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Abstract: The work presented here develops a computer vision framework that is view angle
independent for vehicle segmentation and classification from roadway traffic systems installed by
the Virginia Department of Transportation (VDOT). An automated technique for extracting a region
of interest is discussed to speed up the processing. The VDOT traffic videos are analyzed for vehicle
segmentation using an improved robust low-rank matrix decomposition technique. It presents a
new and effective thresholding method that improves segmentation accuracy and simultaneously
speeds up the segmentation processing. Size and shape physical descriptors from morphological
properties and textural features from the Histogram of Oriented Gradients (HOG) are extracted from
the segmented traffic. Furthermore, a multi-class support vector machine classifier is employed to
categorize different traffic vehicle types, including passenger cars, passenger trucks, motorcycles,
buses, and small and large utility trucks. It handles multiple vehicle detections through an iterative
k-means clustering over-segmentation process. The proposed algorithm reduced the processed
data by an average of 40%. Compared to recent techniques, it showed an average improvement
of 15% in segmentation accuracy, and it is 55% faster than the compared segmentation techniques on
average. Moreover, a comparative analysis of 23 different deep learning architectures is presented.
The resulting algorithm outperformed the compared deep learning algorithms for the quality of
vehicle classification accuracy. Furthermore, the timing analysis showed that it could operate in
real-time scenarios.

Keywords: low-rank ; matrix decomposition; vehicle segmentation and classification; HOG; Kalman
filter; SVM; deep learning architectures

1. Introduction

Computer vision methods may offer more practical perceptual, contextual, and situa-
tional awareness to a highway intelligent transportation system (ITS) than any other types
of sensors [1]. Utilizing vision sensors in the development of the ITS focuses on challenges
that are generally difficult to solve using other sensor approaches [2]. For example, vehicles
come in various sizes, shapes, and colors within the same class. Additionally, the projected
shape of the vehicle differs due to pose variations concerning the camera sensor. All the
previously mentioned points make the problem of vehicle detection and classification very
challenging. Another complexity in ITS arises due to highway traffic outdoor scenes with
varying visibility and lighting conditions. Furthermore, limited computing power may
reduce the efficiency of an integrated system to perform in real time. Parallel computing
techniques have decreased this limitation drastically. Finally, accounting for the unpre-
dictable movement of vehicles through a highway traffic scene may be difficult. Off-road
cameras are currently used by most state departments of transportation to monitor traffic
conditions and to identify situations that disrupt traffic flow, such as road debris, stopped
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vehicles, or accidents. Computer vision algorithms allow these tasks to be performed
automatically and efficiently [3].

Tremendous efforts to tackle different challenging aspects have been investigated
deeply in the literature. While there are several other non-vision sensor-based approaches,
such as the one presented in [4], the authors in this work focused on computer vision and
machine-learning-related techniques utilizing monocular optical sensors.

The authors in [5] proposed a pipeline for detecting vehicles from monocular videos
based on transfer learning. They weakly calibrated the camera using a 3× 3 transformation
from the image domain to the real-world domain to estimate the vehicle length and speed.
Additionally, the authors adopted three popular object detection approaches, namely:
SSD [6], YOLOV2 [7], and faster R-CNN [8] to classify traffic vehicles. The authors tested
their approach on videos captured from different sites and demonstrated that they had
achieved high accuracy and fast processing speed. The research in [9] proposed a semi-
supervised vehicle type classification approach based on a broad learning scheme (BLS) [10]
to reduce the cost of the training phase, and a dynamic ensemble structure is used to
estimate the class type probabilities. Naghmeh et al. [11] proposed a semi-supervised Fuzzy
C-Means clustering to predict different vehicle types and labels. They utilized unlabeled
and labeled data to extract useful information for classifying the vehicles. Additionally,
random oversampling was used to handle the multi-class imbalanced datasets. Semi-
supervised principal component analysis convolutional network (PCN) was adopted in [12].
The authors generated a convolutional filter bank to leverage the effectiveness of traditional
convolution neural networks against different image schemes, including translation, scale,
noise, and rotations. The research incorporated PCN into softmax and support vector
machine (SVM) classifiers to evaluate different structures.

Nadiya et al. [13] proposed a monocular vision-based technique to detect vehicles
for automatic toll collection. Their technique suggests using a group of convolutional
neural networks to estimate the probability for vehicles class and feed them into a gradient-
boosting classifier to complement the labels obtained from optical sensors. The research
in [14] introduced an automated approach for different vehicle classifications from rear-
view images by fusing physical and spatial attributes. The physical features include height
from the ground to the rear bumper and the distance from the bumper to the license plate.
The spatial features are extracted by applying a convolutional neural network. The SVM
classifier is employed to classify fused features.

Unsupervised Feature Learning was discussed and elaborated by Amir et al. [15].
The approach depends upon the generation of a dictionary from a dense scale-invariant
feature extractor [16]. Bases are generated by applying the k-means clustering technique.
The generated dictionary maps the input features to a new learned space by employing
a coding vector with the trained bases. In classifying images, they utilized the spatial
pyramid matching [17] and SVM classifier. Zhanyu et al. [18] introduced a fine-grained
classification scheme based on convolutional neural networks. They added a new max-
pooling layer between the fully connected and traditional layers. The proposed layer
reduces the dimensions of feature space, and the computational cost is reduced.

Zhang et al. [19] utilized single-shot multi-box feature detectors based on deconvo-
lution and pooling to classify vehicles using convolutional neural networks. The authors
in [20] compared the performance of vehicle detection and classification using the mixture
of Gaussian (MoG) background subtraction algorithm along with a support vector machine
(SVM) vehicle classification model against the faster RCNN. Their experiments showed that
faster R-CNN outperforms the SVM method. Xiang et al. [21] proposed a method to count
vehicles based on a moving-object detector that works with static and moving backgrounds.
A pixel-level detector handles static objects, while camera registration is employed with
moving backgrounds. In their approach, an online learning tracker counts vehicles under
different situations. The authors in [22] introduced an approach to identify vehicle make
and model from front-facing images utilizing physical and visual characteristics. First,
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they extracted the logo and fed it into a classifier to identify the vehicle make. Then, they
customized a hierarchical classifier to identify the vehicle type.

Farahani [23] utilized the Gaussian mixture model for background segmentation,
and the extended mean shift (EMS) algorithm based on color information was utilized for
tracking. The EMS algorithm was adapted by applying an Epanechnikov kernel estimator
function on the feature space. This feature space was derived from the color histogram.
Roy et al. [24] extracted foreground objects using GMM and proposed a new weighted
mean approach to track vehicles. Das et al. [25] classified vehicles into five classes using a
bag of Speeded Up Robust Features (SURF). An SVM classifier was adopted in their work.
The authors in [26] suggested two-stage methods to classify vehicles. Firstly, they balanced
the data samples by augmenting the acquired data. Secondly, the augmented data was
classified utilizing an ensemble of convolutional neural networks (CNN) with different
architectures and learned on the augmented training dataset. Cai et al. [27] pioneered a
scene-adjusted vehicle detection approach based on the concept of the bagging (bootstrap
aggregating) technique. A composite deep-structure classifier was built using multiple
classifiers of samples generated in the target scene based on a confidence score with a
voting mechanism. The authors in [28] adopted latent SVM in a vehicle make and model
recognition. A novel greedy parts localization algorithm was employed to extract some
descriptive parts in the vehicles used in the learning stages. Chavez-Garcia et al. [29]
located vehicles within a video frame using a two-dimensional Bayesian occupancy grid
map. They experimented with a sparse version of the Histogram of Oriented Gradients
(HOG) along with the Adaboost classifier in the classification stage. The authors in [30]
detected vehicle candidates utilizing the active basis model (ABM) based on Gabor wavelet
elements. A random forest classifier is trained to classify vehicles into three categories
based on the vehicle length extracted from the spatial domain image and the gray-level
co-occurrence matrix of the detected vehicle image. Siddiqui et al. [31] utilized a bag of
SURF features of either the front- or rear-facing images of vehicles in conjunction with
multi-class support vector machine (SVM) classifier and attribute-bagging-based ensemble
of SVM (AB-SVM) to recognize vehicle make and model.

Toropov et al. [32] employed adaptive GMM for segmenting vehicles and Viola–Jones
cascade detector based on Haar features for vehicle tracking. Vehicles are counted using
a probabilistic counting model. The authors in [33] provided a method for detecting and
tracking vehicles in videos captured from roadside cameras. Authors in [34] proposed an
integrated work of vehicle detection, tracking, and classification for purposes of emission
estimation. Similarly, the work in [35] provides a detection and tracking algorithm for
on-road vehicles using a car-mounted camera. Vehicle detection and tracking are extended
to include vehicle counting in [36] and vehicle lane assignment and analysis in [37]. The au-
thors in [38,39] used classifiers to distinguish between moving objects that are considered
cars as opposed to another type of vehicle. Similarly, classification was used to distinguish
trucks from other highway traffic for a study on a truck and industrial vehicle density in [40].
Techniques that apply multiclass classification have also been used to distinguish between
vehicle categories on the highway, such as cars, buses, motorcycles, and trucks [41–43].
The work in [44] distinguishes multiple vehicles by size to assign correct toll rates.

When analyzing the previously discussed efforts, it is clear that a trend of strategies
for completing a particular purpose has been developed. These efforts can be categorized
into detection approaches, known as foreground segmentation, tracking algorithms, and (if
applicable) feature extraction and vehicle categorization methods. Furthermore, some of
the previously summarized approaches examined techniques utilizing enhancements in
ROI extraction and camera alignment. While deep learning (DL) is a fast-growing area of
research in vehicle segmentation for intelligent transportation systems (ITS), these methods
need a lot of data to train. Thus, they cannot function properly without huge training
data and imbalanced datasets. Additionally, optimizing DL architecture parameters re-
quires plenty of experiments using deep learning networks and architecture combinations.
The dataset utilized in this work is small and is not enough to adopt a deep learning
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approach [15,45–50]. The results section compares the proposed technique for verification
and performance evaluation against recent deep learning architectures with different deep
neural networks.

In this work, the authors develop and implement a monocular camera viewpoint-
independent and fully integrated method for vehicular traffic segmentation and classifica-
tion. Key results reported in this work are evaluated using networked traffic camera videos
obtained from the Virginia Department of Transportation (VDOT). More specifically, the fol-
lowing contributions are presented: (1) an automated region of interest (ROI) extraction
approach; (2) an improved real-time foreground segmentation algorithm; (3) a classification
scheme that is capable of sensing multiple vehicle clusters for handling occluded vehicles
in dense traffic scenarios; and (4) performance evaluation of twenty-three object detection
deep learning architectures that have been trained and adapted to the evaluated dataset
employing transfer learning.

The rest of this paper is organized as follows: Section 2 details the proposed system
pipeline. Then, Section 3 presents the results of the developed system where the perfor-
mance of different system stages is evaluated to accurately segment individual vehicles and
to classify the vehicles by type. Finally, in Section 4, concluding statements are discussed.

2. Proposed Technique

Deep learning approaches combine both feature extraction and classification into
a single procedure. They require massive training datasets to achieve high accuracy.
Unlike deep learning approaches, traditional supervised machine-learning approaches
have reported high accuracy in object detection and classification with limited and small
amounts of data. These approaches require two substages: one for feature extraction
and the other one for object classification. The histogram of oriented gradients approach
has been widely used in object detection based on the gradients of visual and textural
differences with reported high detection accuracy. Additionally, morphological, size,
and shape features are utilized to separate various classes representing different objects.
The proposed technique utilized the support vector machine classifier since it has been
known for high classification accuracy in similar domains and requires few training samples
compared to deep learning approaches.

This section develops methods to solve the primary stated goal of autonomous vehicle
segmentation and type classification in a traffic video database. The developed pipeline
consists of the following steps: (1) automated development of an ROI; (2) foreground
object segmentation using improved robust low-rank and sparse matrix decomposition; (3)
extraction of vehicle size, shape, and texture features using morphological properties and
histogram of oriented gradients (HOG); (4) vehicle tracking using the extended Kalman fil-
ter (EKF) method; (5) vehicle classification using a multiclass support vector machine (SVM)
classifier; and finally, (6) multiple vehicle handling using a K-means over-segmentation
and a two-pass classification scheme. The proposed pipeline is shown in Figure 1, and the
following subsections detail its steps.

2.1. Region of Interest Extraction

The proposed algorithm’s first step establishes an ROI in the image scene to reduce
the computational complexity, accelerate processing, and retain the most visual features of
the captured frames. Most practical traffic surveillance cameras are set at a viewing angle
to monitor a large section of the highway. As vehicles progress through the image scene
toward the horizon and move farther from the camera, the vehicle size becomes smaller
and can appear as image noise. Likewise, as vehicles become smaller, there are not enough
meaningful details to extract features for classification purposes, and detected vehicles at a
far distance can interfere as outliers for training a classifier. In that regard, the processed
frame is clipped to 70% of its height, considering the camera side. In this proposed vehicle
detection algorithm, monitoring is optimized to only handle vehicles moving along one
major angle. An automated ROI extraction approach is introduced to define the effective
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part of the image scene in which vehicles can be efficiently segmented and classified.
The ROI is a binary mask applied to each video frame to filter pixel intensities outside the
ROI and set them to zero.

Figure 1. Proposed algorithm flow diagram.

The proposed extraction of ROI includes a sequence of six steps, namely: (1) noise
suppression, (2) edge detection, (3) Hough transform, (4) fuzzy C-means, (5) curve fitting,
and (6) mask development. The pipeline for the ROI extraction approach is depicted
in Figure 2.

Figure 2. ROI extraction pipeline.

Since the captured frames are noisy and degraded and have artifacts due to environ-
mental surroundings, a Gaussian kernel is utilized to suppress these artifacts and to keep
strong edges representing potential highway lane sides. A canny edge detector is employed
to detect candidate edges from blurred images, followed by connected components analysis
to suppress unwanted edges in small areas. Then, the Hough transform is applied to detect
possible lines in the edge image. Vertical lines whose angles are less than 2o are suppressed.
It is assumed that the possible lanes will not be vertical lines since these vertical lines
may account for other objects within the scene, such as light poles. Applying the Hough
transform to the image results in a feature space of two parameters, namely, ρ and θ, where
ρ represents the normal from the origin to the detected lines, while θ represents the inclina-
tion to x-axis. Next, fuzzy C-mean is applied to the Hough space features to cluster the
possible detected Hough lines using the two features, ρ and θ. The number of clusters
is set empirically to four clusters. Since the detected clustered lines may be represented
as broken segments near each other, curve fitting is employed to fit a cluster of detected
broken segments into a unique single line. Several 1D curve fitting techniques are tested,
including linear and higher order polynomials, exponential, Gaussian, and cubic spline
models. Empirically, it is found that the linear polynomial model provides the best results.
Finally, a raster scan is utilized across the image overlaid by fitted curves. These curves are
used as guidelines to define the masked areas.
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2.2. Foreground Segmentation

The foreground segmentation process identifies moving vehicles through the highway
image scene. This stage is a crucial step in the proposed algorithm since it is required
to extract vehicles with high accuracy and low computational time to make the system
suitable for real-time implementations. Plenty of approaches have been developed in
the literature related to foreground segmentation. Of these approaches are the robust
low-rank and sparse matrix decomposition in which a low-rank matrix represents the
background image, and a sparse matrix represents the foreground objects [51]. These
techniques prove to achieve high accuracy and real-time implementations. Sobral et al. [52]
have reported several low-rank decomposition algorithms for background extraction from
videos, and they ranked those algorithms in terms of their computational time.

In this research, the authors first investigated several approaches and applied them to
the available dataset, which is noisy, degraded highway videos captured under different
weather conditions. The evaluation is in terms of segmentation efficiency and compu-
tational time. Secondly, the proposed algorithm improves upon one of the evaluated
algorithms named fast principal component pursuit (FPCP) introduced by Rodriguez and
Wohlberg [53]. The proposed approach improves the speed and segmentation accuracy
and verifies the improved performance using a manually labeled dataset. The proposed
algorithm utilizes the FPCP approach as an initial stage to pre-train the system. The pre-
training provides a priori low-rank background representation that is used in subsequent
stages. Once a low-rank representation is determined, a simple frame difference is utilized
to extract the sparse foreground images. Another aspect is that FPCP and other robust
low-rank and sparse matrix decomposition approaches utilize global thresholding to extract
foreground objects. However, global thresholding extracts most of the segmented objects
and labels them as foreground objects; it mislabels other foreground objects, especially
when the pixel values of these objects are close to background pixel intensities. Additionally,
frame difference provides negative values considered background objects when global
thresholding is applied; however, they are not. Figure 3 depicts the histogram of sparse
frames that results from the difference between estimated low-rank background frames and
a frame under processing. This gives intuition to fit the resultant sparse matrix into a Gaus-
sian distribution with a mean representing the background pixel values. If values fall in the
Gaussian distribution outer sides, they are mapped to the segmented foreground pixels.

In that sense, the proposed algorithm models the resultant difference matrix into a
normal distribution and determines the threshold utilizing the fitted normal distribution
mean and variance. The estimated mean is around or close to zero values. Those values
represent the background pixel intensities. Considering that noises are present in the scenes,
the background pixel values are mapped inside the interval defined by the bounds µ± λσ.
In contrast, foreground pixel values are mapped outside that interval.

Following the same FPCP formulation, a data matrix X can be written as X = L + Z
such that L is a low-rank matrix, and Z is a sparse matrix satisfying the following optimiza-
tion problem:

arg min
L,Z

‖L‖∗ + λ‖Z‖1 s.t. X = L + Z (1)

where X ∈ Rm×n is the data matrix, ‖•‖∗ is the nuclear norm, while ‖•‖1 is the l1 norm
of a given matrix. The data matrix X is constructed by stacking the video frames shaped
as columns of X. The FPCP authors relaxed the nuclear norm, and the optimization
function became:

arg min
L,Z

1
2
‖L + Z− X‖F + λ‖Z‖1 s.t. rank(L) = t (2)
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where ‖•‖F is the Frobenius norm of the matrix, and t represents the number of partially
selected components of the spectral value decomposition (SVD). The FPCP approach
proposed a solution to Equation (2) using alternating minimization as follows:

Lk+1 = arg min
L
‖L + Zk − X‖F s.t. rank(L) = t (3)

Zk+1 = arg min
L
‖Lk+1 + Z− X‖F + λ‖Z‖1 (4)

(a) Video 1 (b) Video 2

(c) Video 3 (d) Video 4
Figure 3. A sample histogram of extracted sparse background for different dataset videos.

Equation (3) is addressed utilizing partial t components of the SVD of X− Z, while
Equation (4) is solved by soft thresholding shrink(X− Lk+1, λ) where the soft thresholding
is defined by:

shrink(x, ε) = sign(x)max{0, |x| − ε} (5)

The videos’ set of k frames are used to pre-train the system to estimate a low-rank
matrix L̃ that represents the background. A simple frame difference between the estimated
background L̃ and the current video frame F(i) is used to determine the current spare
matrix that represents the foreground, Z(i), as given by:

Z(i) = F(i) − L̃ (6)

Once Z(i) is computed, resultant difference values are fitted into a normal distribution
of mean µ and standard deviation σ. The minimum variance unbiased estimator (MVUE)
is utilized to estimate the parameters µ and σ. The sample mean, x̄, is defined as

x̄ =
n

∑
i=1

xi
n

(7)
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while the sample variance, s2, is defined as

s2 =
1

n− 1

n

∑
i=1

(xi − x̄)2 (8)

The sample mean and variance are used to estimate the mean and standard deviation,
respectively. Next, the foreground is segmented utilizing the following threshold:

Z(i)(x, y) =

{
0 if Z(i)(x, y) ∈ µ± λσ

1 otherwise
(9)

where λ is determined empirically from simulations, and (x, y) are spatial coordinates of
the pixel values within the frame Z(i). Finally, binary opening and closing operations are
integrated to reduce the noise effects after thresholding.

2.3. Vehicle Features

The authors utilize the same approach presented in their previous work [54] to extract
segmented vehicle features. Size, shape, and texture descriptors are considered for classifi-
cation. Morphological properties are used to describe the size and shape of each vehicle.
Gradient-based texture features are calculated using a HOG algorithm on the rectangular
boundary image of the detected vehicle.

Twelve extracted feature descriptors representing the size and shape of segmented
vehicles are employed. These descriptors include area, bounding box, centroid, convex
area, eccentricity, equivalent diameter, Euler number, extent, primary axis length, minor
axis length, orientation, and perimeter [54,55].

In addition to the physical features, textural features are integrated by computing the
histogram of oriented gradients of segmented vehicles. Due to its effectiveness in identi-
fying an object’s visual texture, the HOG descriptor is widely used in image processing
and computer vision for object detection [56]. The HOG features are evaluated using both
image gradient magnitudes and orientations and are slightly affected by local geometric
and lighting distortions.

2.4. Vehicle Tracking

In order to keep an accurate count of vehicles within the highway image scene, each
detected vehicle is tracked as it traverses the ROI. A Kalman filter tracking approach is used
to track each detected vehicle through the ROI [57]. The Kalman filter vector is created for
each newly detected vehicle. It tracks the ID number of the vehicle, the centroid position,
and the vehicle velocity assuming constant acceleration through the ROI. Image features
derived from the foreground-segmented vehicle are also paired with the Kalman filter track
for every frame in which the vehicle is present. Once the vehicle exits the ROI, the Kalman
filter vehicle track is deleted.

2.5. Classification

Once a vehicle track has been deleted, as described in the previous section, the classifi-
cation of the vehicle at every frame occurs. The classification of vehicles occurs in three
steps: (1) training the classifier, (2) multiclass SVM classification, and (3) statistical analysis
for final classification.

2.5.1. Training the Classifier

The classifier is trained using a manually labeled ground truth dataset for each camera.
Eight classes are considered for training. These classes include the six vehicle classes:
passenger car, passenger truck, bus, small utility truck, and large utility truck. In addition,
classes representing a detection that is not a vehicle or a detection containing multiple
vehicles are presented. The classifier is trained on a manually tagged dataset using 10-fold
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cross-validation in which the dataset is divided randomly into 10 groups. The training
is conducted using nine groups; the remaining group is used for testing. The process is
repeated ten times to estimate the classifier’s performance.

2.5.2. Multiclass SVM Classification

Multi-class SVM classifier is adopted to classify the segmented data into one of eight
classes. The SVM classifier is known to be efficient in separating large feature vectors
and does not require intensive memory allocations [58]. A set of binary SVM classifiers is
adopted to handle the multi-class separation. The SVM classifier with radial basis function
(RBF) kernel is chosen for its better separation of nonlinear feature vectors. The RBF
kernel has two parameters, called the sigma and box constraint, found by a grid search
method. In the grid search method, each parameter varies over a range of 0.1 to 15,
and the 10-fold cross-validation is performed. The parameters are set for the maximum
cross-validation result.

Following the same approach discussed by Chen et al. [59], the work presented here
adopts eight binary SVM classifiers to handle the problem of multi-object classification.
First, one SVM classifier is trained to separate a certain positive class from other classes
treated as a single negative class. Then, after the training phase of the chosen classifier is
over, the same process continues for training other classifiers.

2.5.3. Final Classification Result

The final classification result is found by taking the statistical mode of each frame
classification result. For example, a single vehicle track may make a mistake in tracking
and correct to the wrong detected vehicle. Furthermore, the tracked vehicle may also
include partial detection at the ROI boundary and be classified as “Not a Vehicle”. Using
the mode of the classification results eliminates these conditions and uses the most stable
classification results from each frame in the vehicle track.

2.6. Multiple Vehicle Handling

Due to vehicular occlusion, some vehicles traveling nearby are clustered and appear
as a single vehicle. The classification method in the previous step is trained to recognize
multiple vehicle clusters. If the deleted track contains multiple vehicles, then occlusion is
assumed. This occlusion is handled through an iterative over-segmentation and reclassifi-
cation method.

2.6.1. K-Means Over-Segmentation

The first step in over-segmentation is to analyze the geometry of the boundary rectan-
gle for the occluded vehicles. If the boundary rectangle width is greater than the height,
it is assumed that the multiple vehicles are arranged from left to right, and the boundary
rectangle is divided vertically. Otherwise, it is assumed that the multiple vehicles are
arranged from top to bottom, and the boundary rectangle is divided horizontally. Two
centroids are assumed in the newly divided boundary rectangle.

K-means clustering is used to perform over-segmentation of the multiple-vehicle
cluster. K-means uses the image intensity and quantizes similar intensity levels into a single
patch. This over-segmentation process uses up to 25 levels applied to the input image of
each multiple-vehicle cluster.

After the newly segmented patches are created, the centroid of each patch is calculated.
The minimum Euclidean distance of each patch to the new boundary box centroids is used
to assign each patch to the new boundary box. Once the patches are assigned, the newly
clustered vehicle is converted from the patches. Features are extracted from the new
vehicle cluster.
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2.6.2. Reclassification

The final step in multiple vehicle handling is to perform classification on the two
detected vehicles from the k-means over-segmentation process. This reclassification follows
the method described in Section 2.5. The steps in this section are repeated if the vehicle
cluster still contains multiple vehicles. If the vehicles cannot be separated, this iterative
approach will only repeat three times.

3. Results and Discussion

A manually labeled ground truth dataset was created for evaluation. Four evaluated
sample videos are described in Table 1. These videos were manually labeled for vehicle
segmentation and classification. Each video shows a segment of an interstate under varying
conditions of traffic and environmental scenarios. Figure 4 shows a sample of vehicles
within the given dataset. It can be seen that the given dataset is poor in its spatial resolution,
and its visual quality content is highly degraded and under-sampled. The size of bounding
boxes containing the extracted vehicles is 40 by 30 pixels extracted from video frames of
dimensions 320 by 240 pixels at a spatial resolution of 72 dots per inch (dpi).

Table 1. Description of sample videos for evaluation.

Name Number of Frames Time Road Description Environmental
Description

Video 1 299 20 s
5 lanes in each

direction, medium
traffic

Sunny, daytime

Video 2 299 20 s
2 lanes in each direction

and an oncoming
onramp, light traffic

Low light, dusk

Video 3 299 20 s 5 lanes in each
direction, heavy traffic Rain, daytime

Video 4 899 60 s 4 lanes in each
direction, heavy traffic Sunny, daytime

Figure 4. Sample vehicles extracted from different videos in the dataset.

3.1. ROI Extraction

The proposed ROI extraction technique described in Section 2.1 is applied to the first
frame of the collected videos to prepare and feed the extracted ROI mask to subsequent
processing of other frames. The processed frame is filtered utilizing a Gaussian blur filter
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with a 3× 3 window. A canny edge detector is adopted to detect the edges from the blurred
image. The Hough transform is applied, and empirically ten peaks are selected. Hough
lines are extracted with a minimum length of 20. FCM clustering algorithm is applied with
four clusters. Finally, linear polynomial fit is used to fit the clustered line segments into
lane sides. Detailed results of different ROI pipeline stages are depicted in Figures 5 and 6
for two different sample videos. The proposed technique demonstrates good results in
the extraction of ROI. It works well for line-shaped lanes. While the performance has a
small degradation for curvy lanes, as seen in Figure 5f, it is still acceptable since the scope
of this approach is not for lane departure systems that require precise extraction of the
ROI. Additionally, applying the Gaussian kernel to images reduces the amount of extracted
edges, helps to identify the strong ones, and reduces the not-required Hough lines. FCM
works to group different line segments nearby into unique cluster lines. Finally, the linear
curve fitting approximates the clustered lines into a single line representing highway lanes’
sides. The ROI extraction results in an almost 40% reduction of pixels processed by the
algorithm’s subsequent stages. The overall computational time is reduced due to applying
an ROI mask.

(a) Input Frame

(b) Blurred Frame (c) Edge detected image

(d) Detected Hough lines (e) Clustered Lines (f) Curve fitted lines

(g) Extracted mask (h) Masked image

Figure 5. Different output for ROI extraction pipeline stages for Video 1.
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(a) Input Frame

(b) Blurred Frame (c) Edge detected image

(d) Detected Hough lines (e) Clustered Lines (f) Curve fitted lines

(g) Extracted mask (h) Masked image

Figure 6. Different output for ROI extraction pipeline stages for Video 4.

3.2. Foreground Segmentation Evaluation

The proposed algorithm utilizes the FPCP approach as an initial stage to pre-train the
system. First, a set of frames determined empirically are utilized as initialization to generate
a priori low-rank background representation used in subsequent frame differentiating
stages. Then, the frames are reshaped into column vectors stacked side-by-side to construct
a matrix fed to the FPCP algorithm to estimate a background frame. Utilizing 60 frames
in the training phase reduces the processed data by almost 80% for Videos 1, 2, and 3
and 94% for Video 4. Once the frames are subtracted from the pre-trained low-rank matrix,
the differentiated frames are fitted into the Gaussian distribution. Then, the mean and
variance are estimated from the extracted difference sparse matrix. Thresholding is applied
utilizing Equation (9) in which the tuning parameter λ is empirically set to five. Foreground
vehicle segmentation is evaluated using classification accuracy, precision, recall, and F-
measure. Classification accuracy (CA) is defined as

CA = (TP + TN)/(TP + FN + FP + TN) (10)

where TP is the true positive, TN is the true negative, FP is the false positive, and FN is
the false negative. Since classification accuracy is not a good representative for evaluating
algorithms when the available dataset is imbalanced, it has been advised through the
research communities to use the F-measure as a good metric to evaluate the performance
of segmentation and detection techniques. The F-measure is determined by:

F-meaure = 2 ∗ Precision ∗ Recall
Precision + Recall

(11)

where Precision is defines as:
Precision =

TP
TP + FP

, (12)
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and Recall is defined as:
Recall =

Tp
TP + FN

(13)

TP, TN, FP, and FN detected pixels are determined by comparing the algorithm
outputs to a manually labeled ground truth for the given dataset. Moreover, the proposed
algorithms are compared against recent foreground segmentation techniques including:
fast principal component pursuit via alternating minimization (FPCP) [53], Grassmann
averages for scalable robust PCA (GA) [60], low-rank and sparse matrix decomposition
via the truncated nuclear norm and a sparse regularizer (LRSMDTNNorm) [61], shifted
subspaces tracking on sparse outlier for motion segmentation (GreGoDec) [62], robust
principal component pursuit via inexact alternating minimization on matrix manifolds
(RPCP ) [63], scalable robust matrix recovery: Frank–Wolfe meets proximal methods
(FW-T) [64], robust principal component analysis with complex noise (MoG-RPCA)[65],
a variational approach to stable principal component pursuit (Lag-SPCP-QN) [66], and
robust PCA via nonconvex rank approximation (NonConvRPCA ) [67]. The previously
mentioned classification metrics and the average computational time per frame (Ave comp.
time) are used to compare the proposed technique performance against those algorithms.

Tables 2–5 list different evaluation metrics for the proposed algorithm against other
segmentation algorithms for four different videos. For Video 1, which represents a sample
of sunny daytime traffic, the proposed algorithm showed an improvement of 10% in
terms of the F-measure, and it is 20% faster than the GA approach, which is the fastest
technique among the compared algorithms. A sample of traffic with low light and dusk
conditions is represented by Video 2. Improvements of about 20% in the F-measure
and 80% in the computational speed are achieved. Rainy and daytime traffic condition
is depicted in Video 3. However, the proposed algorithm improved by 14% in the F-
measure and 83% in the computational time; nevertheless, the quality of the segmentation
process needs to be improved. Since Video 3 represents rainy conditions, the proposed
algorithm and other evaluated algorithms failed to deal effectively with reflections due
to rain that are considered moving objects and consequently interpreted as foreground
objects. Performance improvements for Video 4 are 12% and 36% in terms of F-score and
computational time, respectively. Figures 7–10 depict the visual quality of segmented
vehicles for the proposed technique against other evaluated algorithms. It can be seen that
the proposed algorithm is better than other techniques, and more accurate segmentation of
vehicles for different videos has been achieved. Techniques GA, Lag-SPCP-QN, and GM
have poor showing for the different evaluated videos.

Table 2. Proposed technique foreground segmentation evaluation against different recent algorithms
for Video 1.

Recall CA Precision F-Score Ave. Comp.
Time (s)

Proposed
Algorithm 0.8988 0.9909 0.8288 0.8619 0.0089

FPCP 0.9740 0.9820 0.6534 0.7815 0.0117

LRSMDTNNorm 0.9775 0.9810 0.6393 0.7724 0.579

GA 0.9852 0.5665 0.0681 0.1266 0.0111

GreGoDec 0.9766 0.9806 0.6357 0.7694 0.0239

RPCP 0.7374 0.9868 0.8322 0.7807 0.1288

FW-T 0.7788 0.9874 0.8226 0.7990 0.0487

MoG-RPCA 0.9783 0.9814 0.6457 0.7773 0.1659

Lag-SPCP-QN 0.0094 0.9684 0.9778 0.0215 0.4898

NonConvRPCA 0.9762 0.9805 0.6350 0.7688 0.0337
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Table 3. Proposed technique foreground segmentation evaluation against different recent algorithms
for Video 2.

Recall CA Precision F-Score Ave. Comp.
Time (s)

Proposed
Algorithm 0.8413 0.9966 0.7728 0.8029 0.0022

FPCP 0.9504 0.9919 0.5277 0.6775 0.0119

LRSMDTNNorm 0.9637 0.9905 0.4827 0.6420 0.458

GA 0.9672 0.4425 0.0141 0.0277 0.0111

GreGoDec 0.9617 0.9904 0.4786 0.6376 0.0189

RPCP 0.3250 0.9943 0.9194 0.5137 0.1102

FW-T 0.5959 0.9953 0.8121 0.6733 0.0348

MoG-RPCA 0.9638 0.9901 0.4718 0.6324 0.1054

Lag-SPCP-QN 0.3401 0.9940 0.8834 0.4595 0.2327

NonConvRPCA 0.9617 0.9904 0.4786 0.6376 0.0263

Table 4. Proposed technique foreground segmentation evaluation against different recent algorithms
for Video 3.

Recall CA Precision F-Score Ave. Comp.
Time (s)

Proposed
Algorithm 0.7003 0.9702 0.6345 0.6648 0.0022

FPCP 0.8549 0.9372 0.3991 0.5422 0.0150

LRSMDTNNorm 0.9687 0.9864 0.6159 0.7518 0.49

GA 0.8630 0.7411 0.1372 0.2339 0.0135

GreGoDec 0.8643 0.9346 0.3887 0.5343 0.0203

RPCP 0.5116 0.9630 0.5839 0.5414 0.1587

FW-T 0.6388 0.9610 0.5475 0.5870 0.0513

MoG-RPCA 0.8616 0.9417 0.4240 0.5663 0.3055

Lag-SPCP-QN 0.0195 0.9581 0.8531 0.0438 0.4203

NonConvRPCA 0.8643 0.9346 0.3887 0.5343 0.0241

Table 5. Proposed technique foreground segmentation evaluation against different recent algorithms
for Video 4.

Recall CA Precision F-Score Ave. Comp.
Time (s)

Proposed
Algorithm 0.8751 0.9927 0.8202 0.8440 0.0067

FPCP 0.9621 0.9876 0.6370 0.7652 0.0112

LRSMDTNNorm 0.9687 0.9864 0.6159 0.7518 0.626

GA 0.9620 0.1557 0.0254 0.0491 0.0104

GreGoDec 0.9670 0.9862 0.6064 0.7436 0.0211

RPCP 0.7130 0.9897 0.8093 0.7551 0.1468

FW-T 0.5956 0.9885 0.8526 0.6979 0.0381

MoG-RPCA 0.9397 0.9847 0.6104 0.7368 0.1865

Lag-SPCP-QN 0.0543 0.9773 0.9554 0.0964 0.8091

NonConvRPCA 0.9670 0.9862 0.6064 0.7436 0.0441
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(a) Sample Frame (b) Ground Truth (c) Proposed Algorithm (d) FPCP

(e) GA (f) LRSMDTNNorm (g) GreGoDec (h) Lag-SPCP-QN

(i) MoG-RPCA (j) NonConvRPCA (k) RPCP (l) FW-T

Figure 7. Video 1 segmentation outputs comparison for different segmentation techniques.

(a) Sample Frame (b) Ground Truth (c) Proposed Algorithm (d) FPCP

(e) GA (f) LRSMDTNNorm (g) GreGoDec (h) Lag-SPCP-QN

(i) MoG-RPCA (j) NonConvRPCA (k) RPCP (l) FW-T

Figure 8. Video 2 segmentation outputs comparison for different segmentation techniques.
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(a) Sample Frame (b) Ground Truth (c) Proposed Algorithm (d) FPCP

(e) GA (f) LRSMDTNNorm (g) GreGoDec (h) Lag-SPCP-QN

(i) MoG-RPCA (j) NonConvRPCA (k) RPCP (l) FW-T

Figure 9. Video 3 segmentation outputs comparison for different segmentation techniques.

(a) Sample Frame (b) Ground Truth (c) Proposed Algorithm (d) FPCP

(e) GA (f) LRSMDTNNorm (g) GreGoDec (h) Lag-SPCP-QN

(i) MoG-RPCA (j) NonConvRPCA (k) RPCP (l) FW-T

Figure 10. Video 4 segmentation outputs comparison for different segmentation techniques.
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3.3. Classification Evaluation

We used 10-fold cross-validation to train the classifier compared to a manually labeled
dataset. Evaluation metrics, including precision, recall, and F-score, are utilized to evaluate
the classification performance for each class. A ROC plot is given for each class considered
for classification. The confusion matrix for each classification result is also obtained.

3.3.1. Video 1

Video 1 has a total of 1008 vehicle detections. These detections include 523 passenger
cars, 257 passenger trucks, 129 multiple vehicle detections, and 99 non-vehicle detections.
The grid search result gives a box constraint of 11 and a sigma of 4 for the RBF parameters.
The confusion matrix is shown in Table 6, while classification evaluation metrics are shown
in Table 7. The overall accuracy for Video 1 is 86.71%. Regarding the F-score, non-vehicle
objects classification performance is the worst among different classes. There is excellent
handling for multiple vehicle cluster detection and passenger car classes. Figure 11 shows
the ROC curves with an average area under the curve (AUC) of 0.8963 for all classes.

Table 6. Confusion matrix for Video 1 for all frames in ROI.

Predicted Class

Passenger Car Passenger Truck Multiple Vehicle
Cluster Non-Vehicle

A
ct

ua
lC

la
ss

Passenger Car 474 18 0 31

Passenger Truck 29 191 4 33

Multiple Vehicle
Cluster 5 2 119 3

Non-Vehicle 6 3 0 90

Table 7. Different evaluation metrics for the detected classes within Video 1.

Vehicle Class Precision Recall F-Score

Passenger Car 92% 91% 91%

Passenger Truck 89% 74% 81%

Multiple Vehicle Cluster 97% 92% 94%

Non-Vehicle 57% 91% 70%

There are 123 predicted multiple vehicle clusters detected in Video 1, representing
264 total vehicles that are a subset of the final classification result. The confusion matrix
for detected vehicles from multiple vehicle clustering algorithm output is described in
Table 8 with an overall accuracy of 72.73%. These 264 vehicles are omitted from the output
data without the multiple vehicle cluster handling. Additionally, classification evaluation
metrics for multiple vehicle clusters are presented in Table 9. The algorithm performs well
in identifying various vehicle classes from clustered objects.
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Figure 11. ROC curves for Video 1 classification.

Table 8. Multiple vehicle cluster detections confusion matrix for Video 1.

Predicted Class

Passenger Car Passenger Truck Non-Vehicle

Actual Class

Passenger Car 120 0 24

Passenger Truck 24 72 24

Non-Vehicle 0 0 0

Table 9. Different evaluation metrics for detected vehicles in multiple vehicle clusters within Video 1.

Vehicle Class Precision Recall F-Score

Passenger Car 83% 83% 83%

Passenger Truck 99% 60% 75%

Non-Vehicle 0 0 0

3.3.2. Video 2

Video 2 has a total of 373 vehicle detections. These detections include 120 passenger
cars, 86 passenger trucks, 13 small utility trucks, 14 multiple vehicle detections, and 140
non-vehicle detections. The grid search result gives a box constraint of seven and a sigma
of three for the RBF parameters. The confusion matrix is depicted in Table 10, while
classification evaluation metrics are shown in Table 11. The overall accuracy for Video
2 is 84.72%. Figure 12 shows the ROC curves with an average AUC of 0.9088 for all
classes. In terms of the F-score metric, there is an excellent performance for different
classes classification.

There are 12 predicted multiple vehicle clusters detected in Video 2, representing
26 total vehicles that are a subset of the final classification result. The confusion matrix
for detected vehicles from multiple vehicle clustering algorithm output is described in
Table 12 with an overall accuracy of 66.67%. Additionally, classification evaluation metrics
for multiple vehicle clusters are presented in Table 13. The algorithm performs well for both
passenger car and truck classes, while it has abysmal performance for small utility trucks.
This is because the small utility truck has a poor showing in the dataset, and consequently,
the algorithm failed to identify the class without enough training data.
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Figure 12. ROC curves for Video 2 classification.

Table 10. Confusion matrix for all vehicles in Video 2.

Predicted Class

Passenger Car Passenger Truck Small Utility Truck Multiple Vehicle
Cluster Non-Vehicle

Actual Class

Passenger Car 104 1 0 0 15

Passenger Truck 0 73 1 0 12

Small Utility Truck 0 1 12 0 0

Multiple Vehicle
Cluster 0 0 0 12 2

Non-Vehicle 16 9 0 0 115

Table 11. Different evaluation metrics for the detected classes within Video 2.

Vehicle Class Precision Recall F-score

Passenger Car 87% 87% 87%

Passenger Truck 87% 85% 86%

Small Utility Truck 92% 92% 92%

Multiple Vehicle Cluster 99% 86% 92%

Non-Vehicle 80% 82% 81%

Table 12. Multiple vehicle cluster detections confusion matrix for Video 2.

Predicted Class

Passenger Car Passenger Truck Small Utility Truck Non-Vehicle

Actual Class

Passenger Car 13 0 1 1

Passenger Truck 1 5 1 2

Small Utility Truck 2 0 0 1

Non-Vehicle 0 0 0 0
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Table 13. Different evaluation metrics for detected vehicles in multiple vehicle clusters within Video 2.

Vehicle Class Precision Recall F-Score

Passenger Car 81% 87% 84%

Passenger Truck 99% 56% 71%

Small Utility Truck 0 0 0

Non-Vehicle 0 0 0

3.3.3. Video 3

Video 3 has a total of 1948 vehicle detections. These detections include 464 passenger
cars, 478 passenger trucks, 67 large utility trucks, 189 multiple vehicle detections, and 744
non-vehicle detections. The grid search result gives a box constraint of 11 and a sigma of 3
for the RBF parameters. The confusion matrix is shown in Table 14, while classification
evaluation metrics are shown in Table 15. The overall accuracy for Video 3 is 78.75.71%.
Regarding the F-score, the algorithm performs extremely poorly classifying motorcycles,
buses, and small utility trucks. This is expected since there is not enough training data
representing these classes. Figure 13 shows the ROC curves with an average AUC of 0.8666
for all classes.

There are 237 predicted multiple vehicle clusters detected in Video 3, representing
546 total vehicles that are a subset of the final classification result. The confusion matrix
for detected vehicles from multiple vehicle clustering algorithm performance is described
in Table 16 with an overall accuracy of 61.36%. Additionally, classification evaluation
metrics for multiple vehicle clusters are presented in Table 17. The algorithm performs
well in identifying both passenger car and truck classes, while it has poor performance for
other classes.

Table 14. Confusion matrix for all vehicles in Video 3.

Predicted Class

Passenger
Car

Passenger
Truck Motorcycle Bus

Small
Utility
Truck

Large Utility
Truck

Multiple
Vehicle
Cluster

Non-Vehicle

Actual Class

Passenger
Car 350 13 0 0 0 0 9 92

Passenger
Truck 16 371 0 0 0 0 13 78

Motorcycle 0 0 0 0 0 0 1 0

Bus 0 0 0 0 0 0 0 2

Small Utility
Truck 0 0 0 1 0 1 0 1

Large Utility
Truck 0 0 0 0 6 55 1 5

Multiple
Vehicle
Cluster

5 9 0 0 0 16 149 10

Non-Vehicle 49 21 0 0 0 1 64 609

Table 15. Different evaluation metrics for the detected classes within Video 3.

Vehicle Class Precision Recall F-Score

Passenger Car 83% 75% 79%

Passenger Truck 90% 78% 83%

Motorcycle 0 0 0

Bus 0 0 0

Small Utility Truck 0 0 0

Large Utility Truck 75% 82% 79%
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Table 15. Cont.

Vehicle Class Precision Recall F-score

Multiple Vehicle Cluster 63% 79% 70%

Non-Vehicle 76% 82% 79%

Table 16. Confusion matrix for multiple vehicle cluster detections for Video 3.

Predicted Class

Passenger Car Passenger
Truck Motorcycle Bus Small Utility

Truck
Large Utility

Truck Non-Vehicle

Actual Class

Passenger Car 263 2 0 0 2 5 55

Passenger
Truck 1 72 1 2 1 2 15

Motorcycle 0 0 0 0 0 0 21

Bus 4 2 5 0 0 2 23

Small Utility
Truck 0 11 4 1 0 12 31

Large Utility
Truck 3 0 0 0 1 1 6

Non-Vehicle 0 0 0 0 0 0 0

Table 17. Different evaluation metrics for detected vehicles in multiple vehicle clusters within Video 3.

Vehicle Class Precision Recall F-Score

Passenger Car 97% 80% 88%

Passenger Truck 83% 77% 80%

Motorcycle 0 0 0

Bus 0 0 0

Small Utility Truck 0 0 0

Large Utility Truck 4.5% 9.1% 6.1%

Non-Vehicle 0 0 0

Figure 13. ROC curves for Video 3 classification.

3.3.4. Video 4

Video 4 has a total of 2868 vehicle detections. These detections include 592 passenger
cars, 671 passenger trucks, 22 buses, 125 small utility trucks, 58 large utility trucks, 269
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multiple-vehicle detections, and 1131 non-vehicle detections. The grid search result gives
a box constraint of 11 and a sigma of 3 for the RBF parameters. The confusion matrix is
shown in Table 18, while classification evaluation metrics are shown in Table 19. The overall
accuracy for Video 4 is 86.37%. The algorithm shows good performance in identifying
various classes. Figure 14 shows the ROC curves with an average AUC of 0.8984 for
all classes.

There are 234 predicted multiple vehicle clusters detected in Video 4, representing
513 total vehicles that are a subset of the final classification result. The multiple vehicle
clustering algorithm performance is described in Table 20 with an overall classification
accuracy of 71.92%. Additionally, classification evaluation metrics for multiple vehicle
clusters are presented in Table 21. The algorithm shows poor performance in identifying
both bus and large utility truck classes.

Figure 14. ROC curves for Video 4 classification.

Table 18. Confusion matrix for all vehicles in Video 4.

Predicted Class

Passenger Car Passenger
Truck Bus Small Utility

Truck
Large Utility

Truck

Multiple
Vehicle
Cluster

Non-Vehicle

Actual Class

Passenger Car 482 30 0 0 0 3 77

Passenger
Truck 61 539 1 1 0 7 62

Bus 0 1 18 0 0 0 3

Small Utility
Truck 2 5 0 102 0 1 15

Large Utility
Truck 0 2 0 5 42 0 9

Multiple
VehicleCluster 5 7 0 2 0 231 24

Non-Vehicle 30 28 0 4 5 1 1063
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Table 19. Different evaluation metrics for the detected classes within Video 4.

Vehicle Class Precision Recall F-score

Passenger Car 83% 81% 82%

Passenger Truck 88% 80% 84%

Bus 95% 82% 88%

Small Utility Truck 89% 82% 85%

Large Utility Truck 89% 72% 80%

Multiple Vehicle Cluster 95% 86% 90%

Non-Vehicle 85% 94% 89%

Table 20. Confusion matrix for multiple vehicle cluster detections for Video 4.

Predicted Class

Passenger Car Passenger Truck Bus Small Utility
Truck

Large Utility
Truck Non-Vehicle

Actual Class

Passenger Car 216 7 0 13 9 3

Passenger Truck 13 108 0 5 11 1

Bus 2 9 2 0 3 6

Small Utility
Truck 3 7 2 41 5 1

Large Utility
Truck 31 2 0 0 7 13

Non-Vehicle 0 0 0 0 0 0

Table 21. Different evaluation metrics for detected vehicles in multiple vehicle clusters within Video 4.

Vehicle Class Precision Recall F-score

Passenger Car 82% 87% 84%

Passenger Truck 81% 78% 80%

Bus 50% 9.1% 15%

Small Utility Truck 69% 69% 69%

Large Utility Truck 20% 13% 16%

Non-Vehicle 0 0 0

3.4. Comparison with Deep Learning Architectures

While deep learning is a fast-growing area of research in different domains of image
and video processing and computer vision, it has several drawbacks. Different tactics
have been tried in intelligent transportation systems (ITS). Favorable and accurate results
have been demonstrated compared to traditional methods, but it requires machines with
intensive memory storage and huge computational power. Adding to that, it requires a
huge amount of training data. Additionally, its configuration and tuning are a hard and
lengthy process. Optimizing the deep learning architecture parameters requires too many
experiments running for long periods to set the optimal settings [45–47].

The work presented in this paper evaluates the performance of twenty-three different
deep learning architectures for object detection that have been previously trained on either
the COCO dataset or ImageNet. Since the training process needs high computational re-
sources and graphical processing units (GPUs) and the process is time-consuming, transfer
learning is adapted in this work [68]. The different evaluated models utilize the weights
from pre-trained networks to fine-tune these architectures on new datasets. The eval-
uated deep object detection architectures are: Faster R-CNN [8], YOLO V2 [69], YOLO
V3 [7], and YOLO V4 [70]) and the feature extractor networks are (Resnet18, Resnet50,
Resent101 [71], inception V3 [72], inceptionresnet V2 [73], darknet53 [74], squeezenet [75],
and googlenet [76]). The combinations of these architectures are evaluated in terms of the
average precision, which is defined as the area under the curve representing the relation
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between the recall and precision at different thresholds. The performance of these deep
learning models is evaluated on small datasets using transfer learning and is compared
against the proposed traditional technique.

The trails of deep learning architecture and feature extractors networks evaluated
in this work are listed in Table 22. As depicted from the table, not all possible combina-
tions were examined. This is due to the lack of high computational power and memory.
Additionally, many experiments were carried out for each combination to fine-tune the
network parameters.

The dataset was divided into 60% for training, 10% for validation, and 30% for testing
the trained detector. Data augmentation was applied to the training data to improve the
training and increase the number of labeled data. The data augmentation included color
jitter in HSV space, random scaling, and random horizontal flip.

Table 22. Different evaluated DL architectures with different feature extractor networks.

Faster R-CNN YOLO 2 YOLO 3 YOLO 4 COCO YOLO 4 Tiny
COCO

Resnet 18
√ √ √

Resnet 50
√ √ √

Restnet 101
√ √ √

Inception V3
√ √ √

Inception resnet
V2

√ √ √

Darknet 53
√ √ √ √

Squeeznet
√ √

Goolgenet
√ √

Table 23 lists the average precision of the evaluated deep learning combinations against
the proposed algorithm. It can be seen that the performance of deep learning architectures
was abysmal. This is expected since the available dataset is small and does not provide
enough labeled training samples to train the deep learning networks. The proposed algo-
rithm improved the performance against the evaluated algorithms, especially for Videos
1, 2, and 4. However, Video 3, representing rainy conditions, had the worst classification
performance among different algorithms.

Table 23. Average precision for tested techniques.

Tested Algorithm Video 1 Video 2 Video 3 Video 4

YOLO V2—resnet18 0.42 0.38 0.35 0.40

YOLO V2—resnet50 0.47 0.39 0.40 0.40

YOLO V2—resnet101 0.50 0.43 0.42 0.45

YOLO
V2—inceptionv3 0.51 0.44 0.39 0.43

YOLO V2—
inceptionresnetv2 0.52 0.43 0.40 0.47

YOLO
V2—darknet19 0.57 0.46 0.36 0.55

YOLO
V2—squeeznet 0.44 0.43 0.40 0.42

YOLO
V2—googlenet 0.44 0.39 0.33 0.41

YOLO
V2—darknet53 0.56 0.52 0.41 0.53

YOLO V3—resnet18 0.52 0.52 0.35 0.50

YOLO V3—resnet50 0.53 0.41 0.39 0.47

YOLO V3—resnet101 0.58 0.43 0.46 0.56
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Table 23. Cont.

Tested Algorithm Video 1 Video 2 Video 3 Video 4

YOLO
V3—inceptionv3 0.47 0.46 0.39 0.44

YOLO V3—
inceptionresnetv2 0.41 0.40 0.35 0.45

YOLO
V3—squeeznet 0.55 0.53 0.42 0.52

YOLO
V3—googlenet 0.53 0.50 0.43 0.46

YOLO
V3—darknet53 0.58 0.54 0.44 0.56

YOLO V4
COCO—darknet53 0.61 0.58 0.46 0.59

YOLO V4 Tiny
COCO—darknet53 0.51 0.50 0.41 0.52

Faster
RCNN—resnet18 0.45 0.42 0.35 0.44

Faster
RCNN—resnet50 0.45 0.40 0.31 0.44

Faster
RCNN—resnet101 0.49 0.42 0.35 0.48

Faster
RCNN—darknet53 0.51 0.48 0.38 0.47

Proposeds Algorithm 0.85 0.83 0.71 0.81

3.5. Timing Analysis

The algorithm was tested on a computer running as a single thread on 11th Gen
Intel(R) Core(TM) running at 2.80 GHz with 16 GB of RAM with no GPU card installed.
The timing analysis, given in Table 24, summarizes the time required to run each sample
video through the algorithm and the average frame rate. The timing analysis shows that
the approach implementation can operate in real time at 15 frames per second.

Table 24. Summary of timing analysis for each sample video

Name Number of Frames Run Time (s) Average Frame Rate (s)

Video 1 299 22.724 0.076

Video 2 299 20.123 0.0673

Video 3 299 16.475 0.0551

Video 4 599 55.108 0.092

4. Conclusions

In this work, an end-to-end integrated vision-based framework that is capable of seg-
menting moving vehicles and classifying them by type is presented. Novel contributions to
intelligent transportation systems research have been presented by an integrated algorithm
capable of vehicle segmentation and classification in a camera-viewpoint-independent
highway image scene with the ability to handle multiple vehicle clusters. The algorithm
was speeded up through an automated approach for extracting a region of interest, reduc-
ing 40% in the processed data. Vehicle segmentation was carried out using an improved
speeded-up robust low-rank matrix decomposition technique. Utilizing a new and effective
thresholding method improved segmentation accuracy and simultaneously sped up the
segmentation processing. It improved segmentation accuracy by 15% on average com-
pared to current approaches and was 55% quicker on average than recent segmentation
techniques. Segmentation was shown to perform very well during the day. However,
the segmentation and classification results degraded under low light conditions or poor
environmental scenarios such as rain.
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The algorithm adopted size and shape physical descriptors from morphological prop-
erties and textural features from the histogram of oriented gradients (HOG) extracted from
the segmented traffic for feature extraction. Moreover, a multi-class support vector machine
classifier was used to identify diverse traffic vehicle categories, such as passenger cars,
passenger trucks, motorbikes, buses, and small and big utility vehicles. The proposed
approach manages multiple vehicle clusters through an iterative k-means clustering over-
segmentation procedure. It shows high classification performance for vehicle types, such as
passenger cars and passenger trucks, while its performance was disappointing for classes
with a poor showing in the training dataset. Additionally, the algorithm was compared
against 23 different deep-learning architectures. The resulting algorithm outperformed the
compared deep learning algorithms for the quality of vehicle classification accuracy.

The timing analysis results show that the algorithm’s current implementation can per-
form in real time for the 15 frames per second frame rate. However, future modifications to
the algorithm to handle different weather scenarios, such as rainy conditions, can improve
the segmentation and classification of the proposed algorithm and make it adaptable to
different weather conditions. Additionally, the lack of enough training datasets close to
the one utilized in this research makes using deep learning techniques not promising and
challenging and leads to poor performance.
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