
the total number of parameters of our network is 7.9 M.

3. Dataset
3.1. Constitution of the New Anime Dataset

Three major factors that affect the development of deep learning are algorithms,
data, and computing power. All three are significant to any research study. Data are the
foundation, and any research is inseparable from data support. The corresponding research
work cannot be carried out without a dataset. Currently, there are very few datasets in the
field of anime image super-resolution. The most common one is Manga109 [33], but the
number of samples it provides is only 109. Therefore, limited samples are not conducive
to the training of neural network models. The large-scale dataset Danbooru [34] provides
larger-scale samples, but due to the random collection of datasets, many pictures contain
many wrong pictures. This also makes it unsuitable for our study, so we designed our
own dataset.

We constructed our dataset by collecting anime images from two popular websites
(http://seeprettyface.com [37] and https://www.pixiv.net [38], accessed on 18 October
2022). There is also some anime images from the artist Miss Dai that we use for display
in this paper [3]. Seeprettyface provides a dataset of 140,000 anime faces. These anime
faces cover almost the vast majority of anime works. That ensures the diversity of data to a
certain extent. In addition, these data were preprocessed to ensure the same size. Therefore,
we selected 10,000 anime face images from Seeprettyface.

Pixiv is a virtual community site in a social networking service centered on illustrations,
comics and novels, and art. The main content of the website is original drawings submitted
by users. The source of the theme of the work is generally the fan art of Japanese animation,
Japanese manga, video games, or pure original art. In addition, anime works published
on Pixiv tend to be of high resolution, which aligns with our research purpose. Pixiv also
contains a wide variety of anime works. We scraped 10,000 anime images from Pixiv as
our data. Finally, we set up our datasets based on these data for training (8000 images),
validation (500 images), and testing (275 images).

http://seeprettyface.com
https://www.pixiv.net


Sensors 2022, 22, 8126 15 of 31

3.1.1. Training Datasets

The training dataset consists of 8000 anime images selected from Seeprettyface
(10,000 images) and Pixiv (10,000 images). To ensure the diversity of the data, we ran-
domly selected 8000 anime images. The training dataset mainly comprises anime faces,
full-body, and half-body images.

Some samples of anime face images are shown in Figure 16. The high-resolution
image size is 512 × 512, and low-resolution images of different resolutions are obtained by
downsampling.

Figure 16. Example images from the anime face dataset (from Seeprettyface and Pixiv). HR is
512 × 512, LR are 64 × 64, 128 × 128, 256 × 256. The images are adopted from [37,38].

Some samples of anime characters images are shown in Figure 17. The high-resolution
image size is 512 × 512, and low-resolution images of different resolutions are obtained by
downsampling.

Figure 17. Example images from the anime character image data (full-body and half-body; from
Pixiv). HR is 512 × 512, LR are 64 × 64, 128 × 128, 256 × 256. The images are adopted from [3].

3.1.2. Validation Datasets

To ensure the diversity of data, we randomly selected 500 anime images from Seepret-
tyface (10,000 images) and Pixiv (10,000 images), except for training and testing data.

3.1.3. Test Datasets

Previous super-resolution methods’ performances were evaluated on several public
test sets. The most widely used standard test datasets were Set5 [33], Set14 [39], BSD100 [40],
and Urban100 [41]. These datasets consist of pictures of life in different scenarios. Accord-
ing to the design characteristics of these datasets, we designed several datasets suitable
for testing our methods. This work considers three test datasets (i.e., a total of 275 images)
as follows: (a) the AnimeFace180 dataset, containing 180 anime face images, (b) the Ani-
meCharacter12 dataset, containing 12 anime characters, and (c) the Multi-level anime83
dataset, containing 83 more types of anime images (characters, animals, words, buildings).

(a) AnimeFace180 AnimeFace180 [37] consists of the faces of 180 utterly different
anime characters. The purpose of the AnimeFace180 test dataset is to measure the model’s
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ability to reconstruct faces. The resolution of the original image is 512 × 512. By down-
sampling, we obtain low-resolution images of 64 × 64, 128 × 128, and 256 × 256 sizes.
In addition, since there is a copyright problem with the image of AnimeFace180, the sample
image cannot be shown in this paper.

(b) AnimeCharacter12 AnimeCharacter12 [3] (Figure 18) consists of 12 utterly differ-
ent anime character images. The original intention of AnimeCharacter is to test the overall
super-resolution effect of the model on anime characters. The resolution of the original
image is 1024 × 1024. By downsampling, we obtain low-resolution images of 128 × 128,
256 × 256, and 512 × 512 sizes.

Figure 18. Example images from the AnimeCharacter12 dataset. HR is 1024 × 1024, LR are 128 × 128,
256 × 256, 512 × 512. The images are adopted from [3].

(c) Multi-level anime83. The dataset of the Multi-level anime83 [3] (see Figure 19)
consists of 83 anime images. The purpose of the Multi-level anime83 dataset is to test the
robustness of the model because Multi-level anime83 contains image types that are not
in the training set, such as animals, Chinese characters, and buildings. The resolution of
the original image is 1024 × 1024. By downsampling, we obtain low-resolution images of
128 × 128, 256 × 256, and 512 × 512 sizes.
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Figure 19. Example images from the Multi-level anime83 dataset. HR is 1024× 1024, LR are 128× 128,
256 × 256, 512 × 512. The images are adopted from [3].

4. Experimental Results
4.1. Environment Settings

The configuration of the experimental environment is RTX3080, 16 GB memory. Cuda
version is 11.3. We used version Cudnn 8.2.1 to speed up the training. The experimental
environment is configured as anaconda3, torch1.10, and python3.8. The training visual-
ization uses the wandb third-party library [42]. In addition to the conventional libraries,
toolkits such as torchvision [43], OpenCV [44], and timm [45] need to be installed in Python.
The optimization of the model in the experiment adopts the Adam algorithm. Although the
model has a high degree of complexity, the probability of underfitting is small. Neverthe-
less, we do not add a regularization parameter to the loss function to reduce the possibility
of underfitting. In addition, we avoid the overfitting problem by dropout operation. We
set the initial learning rate to 7 × 105 and dynamically adjust the learning rate over the
entire training. Reducing the learning rate at certain moments helps the model train faster.
After several trials and errors, we found that the learning rate set at half leads to a relevant
result. We identify countermeasures for learning rate decay. The learning rate is large at the
beginning and decreases appropriately when the epoch reaches a certain level. The learning
rate is decreased by half after the 100th epoch. We decrease the learning rate at [100, 160,
200, 240, 280, 320, 400] epochs. For example, the initial learning rate was 7 × 105. Later,
the learning rate was reduced to 3.5 × 105 at the 100th epoch.

4.2. Image Quality Assessment

Two commonly used indicators to quantitatively evaluate the quality of super-resolution
images are peak signal-to-noise ratio (PSNR) and structure similarity (SSIM).

MSE represents the mean square error of the reconstruction image X and the original
image Y. H and W are the height and width of the reconstruction image and original image.
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i and j are pixel index. The larger the PSNR value is, the better the reconstructed image
quality is, and its unit is dB.

MSE =
1

H ×W

H

∑
i=1

W

∑
j=1

(X(i, j)−Y(i, j))2 (10)

PSNR = 10log10(
(2n − 1)2

MSE
) (11)

Structural similarity is a measure of the similarity between two images. Given two
images X and Y, the structural similarity of the two images can be calculated according to
Equation (10). µX is the average of X. µY is the average of Y. σXY is the covariance of X
and Y. c1 and c2 are constants. The result of SSIM is between 0 and 1. The closer the value
of SSIM is to 1, the more similar the structure between the reconstructed image and the
reference image is. On the contrary, it means that the two structures are not similar.

SSIM(X, Y) =
(2µXµY + c1)(2σXY + c2)

(µX2 + µY
2 + c1)(µX2 + µY

2 + c2)
(12)

4.3. Results
4.3.1. Results on Anime Face and Characters

In order to assess the effect of our model’s performance on the super-resolution of
anime images, we selected 180 anime face images (AnimeFace180) and 83 anime character
(Multi-level anime83) images from the test dataset for testing. The image features of
AnimeCharacter12 are included in the image of Multi-level anime83, so they are not used
in this test.

An example of different super-resolution tasks (2×, double super-resolution; 4×,
quadruple super-resolution; 8×, octal super-resolution) is shown in Figure 20. The example
comes from the test dataset consisting of 180 anime face images. Following Figure 20,
we can conclude that in 2× and 4× tasks, the anime image’s sharpness significantly
improves. The jagged lines in some of the original low-resolution images are smoothed
out. The difference between the generated image and the original high-resolution image
is minimal. In the 8× task, the jagged lines in the original low-resolution image were
improved, and the overall quality of the image was also improved compared to before.

In addition to anime face images, there are also many half-body and full-body images
in anime works. Therefore, we selected 83 anime character images, including half-body and
full-body images, from the test dataset to assess the model’s performance. Figure 21 shows
an example of different super-resolution tasks. We zoomed in on parts of the image to show
details more clearly. In the 2× and 4× tasks, the details of hair end and hand nails in the
anime images generated by our model are significantly improved. In addition, the lines
across the character are smoother than in the original low-resolution image. In the 8×
mission, the sharpness of the characters is also greatly improved. The test results of anime
faces and characters show that our model has a good effect on improving the resolution
of low-resolution anime images. Furthermore, Table 1 demonstrates the maximum and
average values of PSNR and SSIM for the super-resolution tasks (2×, 4×, 8×) on these
two test datasets. The standard value of PSNR in lossy image and video compression is
said to be 30–50 dB, but the average value is over 30 dB even at 8×. It is said that quality
degradation is visibly noticeable when the SSIM is 0.90 or less, but the average value is
above this value up to 4× task.
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Figure 20. An example of visual result of an anime face on test dataset (AnimeFace180). To show the
details of the generated anime image, we zoomed in on the anime face. The red box area is the area
we intercepted and enlarged—visual result on the anime face.

Figure 21. An example of visual result of an anime character on test dataset (Multi-level anime83).
The red frame area is the hand details.

Table 1. Results on anime faces (180 images, AnimeFace180) and characters (83 images, Multi-level
anime83).

Anime Faces Anime Characters

Max PSNR Average PSNR Max SSIM Average SSIM Max PSNR Average PSNR Max SSIM Average SSIM

2× 48.202 dB 40.704 dB 0.996 0.987 42.941 dB 33.598 dB 0.996 0.963
4× 41.251 dB 33.869 dB 0.989 0.959 42.086 dB 32.234 dB 0.992 0.934
8× 33.267 dB 26.554 dB 0.943 0.860 36.024 dB 27.299 dB 0.975 0.866

4.3.2. Ablation Studies

In this section, we ablate essential design choices in our model. For the ablation study,
we trained our model on the part of the training dataset and tested it on the Animeface180
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and Multi-level anime83 test datasets. The model that removes the shallow feature ex-
traction network is called AISR-XS. The model that removes the enlargement window
operation (big attention layer) is called AISR-XW. The model that removes both operations
is called AISR-XSW. Finally, the model with both operations is called AISR-O.

We take AISR-XSW, removing the shallow feature extraction network and expanding
the window mechanism as the baseline. As shown in Table 2, when dealing with low-
resolution images of 128× 128, using the shallow feature extraction network alone improves
the PSNR indicator by 0.05 dB, and using the expend window mechanism improves the
PSNR indicator by 1.03 dB. When both are used, the PSNR index is improved by 1.47 dB.
The SSIM indicator also improves from the initial stage. When dealing with 256 × 256 low-
resolution images, using the shallow feature extraction network improves the PSNR index
by 0.75 dB, and using the expend window mechanism improves the PSNR index by 0.84
dB. When both are used, the PSNR index is improved by 1.06 dB. The SSIM indicator
also improves from the initial stage. From Table 2, we confirm that each of our modules
contributes to improving the final result.

Table 2. Impact of shallow feature extraction part and big attention layer on 4× anime super-
resolution.

Methods Size Params Runtime (Image/s) PSNR SSIM

AISR-XS 128 7.21 M 5.31 33.424 dB 0.951
AISR-XW 128 6.94 M 5.68 33.246 dB 0.954

AISR-XSW 128 6.07 M 6.06 32.390 dB 0.947
AISR-O 128 8.37 M 4.59 33.869 dB 0.959
AISR-XS 256 7.21 M 0.98 31.952 dB 0.936
AISR-XW 256 6.94 M 1.06 31.864 dB 0.937

AISR-XSW 256 6.07 M 1.19 31.112 dB 0.930
AISR-O 256 8.37 M 0.45 32.175 dB 0.940

4.3.3. Comparison against the State-of-the-Art Methods

In order to reflect the different performances among different models, the model
proposed in this paper is compared with the classic or state-of-the-art methods.

Bicubic: For the classic super-resolution, we choose the Bicubic method. Bicubic
interpolation [4] is a more complex interpolation method. The algorithm uses the gray
value of 16 points around the point to be sampled for cubic interpolation, which takes into
account the gray value of the four directly adjacent points and the effect of the gray value
change rate between adjacent points. Three operations can approach the upscaling effect
of high-resolution images; it was widely used in super-resolution tasks in the early days.
The traditional interpolation stretching and enlarging methods can hardly avoid problems
such as aliasing, blurred images, and missing data. We use cubic interpolation in OpenCV
to upscale the anime image by 2×, 4×, 8×.

Waifu2x: Waifu2x [32] uses a trained deep convolutional neural network for image
enlargement, which solves the shortcomings of other enlargement methods, such as reduced
line sharpness and poor color block purity which often occur when enlarging animation-
style pictures. It outperforms other magnification methods. We use Vgg7 to extract features
and then use upconv7 to upsample to obtain the final 2× result. The result of 4× is
performing two 2× operations. The result of 8× is four 2× operations.

Real-ESRGAN: In addition, we also choose a GAN-based anime image super-resolution
method. Usually, an actual image may go through various processes, such as camera
blur, sensor noise, and image compression, that make the image blurred and degraded.
Therefore, Real-ESRGAN [23] extends the first-order degradation model to a higher-order
degradation model. A filter is then set up to simulate ringing and overshoot artifacts.
The result is that this model is able to restore images more. Moreover, Real-ESRGAN was
trained separately for anime images and achieved good visual effects. The generator we
used is a deep network with several residual-in-residual dense blocks. The discriminator
we used is a U-Net with spectral normalization.
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SwinIR: Since the transformer-based method is not currently applied to anime image
super-resolution, we choose the current state-of-the-art method for comparison. SwinIR [28]
is based on Swin Transformer. SwinIR has a strong global perception ability to improve the
overall quality of the image. For SwinIR, RSTB numbers and STL numbers are 6 and 6.

Comparative experiments were performed based on previously designed datasets.
Additionally, quantitative comparisons were made on the result values (PSNR, SSIM).
A visual comparison was also performed for graphic illustration.

(1) Comparison on AnimeFace180

In order to more intuitively observe the anime image reconstruction capabilities of
different models, we visually compare the reconstructed images as shown in Figures 22–24.

We can see the details of different models’ performances in the reconstructed images
(see Figures 22–24). Bicubic-based methods achieve the worst results. We stated this point
before because the interpolation-based method relies too much on the information of the
image itself, so the reconstruction effect is often not good. Some ghosting and checkerboard
effects appear in images reconstructed by Waifu2x. However, the images generated by
Real-ESRGAN reconstruction avoid the occurrence of such ghosting and checkerboard
effects. Moreover, if we only measure from a visual point of view, we see that Real-ESRGAN
generates images of decent quality.

Figure 22. A result of an example image from the Animeface180 test dataset for different super-
resolution methods. Facial detail comparison at 2× super-resolution task.
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Figure 23. A result of an example image from the Animeface180 test dataset for different super-
resolution methods. Facial detail comparison at 4× super-resolution task.

Figure 24. A result of an example image from the Animeface180 test dataset for different super-
resolution methods. Facial detail comparison at 8× super-resolution task.

Nevertheless, since Real-ESRGAN is based on GAN, some hallucinations will appear
during anime image reconstruction. It will add some extra information, such as the thick
lines at the corners of the eyes. For SwinIR, the overall effect of anime images generated by
SwinIR is greatly improved. However, because it removes the patch merging operation,
the global perception ability is reduced, and some image details are missing. Finally,
the model based on our method reconstructs images with fewer artifacts and avoids the
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checkerboard effect. Table 3 discloses the assessment of our proposed method against
the state-of-the-art methods. The presented experimental results demonstrate that the
proposed method achieved the best results, followed by SwinIR. However, as mentioned
above, the Bicubic-based method performed the worst. The assessment was performed
using the standard PSNR and SSIM metrics on resolution tasks at different magnifications
(2×, 4×, 8×).

Table 3. Comparison with other super-resolution methods on AnimeFace180 test dataset (180 images).
The final result is the average result of 180 test images in the Animeface180 test dataset (best results
are indicated with bold). N = 180.

Method
2× 4× 8×

PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic [4] 28.973 dB 0.933 25.860 dB 0.828 20.548 dB 0.622
Waifu2x [32] 36.166 dB 0.978 30.088 dB 0.930 24.439 dB 0.805

RealESRGAN [23] 29.657 dB 0.983 28.963 dB 0.935 22.987 dB 0.783
SwinIR [28] 39.553 dB 0.985 32.705 dB 0.950 26.016 dB 0.845

Our 40.704 dB 0.987 33.869 dB 0.959 26.554 dB 0.860

(2) Comparison on AnimeCharacter12

In Animeface180, we only tested the super-resolution effect of anime face images.
However, there are not only a large number of anime face images in anime works, but also
many full-body images of anime characters. Therefore, to assess our model’s performance
in the overall anime character, we conduct comparisons between different methods on the
AnimeCharacter12 test dataset.

First, we use an example to visually compare the differences between different methods
(see Figure 25).

The super-resolution image obtained by the interpolation method, i.e., Bicubic, which
relies on the image’s information, is still very blurry and does not have the effect of
improving the image resolution. The results achieved by Waifu2x on 2×missions are still
good, with no obvious error messages. However, on 4× and 8× tasks, Waifu2x has some
glaringly wrong textures. For example, the color of some areas overflows, and some lines
are jagged. This is because Real-ESRGAN mainly focuses on visual perception, resulting
in the images generated by it not having high values in evaluation indicators. While
visually pleasing to the human viewing experience, there are some color deviations from
high-resolution images, and some lines are overly thickened. SwinIR and our method are
based on the Swin Transformer, and the images generated by SwinIR and ours are closer to
the original high-resolution image. Nevertheless, because we make good use of the rich
low-frequency information of the anime image, the color in the enclosed area is closer to
the original image. In addition, the increased global awareness also makes our method
smoother than SwinIR on some fine lines.

By comparison, our model is better than Waifu2x in detail rendering. Moreover,
compared to Real-ESRGAN, we did not have some hallucinations problems. Compared to
SwinIR, we are better at the restoration of details. This is thanks to the last large attention
window in each layer of our network. Larger attention windows can incorporate more
information. Moreover, Table 4 also confirms the performance assessment of our model,
which achieved the best results in terms of standard PSNR and SSIM evaluation metrics.
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Figure 25. Result of an example image from the AnimeCharacter12 test dataset for different super-
resolution methods at 2×, 4×, and 8× super-resolution task.
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Table 4. Comparison with other super-resolution methods on the AnimeCharacter12 test dataset
(12 images). The final result is the average result of 12 test images in the AnimeCharacter12 test
dataset (best results are indicated with bold). N = 12.

Method
2× 4× 8×

PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic [4] 33.071 dB 0.951 27.693 dB 0.876 24.669 dB 0.806
Waifu2x [32] 38.536 dB 0.972 31.834 dB 0.934 26.974 dB 0.867

RealESRGAN [23] 32.136 dB 0.954 29.612 dB 0.925 25.733 dB 0.852
SwinIR [28] 38.460 dB 0.971 32.467 dB 0.940 27.601 dB 0.878

Our 39.137 dB 0.973 33.081 dB 0.943 27.873 dB 0.883

(3) Comparison on Multi-level anime83

Multi-level anime83 contains anime images in different scenes. Therefore, it can
well reflect the generalization ability of the model. We verify the generalization ability of
different models through Multi-level anime83 (see Table 5).

Table 5. Comparison with other super-resolution methods on the Multi-level anime83 test dataset
(83 images). The final result is the average result of 83 test images in the Multi-level anime83 test
dataset (best results are indicated with bold). N = 83.

Method
2× 4× 8×

PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic [4] 31.531 dB 0.946 26.328 dB 0.850 23.331 dB 0.759
Waifu2x [32] 37.524 dB 0.975 30.975 dB 0.932 25.878 dB 0.846

RealESRGAN [23] 31.150 dB 0.953 28.394 dB 0.914 24.502 dB 0.819
SwinIR [28] 37.184 dB 0.973 31.439 dB 0.934 26.661 dB 0.859

Our 37.990 dB 0.975 32.175 dB 0.940 27.026 dB 0.865

The results of three example images from the Multi-level anime83 test dataset for
different super-resolution methods at 4× super-resolution task are shown in Figure 26.
Compared with the crane patterns on the clothes of anime characters, the super-resolution
images generated by the Bicubic method are still very blurry. The super-resolution image
lines generated by Waifu2x are not smooth. The super-resolution images generated by Real-
ESRGAN, SwinIR, and ours are not very different from a visual point of view. The same
situation occurs in the second super-resolution task on animal characters. However, we
can find that the lines generated by Real-ESRGAN are always slightly thicker. The gap
between the three can be observed in the third anime picture with Chinese characters.
Real-ESRGAN has obvious errors in some strokes. Compared with our generated Chi-
nese characters, the Chinese characters generated by SwinIR have poor regularity and
insufficient color uniformity.

Following Figure 26 and Table 5, we can confirm that the proposed model achieves the
best results under the 2×, 4×, and 8× tasks, followed by SwinIR. Our model can perform
super-resolution tasks well in different application scenarios (anime faces, anime characters,
anime buildings, anime animals, etc.).
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Figure 26. The results of three example images from the Multi-level anime83 test dataset for different
super-resolution methods at 4× super-resolution task.

(4) The runtime comparison with different methods

We conducted runtime tests on three test datasets to verify the computational speed of
different methods. AnimeFace180 contains three sizes of anime images: 64 × 64, 128 × 128,
and 256 × 256. These sizes correspond to 8×, 4×, and 2× anime image super-resolution
tasks. Both AnimeCharacter12 and Multi-level anime83 also contain three sizes of anime im-
ages: 128× 128, 256× 256, and 512× 512. These sizes correspond to 8×, 4×, and 2× image
super-resolution tasks. The tests were performed on the computer, with CPU-i7-11800H
and GPU-3080Ti, respectively.

As shown in Table 6, our model does not have an advantage in runtime testing.
As the core of the transformer model, the self-attention mechanism not only endows the
transformer with powerful modeling capabilities but also brings a series of computing
and memory problems to the transformer model. In computer vision, the self-attention



Sensors 2022, 22, 8126 27 of 31

mechanism is based on each pixel as a token, resulting in a longer computing time for
the transformer-based model. Our priority in designing the model is the quality of the
super-resolution images. Therefore, we disregard memory and computational overhead to
obtain better super-resolution results.

Table 6. The runtime comparison of our proposed method against the state-of-the-art methods. The
best results are indicated with bold.

Methods Test Dataset Runtime (Images/s) 2× Runtime (Images/s) 4× Runtime (Images/s) 8×

Bicubic AnimeFace180 92.78 104.65 111.11
Waifu2x AnimeFace180 19.35 18.87 18.15

Real-ESRGAN AnimeFace180 2.62 2.23 1.38
SwinIR AnimeFace180 0.95 2.24 8.57

Ours AnimeFace180 0.391 4.59 6.71

Bicubic AnimeCharacter12 36.92 40.54 43.01
Waifu2x AnimeCharacter12 5.73 4.731 4.32

Real-ESRGAN AnimeCharacter12 0.41 1.52 2.48
SwinIR AnimeCharacter12 0.34 0.99 1.94

Ours AnimeCharacter12 0.13 0.56 1.45

Bicubic Multi-level anime83 31.32 36.08 38.21
Waifu2x Multi-level anime83 5.69 4.89 5.42

Real-ESRGAN Multi-level anime83 0.68 1.99 3.54
SwinIR Multi-level anime83 0.22 1.35 1.69

Ours Multi-level anime83 0.17 0.45 1.05

4.4. Discussion
4.4.1. Resolution of Blur and Checkerboard Artifacts

The main reason for image blur is the lack of detailed image features. The conventional
CNN model requires a deep network to obtain a larger receptive field and capture more
detailed features. However, deep networks often face the problem of being difficult to
train and are underequipped. Therefore, most CNN-based models control the number of
network layers within a specific range, reducing the receptive field. This is similar to how
the human eye looks at a part of the image simultaneously and then restores the entire
image. This challenging task is why the CNN-based model has ambiguous results.

In the proposed method, we obtain local information through the self-attention mech-
anism of the Swin Transformer and then use the moving window of the Swin Transformer
to obtain significant global information. We incorporate more extensive layers of attention
mechanisms to capture more global information. The experimental results also demon-
strated that adding a more extensive attention layer can help improve the overall effect.

The size of the output image, which is extracted with features through a convolutional
neural network (CNN), will tend to be smaller. Therefore, sometimes, we need to restore
the image to its original size for further computation. Expanding the image size to realize
resolution enhancement is called upsampling. Most of them will use transposed convolu-
tion (TC) to complete this process. However, when the kernel size in TC is not divisible by
stride, there will be a checkerboard effect. Even if it can be divisible by stride, there will be
a checkerboard effect once the learning is uneven. Based on the Swin Transformer, the size
of the output image extracted through our network will not change. Therefore, we do not
need to restore the image to its original size, avoiding the checkerboard artifacts problem.

4.4.2. Resolution of Ignore Details

To our knowledge, most super-resolution network models focus on deep feature
extraction, as the deep features are closer to the final output. Moreover, these models
have good performance in extracting deep features. However, shallow features are also
important and cannot be ignored. Making better use of shallow features can add more
details to image generation. Unlike SwinIR and SMIR, which only use one layer of CNN
to extract shallow features, our model adds more low-frequency and texture variation
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information for shallow feature extraction. With the help of this information, the proposed
work achieves some more precise results in the details.

4.4.3. Work Limitations

(a) The window expansion mechanism is subject to computer computing power

In our deep feature extraction network, the size of our window expansion is chosen to
be a quarter of the input image. Due to our video memory constraints, this is the maximum
size we can expand. However, if the memory conditions allow, the wider window will
extract more global information.

(b) The enhancement of low-frequency information cannot adapt to tasks of different
scales

Under different scale tasks, the importance of low-frequency information is differ-
ent. Especially under the super-resolution of 8×, the low-frequency information of high-
resolution images and low-resolution images is quite different. Our method may introduce
some wrong information, which leads to some errors in the final result.

(c) Use of artificially generated low-resolution image

Real lower-resolution images should be used for further assessment. If we use the
collected actual anime data to train our model instead of artificial data, it can be better
applied to the animation field. In addition, the real low-resolution images are also of great
help to the performance of our test model.

(d) Longer runtime

Our model requires higher computational overhead, which results in a longer runtime.
The super-resolution task of large-scale images cannot be completed in a short time.

5. Concluding Remarks and Future Work

Most of the current anime image super-resolution tasks were accomplished using
conventional CNNs, and the use of contemporary transformers that perform equally well
in vision tasks has gained significant attention. Transformers have excellent long-distance
modeling properties. This is significant in the domain of deep learning. In addition, deep
learning models only focus on building deep networks to extract deep feature information
while ignoring the importance of shallow feature information. The shallow feature infor-
mation incorporates a large amount of low-frequency information, and this low-frequency
information can well describe the overall structure of the anime image.

Therefore, in response to these problems, we introduced a Swin-Transformer-based
anime image super-resolution reconstruction method. Two different neural networks were
employed to extract the image’s shallow feature information and deep feature information.
This study aimed to propose a neural network that adopts a post-upsampling architecture
to reduce the model parameters. Such an architecture allows our model to focus only on
feature extraction for low-resolution images. In the final image reconstruction module,
we fuse shallow features containing much low-frequency information followed by deep
features containing much high-frequency information and reconstruct a high-resolution
image through upsampling. In order to verify the effectiveness of the method proposed in
this paper, we constituted three datasets, tested and verified each dataset, and performed
data analysis and visualization against the popular state-of-the-art methods. It resulted
in numerically and graphically verified, robust reconstruction of high-resolution images.
The appropriate metric for image quality assessment was indicated based on the evaluation
of different structural similarities and peak signal-to-noise ratio, respectively. Assessments
of the proposed method confirmed the robustness of the data scenarios: (a) AnimeFace180,
(b) AnimeCharacter12, and (c) Multi-level anime83.

For future work, we found through investigation that most anime super-resolution
models are equipped with the corresponding user interface. Most people have no prior
programming knowledge, so they cannot use the relevant code directly. A user inter-
face can make user operation comfortable, simple, and accessible. Under the 8× task,
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a low-resolution image needs to be enlarged by a factor of eight, which means that a
low-resolution image is only 1/64 of a high-resolution image. Therefore, the low-frequency
features extracted by the shallow network will contain some wrong information, resulting
in the degradation of image quality. How to effectively fuse low-frequency features is
the key to solving this problem. Last, but not least, more and more models are trying to
extract features by combining multiple attention mechanisms; for example, HAT [46] was
published in May 2022. This paper adopts a parallel approach to combine channel attention
and self-attention.
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