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Abstract: Due to the complexity of sea surface environments, such as speckles and side lobes of
ships, ship wake, etc., the detection of ship targets in synthetic aperture radar (SAR) images is still
confronted with enormous challenges, especially for small ship targets. Aiming at the key problem
of ship target detection in the complex environments, the article proposes a constant false alarm
rate (CFAR) algorithm for SAR ship target detection based on the attention contrast mechanism of
intensity and texture feature fusion. First of all, the local feature attention contrast enhancement is
performed based on the intensity dissimilarity and the texture feature difference described by local
binary pattern (LBP) between ship targets and sea clutter, so as to realize the target enhancement and
background suppression. Furthermore, the adaptive CFAR ship target detection method based on
generalized Gamma distribution (GΓD) which can fit the clutter well by the goodness-of-fit analyses is
carried out. Finally, the public datasets HRSID and LS-SSDD-v1.0 are used to verify the effectiveness
of the proposed detection method. A large number of experimental results show that the proposed
method can suppress clutter background and speckle noise and improve the target-to-clutter rate
(TCR) significantly, and has the relative high detection rate and low false alarm rate in the complex
background and multi-target marine environments.

Keywords: attention contrast mechanism; intensity dissimilarity; texture feature difference; generalized
Gamma distribution (GΓD); CFAR ship target detection

1. Introduction

Synthetic aperture radar (SAR) is an active microwave remote sensing device, which
can acquire high-resolution images and work effectively in all weather and all day condi-
tions. High-resolution SAR has a wide range of applications not only in military fields but
also in civil fields, such as maritime traffic control and fishery management [1], and SAR
technique has been widely used in sea surface surveillance in recent years. Therefore, it is
of great significance to study how to accurately detect ship targets in SAR images.

The detection algorithm with the constant false alarm rate (CFAR) is widely used
based on the statistical models of sea clutter, and two of typical detection methods are
two-parameter CFAR and cell-average CFAR (CA-CFAR) based on a Gaussian model [2,3].
The outliers-robust CFAR detector was designed based on Gaussian clutter by the truncated-
maximum-likelihood estimator and strong outliers could be removed so that the detection
rate was improved in outliers-contaminated environment [4]. However, the motion of sea
surface results in the difficulty of statistical modeling, and the statistical behaviors cannot
be depicted by the Gaussian model. In recent years, a series of sea clutter distribution
models were provided, mainly including Weibull distribution, Log-normal distribution,
K distribution, Alpha-stable distribution, Gamma distribution, generalized Gamma dis-
tribution (GΓD), etc. [5–14]. Meanwhile, researchers proposed corresponding detection
algorithms to realize the precise detection of ship targets. Farah et al. [15] presented a fast
CFAR detection algorithm using GΓD model in SAR images with multiple ship targets.
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Considering the influence of ship targets for statistical modeling in the crowded harbors
and busy shipping lines, Ai et al. [16,17] proposed the new two parameter CFAR detector in
Log-normal clutter, and the method adopted the clutter truncation processing. In addition,
the bilateral-trimmed-statistics CFAR detector with a closed-form solution was designed in
multiple-target circumstances, and the outliers with high and low intensity are removed by
bilateral-thresholds to improve the detection performance [18]. Pan et al. [19] proposed a
CFAR ship detection method based on generalized K distribution, which removed outliers
by the fuzzy statistical theory to obtain the precise sea clutter model and good detection
performance in interference scenes. In order to improve the detection performance of
ship targets with different scales in multi-targets scenarios, Dai et al. [20] provided the
improved CFAR algorithm based on object proposals, which can not only obtain the precise
position of the ship targets, but also improve the target detection rate. Leng et al. [21]
comprehensively considered the intensity and spatial distribution of pixels and provided a
bilateral CFAR algorithm, which utilized kernel density estimation (KDE) to extract spatial
feature and performed CFAR detection by combining spatial distribution and intensity
distribution to obtain more accurate spatial distribution characteristics and detection ac-
curacy. In order to alleviate false positive from inherent speckle, discernible sea clutter,
etc., Pappas et al. [22] provided a superpixel-level CFAR detection method based on the
statistical model distribution, which can be applied in the previously models.

Due to the complexity of sea surface environments in SAR images, such as the effect
of speckle noise and side lobes of ships, etc., it is still difficult to distinguish ship targets
from sea clutter background by using the CFAR detection method based on a grayscale
statistical feature in SAR images, especially small ships. In recent years, the attention
contrast enhancement theory has been gradually applied to the object detection due to
the great application potential for the ship extraction, and scholars have successively
proposed ship target detection algorithms for improving the detection performance of
ship targets. In order to reduce the influence of side lobes in SAR images on ship target
detection, the fast multi-scale patch-based contrast measure (FMPCM) method presented
could realize the target enhancement and mitigate the side lobes effect for the detection
performance [23]. In addition, Wang et al. [24] introduced the multi-scale variance weighted
information entropy (MVWIE) to measure the local dissimilarity between target and its
surrounding background in SAR images with complex backgrounds. Considering the
complexity of clutter features in high-resolution SAR images, Sun et al. [25] proposed
a two-step ship target detection method based on coarse-to-fine mechanism, which can
enhance ship targets based on the gravity field method. In view of the influence of speckle
noise in sea clutter, Qian et al. [26] proposed a SAR ship target detection method based
on multi-scale saliency analysis in frequency domain, which can achieve accurate target
detection through frequency-domain multi-scale analysis and saliency information fusion,
and has the advantage of low computational cost. Li et al. [27] proposed a contrast-
based superpixel target detection method which performs target superpixel enhancement
processing based on weighted information entropy (WIE) according to the difference of
gray intensity between target superpixels and clutter superpixels. From the perspective
of information geometry, Yang et al. [28] put forward a curvature-based saliency method
based on information geometry theory and Riemannian manifold to improve the detection
capability for ships. Wang et al. [29] proposed a novel unsupervised ship detection method
using multi-scale saliency and complex signal kurtosis (MSS-CKS), which mainly includes
two stages of extracting ship target candidate areas and discriminating true ship targets.
The method uses a visual attention model to speed up the acquisition of target regions
of interest in SAR images, and combines complex information to achieve efficient and
real-time detection of ship targets. Because the structure and shape of the ship target are
complex and the resolution cells contain weak echoes, the target detection performance
is extremely challenging. Wang et al. [30] provided a high-resolution SAR ship target
detection method, which was mainly based on hierarchical sparse model (HSM) of random
forest to achieve rough detection of ship targets, and then used a contour saliency model
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(CSM) with a dynamic constant false alarm rate to achieve accurate detection of ship
target contours. The ship target detection method using frequency enhanced maximally
stable extreme region (MSER) was presented [31], which selected candidate ship targets
by constructing the frequency domain saliency MSER, and utilized the CFAR method
based on statistical distribution characteristics to complete accurately detection of targets.
A superpixel-based local contrast measure (SLCM) method for ship detection has been
provided, which can effectively avoid missing small targets and false alarms of strong
noise points [32]. Due to the non-uniformity and nonstationarity of sea clutter distribution,
ship target detection performance in the complex, and changeable sea clutter environment
being limited, Zhang et al. [33] proposed a ship detection method based on information
geometry (IG) theory by analyzing the statistical manifold and the geometric structure,
which can realize the significant representation of ship targets and the suppression of
clutter background.

In addition, with the development of deep learning in computer vision field, scholars
have applied deep learning methods to the SAR ship detection, most common detection
models contain single stage and two stage detectors. The You Only Look Once (YOLO)
algorithm is a typical single-stage detection model, and scholars have successively pro-
posed a series of improved algorithms based on the YOLO framework, such as You Only
Look Once version 2 (YOLOv2) [34], H-YOLO [35], N-YOLO [36], You Only Look Once
version 5 (YOLOv5) [37], Duplicate Bilateral YOLO (DB-YOLO) [38], etc. The region-based
convolutional neural network (R-CNN) is a typical two-stage network model, which has
been explored in the ship target detection task. In order to improve the detection accuracy,
a large number of algorithms based on improved faster R-CNN have been provided [39–41].
Compared with the single-stage detection method, the two-stage method can often achieve
higher detection accuracy, but its detection calculation speed is relatively slower. However,
the deep learning detection method is data-driven, and the high-precision detection model
needs vast amounts of data. Due to the limited amount of SAR data in the actual scenes, it
is difficult to guarantee the detection performance in different SAR scenes.

At present, the conventional CFAR detection method may have the risk of mismatched
models and low detection rate for small ships, and the deep learning detection method
is the lack of real data for different scenarios. The detection performance of ship targets
in complex marine environments still needs to be improved, and the further research
of attention contrast enhancement is still essential and has the great prospect and wide
applications, especially for the detection of small ship targets which seriously threatens
the maritime safety. Aiming at the problem of ship target detection in complex SAR
environments, especially for small ships, the adaptive CFAR algorithm in SAR images is
designed based on the attention contrast mechanism in this article. In order to improve
the detection performance, the attention contrast enhancement is processed based on
the differences of the intensity feature and texture feature described by the non-uniform
LBP between ship target and background in SAR images, and then CFAR ship target
detection based on the excellent goodness-of-fit of statistical model is performed based on
the attention contrast map.

The remainder of this article is organized as follows: Section 2 elaborates on the
architecture of the proposed detection method of ship targets based on the intensity and
texture features. Section 3 gives the experimental analyses of the proposed method and
other benchmark methods, and discusses the effectiveness of the proposed method in
different scenes. Section 4 summarizes the conclusions.

2. Detection Methodology

The sea clutter environment is complex and changeable, and there are generally
obvious speckle characteristics in SAR images, and small ship targets have weak scattering
and are easily hidden in the clutter so that the target detection rate decreases. Therefore,
this article proposes an adaptive CFAR detection method for ship targets based on the local
attention contrast enhancement. Because the use of a single intensity feature in a single-
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channel SAR image cannot characterize the local area information well, the texture feature
can provide the spatial scattering distribution information of a ship due to the difference
of scatterings. For this reason, this article combines the attention contrast difference of
intensity and texture features in local regions to enhance feature representation of ship
targets. Figure 1 gives the specific flow chart of the proposed detection method.
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Figure 1. Flow chart of the proposed method.

2.1. Contrast Enhancement Mechanism Based on Intensity Feature

The intensity of ships and sea clutter background is different, in order to describe the
local difference of intensity feature, and considering the influence of targets distribution
and the side lobes of ships for the detection performance, this article selects a local three-
layer sliding window processing with a diagonal-oblique diagonal structure, as shown
in Figure 2. The window is mainly divided into three layers, namely target window T,
protection window P, and four-neighborhood background windows B1, B2, B3, and B4 on
the diagonal-oblique diagonal regions. The window size can be selected according to the
ship size.

  

B1 B2

B3B4

T

P

Figure 2. Structure diagram of the local sliding window.

Usually, the intensity of ship target pixels is stronger than the sea clutter background.
The more similar the intensity characteristics of two local area blocks, the more likely the
two areas belong to the same type (ship target or background). Based on these two facts,
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the intensity dissimilarity between the ship target block and its surrounding background
blocks in the local sliding window area, as shown in Figure 2, is defined as

Lgk = sgn(µT − µBk ) ·
(

1−
2µTµBk

µ2
T + µ2

Bk

)
= sgn(µT − µBk ) ·

(
(µT − µBk )

2

µ2
T + µ2

Bk

)
(1)

where µT represents the mean intensity of the target block T in the local window area,
µBk , k = 1, 2, 3, 4 represents the mean intensity of the four surrounding background blocks,
and symbol sgn is the sign function.

As shown in Equation (1), there are the following characteristics:

• When µT > µBk , sgn(µT − µBk ) = 1, it indicates that the intensity of the central target
block T is stronger than the k-th background block in the local sliding window area,
which means that the central target block T may be a candidate ship target.

• When µT < µBk , sgn(µT − µBk ) = −1, it indicates that the intensity feature of the k-th
background block is stronger than that of the central target block, which means that
the central target block T may be the candidate background.

• When µT = µBk , sgn(µT − µBk ) = 0, it indicates that the intensity feature of the target
block and the background block are highly similar, which means that the central target
block T may be the ship target candidate area or candidate background area.

• When the intensity characteristics of the central target block and its surrounding
background blocks are more dissimilar, that is, the greater the mean intensity difference
is, the larger the value of (µT − µBk )

2/(µ2
T + µ2

Bk
) is, and the value range is [0, 1).

In order to achieve significant enhancement for ship targets, when the central target
block T in the local sliding window area is the ship target candidate area, it is necessary
to perform intensity feature attention enhancement processing on the central target block.
Conversely, when the central target block T is the background candidate, the intensity
suppression operation needs to be performed. Therefore, we combine the intensity feature
of the central target block and the intensity dissimilarity between the ship target and
surrounding backgrounds to obtain the local intensity feature contrast, and the contrast
metric Cg can be calculated as follows:

Cg(p, q) = max

{
eLgk · 1

N

N

∑
j=1

I j
T

}
, k = 1, 2, 3, 4 (2)

where (p, q) is the center coordinate of the sliding window target block T, I j
T represents the

j-th maximal intensity value of the target area T, and N is the number of maximal intensity
values considered. When the average intensity of the central target block is greater than the
average intensity of the background block, eLgk ∈ (1, e), so the ship targets can be enhanced.
When the average intensity of the central target block is smaller than the average intensity
of the background block, eLgk ∈ (e−1, 1), the background pixel has a significant suppression
effect. When the average intensity of the central target block is equal to the average intensity
of the background block, eLgk = 1, it is unable to judge whether the central target block
belongs to the ship target candidate area or the background candidate area, so the pixel of
central target block is not enhanced.

2.2. Contrast Enhancement Mechanism Based on Texture Feature

The efficient detection of ship targets in SAR images is not easy to achieve only by
the intensity feature, especially for the detection of small ship targets. In order to more
accurately extract the ship targets from the complex sea clutter background, the attention
contrast enhancement metric combines the texture difference between ship targets and
clutter background in this article.

Local binary pattern (LBP) is mainly used to describe the local texture feature of
the image, which reflects the relationship between any pixel in the image and its local



Sensors 2022, 22, 8116 6 of 15

neighborhood pixels. The traditional LBP mainly uses the intensity value of the central
pixel as the threshold to compare the remaining pixels in the window, and characterizes
the texture structure using binary encoding. The LBP value can be calculated by

LBPP =
P−1

∑
i=0

SLBP(xi − xc) · 2i

s.t. SLBP(t)

{
0, t < 0
1, t ≥ 0

(3)

where xc is the intensity value for the center pixel, xi, i = 0, 1, ..., P− 1 is the intensity value
of i-th pixel in the local neighborhood, and P represents the number of neighbor pixels.

Therefore, stimulated by LBP, in order to adapt to the SAR image texture feature
solution, we use the intensity differences between the central pixel (m, n) and all the pixels
in its surrounding local neighborhood to reflect the texture characteristic change in the local
region, and extracting the texture measure value at pixel (m, n) is denoted as

Gtex(m, n) = ‖gtex(m, n)‖2

s.t. gtex(m, n) =
(

I0 − I(m, n), I1 − I(m, n), ..., IL2−2 − I(m, n)
) (4)

where gtex(m, n) represents the feature vector of intensity differences between the pixel
point (m, n) and its local neighborhood pixels, ‖·‖2 represents the 2-norm, and I(m, n) is
the intensity value of pixel (m, n) in the original SAR image. Ij, j = 0, 1, ..., L2 − 2 is the
intensity value of j-th pixel in the L× L local neighborhood, and L represents the size of
the local neighborhood window, which is generally an odd integer greater than or equal to
3. In general, the LBP mode of 3× 3 neighborhood window is a uniform mode, but as the
window size increases, the distribution of LBP mode will be uneven. The non-uniform LBP
mode will provide more texture information in the window area composed of central pixel
and its surrounding pixels [42], and L is chosen according to the small target size.

Due to the structure differences of a ship in different positions, the scattering is
inhomogeneous after SAR imaging processing, and thus the scattering heterogeneity of
a ship target will make the relative texture difference between the ship target and clutter
background. That is, the texture of ship target is obviously stronger than clutter background.
Therefore, the contrast enhancement metric using the difference of local texture feature
between ship target and background is denoted as

Cte(p, q) = max
{

GT · log2
(
GT/GBk + 1

)}
, k = 1, 2, 3, 4 (5)

where GT and GBk represent the average texture measure value of the target block T and the
average texture measure value of the surrounding background blocks in the local sliding
window, respectively. When GT > GBk , log2

(
GT/GBk + 1

)
> 1, which means that the tex-

ture of the target can be effectively enhanced. When GT < GBk , 0 < log2
(
GT/GBk + 1

)
< 1,

which means that it has a certain inhibitory effect on the texture feature of the central target
block. When GT = GBk , log2

(
GT/GBk + 1

)
= 1, the texture enhancement is not performed

on the center target block.

2.3. CFAR Target Detection Based on Clutter Statistics

Combining attention contrast enhancement metric based on intensity and texture
features, the final contrast mechanism Cs is obtained by the fusion processing, and calcu-
lated by

Cs = Cg × Cte (6)

In order to adaptively extract ship targets from the background after the attention
contrast enhancement processing, the adaptive CFAR detection method based on clutter
statistical distribution model is carried out. The distribution model of attention contrast
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map with the superior fitting accuracy is selected according to the statistical characteristic
analyses by a large number of different actual scenes. The analytical statistical models
mainly include Gauss distribution model, Rayleigh distribution model, Weibull distribu-
tion model, Log-normal distribution model, Gamma distribution model, and GΓD model.
In order to illustrate the goodness-of-fit of different models in this article, we give experi-
mental results of the clutter background regions after the attention contrast enhancement
processing from different SAR scenes, and the selected regions are the pure clutter regions
C1, C2, C3, and C4 marked by the black dotted rectangle shown in Figure 3a–c. The region
C1 is the relative uniform sea clutter background, the region C2 is the clutter area with
obvious texture undulation, the region C3 represents the clutter background with strong
speckle noise, and the region C4 stands for the non-uniform clutter background. The fitting
results of different regions are shown in Figure 4a–d.

In order to quantitatively analyze the fitting performance of real data, the mean square
difference (MSD) is used to evaluate the goodness-of-fit, and defined as

Dmsd =
1

Nc

Nc

∑
i=1

(pt(xi)− pm(xi))
2 (7)

where pt(xi) and pm(xi) represent the theoretical probability density function (PDF) and
histogram probability of measured data, respectively. Nc is the length of the data sequence.
The smaller the MSD value is, the better the clutter fitting effect will be.

 

C1

C2

(a)
 

C3

(b)
 

C4

(c)

Figure 3. Real SAR scenes. (a) Scene 1; (b) Scene 2; (c) Scene 3. The pure clutter regions C1, C2, C3,
and C4 are marked with black dotted rectangles.

It can be obviously seen from the clutter fitting results in Figure 4a–d that the fitting
performance of GΓD model is better in the low amplitude ranges. The fitting accuracy of
clutter tail is the key for achieving high-precision detection, and in order to compare the
fitting accuracy of tail for various distribution models, Table 1 lists the fitting MSD values
of different statistical models for the background tail, and it can be seen that the GΓD model
has the smallest fitting error to the clutter tail.

Table 1. The fitting MSD values of different statistical models for clutter tail in different regions.

Distribution
Models Region C1 Region C2 Region C3 Region C4

Gauss 7.4857× 10−9 4.5551× 10−9 1.8173× 10−8 2.2635× 10−7

Rayleigh 3.9911× 10−9 4.5551× 10−9 1.7713× 10−8 1.9565× 10−7

Weibull 7.5013× 10−9 4.5551× 10−9 1.8185× 10−8 2.4318× 10−7

Gamma 5.1426× 10−9 4.5531× 10−9 1.7336× 10−8 7.5082× 10−8

Log-normal 3.4524× 10−9 2.9926× 10−9 8.4293× 10−9 4.5704× 10−8

GΓD 1.7642× 10−9 9.2214× 10−10 8.0524× 10−9 3.3507× 10−8
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(a) (b)

(c) (d)

Figure 4. Fitting results of different regions. (a) fitting result of region C1; (b) fitting result of region
C2; (c) fitting result of region C3; (d) fitting result of region C4.

Combining the clutter fitting curves of different statistical models and MSD values of
the clutter tail goodness-of-fit, it is clearly verified the GΓD model has the best fitting effect
for real data after the proposed attention contrast enhancement method. The CFAR ship
target detection is performed based on GΓD [11,12], whose PDF can be written as

pt(x) =
|v|kk

δΓ(k)

( x
δ

)kv−1
exp

{
−k
( x

δ

)v}
, δ, |v|, k, x > 0 (8)

where δ, v, and k are the scale parameter, power parameter, and shape parameter, respec-
tively, and Γ(·) represents the Gamma function.

The relationship between the detection threshold and probability of false alarm (PFA) is

Th =

δ
{

1
k QInv(1− Pf a, k)

} 1
v , v > 0

δ
{

1
k QInv(Pf a, k)

} 1
v , v < 0

(9)

where QInv(·) represents the inverse incomplete gamma function, and Pf a is the speci-
fied PFA.

3. Results and Discussion

This algorithm verification selects the high-resolution SAR images collected by
TerraSAR-X satellite and Sentinel-1 satellite in the public datasets HRSID [43] and LS-
SSDD-v1.0 [44]. The performance of the proposed method is verified from the aspects
of target enhancement effect and target detection performance, the comparative analy-
ses are made with CA-CFAR method [3], GΓD-CFAR method [11], new two parameter
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CFAR method based on Log-normal distribution (LN-2PCFAR) [17], FMPCM method [23],
MVWIE method [24], and IG method [33].

3.1. Target Enhancement Performance Analyses

First of all, in order to verify the contrast enhancement effect of proposed method,
especially the enhancement performance for small ship targets, we conducted a large
number of test experiments using SAR images from the public datasets HRSID and LS-
SSDD-v1.0. The article selects the SAR image with small ship targets to show the target
enhancement effect as shown in Figure 5a, where the small target slice marked by the
red dotted rectangle, and the small ships are marked as T1, T2, and T3 in Figure 5b.
The proposed method is compared with FMPCM and MVWIE methods to verify the
contrast enhancement performance.

Figure 6a–d show three-dimensional images of Figure 5b, the MVWIE method, the
FMPCM method, and the proposed method, respectively. As shown in Figure 6a–d,
the small target in the original SAR image has a low contrast with its surrounding clutter,
and it is not easy to distinguish from the clutter background. After using the MVWIE
method, FMPCM method, and our method, the contrast between ship targets and the
clutter background can be improved. However, the suppression effect of MVWIE and
FMPCM methods is relatively worse than proposed method, and there is still clutter
remaining which will induce false alarms. After the attention contrast enhancement of the
intensity and texture features, our proposed method has a better inhibition effect for the
clutter background.

 

(a)
 

T1

T2

T3

(b)

Figure 5. Scene 4 with small ship targets and small target slice. (a) scene 4; (b) small target slice
marked by the red dotted rectangle in (a).
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Figure 6. Target enhancement results. (a) original small target slices; (b) results of the MVWIE
method; (c) results of the FMPCM method; (d) results of the proposed method.

In order to further quantitatively illustrate the enhancement effect, the TCR is used
and calculated as

TCR = 10log10(St/Sc) (10)

where St and Sc represent the average power of the detected ship target pixels and sur-
rounding clutter background pixels, respectively.

Table 2 presents the original TCR value and TCR values after target enhancement
processing based on different enhancement algorithms. Compared with the MVWIE
algorithm, the proposed method can enhance the TCR by 10∼13 dB, and compared with
the FMPCM algorithm, the proposed method can enhance the TCR by 6∼8 dB. It can be
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seen that the proposed method in this article can significantly improve TCRs from Table 2
and Figure 6, which proves that the algorithm has a good target enhancement effect so that
the detection rate of ships can be increased effectively.

Table 2. TCR values calculated by different methods.

Targets Original
TCR/dB

MVWIE
Method
TCR/dB

FMPCM
Method
TCR/dB

Proposed
Method
TCR/dB

T1 14.5718 26.2192 32.8889 39.3563
T2 11.2389 22.3531 25.5922 33.6248
T3 10.2377 19.6078 22.8028 29.5424

3.2. Target Detection Performance Analyses

In order to validate the detection performance of our method for different scenarios,
lots of target detection experiments are conducted using real SAR images from the public
datasets HRSID and LS-SSDD-v1.0. This article chooses five different SAR images with
multiple targets to show the detection effect of ship targets, and at the same time, the pro-
posed method is compared with CA-CFAR method, GΓD-CFAR method, new LN-2PCFAR
method, FMPCM method, MVWIE method, and IG method. In order to compare the
detection performance of different algorithms, all ships can be detected for each exper-
imental scenario with under the same PFA. Figures 7a, 8a, 9a, 10a and 11a present five
original multi-target SAR images, respectively, and the real ship targets are marked with
white rectangles.
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Figure 7. Detection results of different methods for scene 1. (a) original image; (b) CA-CFAR method;
(c) GΓD-CFAR method; (d) new LN-2PCFAR method; (e) MVWIE method; (f) FMPCM method; (g) IG
method; (h) proposed method.

Figures 7–10 and 11b–f show ship target detection results for CA-CFAR method, GΓD-
CFAR method, new LN-2PCFAR method, MVWIE method, FMPCM method, IG method,
and our proposed method in this article, respectively. Correctly detected targets, false
alarms are marked as the red, green rectangles after the clustering processing. It can be
seen from the all detection results that the CA-CFAR method, GΓD-CFAR method, and the
new LN-2PCFAR method will cause more false alarms due to the influence of interference
(speckles, ship wake, etc.). The MVWIE, FMPCM, and IG methods are not effective
enough to suppress the interference, and there are still a few false alarms. As shown in
Figures 7 and 8, it can be seen that the MVWIE method, FMPCM method, and IG method
will misjudge the strong interference points as the target pixels, and for the small target
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scenarios, it can be seen that the intensity difference between bright noise points and small
ship targets is not obvious as shown in Figure 9, and the MVWIE method, FMPCM method,
IG method, and the proposed method can enhance some obvious speckle noises while
enhancing ship targets, thus causing false alarms. However, our proposed method can
suppress the background so that the false alarm rate decreases as shown in Figures 8 and 9.
In addition, due to the discontinuity of scatterings for ship target, a ship may be mistaken
as multiple ships as shown in Figure 8, and the proposed detection method can alleviate
this phenomenon. It can be seen that the detection ability has the same level of efficiency
for the FMPCM method, IG method, and our proposed method in a relatively uniform
scene from Figures 10 and 11. Compared with other methods, our proposed method has a
better suppression effect on the side lobe generated by the strong scattering characteristics
of ship target T0 marked in Figure 11a.
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Figure 8. Detection results of different methods for scene 2. (a) original image; (b) CA-CFAR method;
(c) GΓD-CFAR method; (d) New LN-2PCFAR method; (e) MVWIE method; (f) FMPCM method;
(g) IG method; (h) proposed method.
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Figure 9. Detection results of different methods for scene 3. (a) original image; (b) CA-CFAR method;
(c) GΓD-CFAR method; (d) new LN-2PCFAR method; (e) MVWIE method; (f) FMPCM method; (g) IG
method; (h) proposed method.
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Figure 10. Detection results of different methods for scene 4. (a) original image; (b) CA-CFAR method;
(c) GΓD-CFAR method; (d) new LN-2PCFAR method; (e) MVWIE method; (f) FMPCM method; (g) IG
method; (h) proposed method.
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Figure 11. Detection results of different methods for scene 5. (a) original image; (b) CA-CFAR method;
(c) GΓD-CFAR method; (d) new LN-2PCFAR method; (e) MVWIE method; (f) FMPCM method; (g) IG
method; (h) proposed method.

Furthermore, figure of merit (FoM) is used to quantitatively evaluate the detection
performance and was denoted as

FoM =
Nd

N f + Nr
(11)

where Nd represents the number of correctly detected ship targets, N f is the number of
false alarms, and Nr represents the number of real targets in a SAR image. As shown in
Equation (11), the larger the value of FoM, the higher the target detection rate.

Table 3 lists the FoM values calculated by different methods. As shown in Table 3, the
CA-CFAR method, GΓD-CFAR, and new LN-2PCFAR methods will produce false alarms
in complex environments. Since the MVWIE and FMPCM methods use single feature
contrast metric, the suppression effect of strong speckle noises may not be good enough,
which will result in a few false alarms. By constructing statistical manifold space, the IG
method realizes the difference representation between the target and the background area,
which improves the target detection to some extent, but there is still a small amount of
false alarms when there is obvious speckle noise. However, the algorithm in this article
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significantly improves TCRs and the probability of missed detection and false alarm is
decreased after the attention contrast enhancement processing based on the intensity and
texture feature differences. Therefore, the proposed method in this article improves the
detection performance of ship targets.

Table 3. FoM values of different algorithms.

Scenes Nr CA-CFAR GΓD-CFAR New LN-2PCFAR MVWIE FMPCM IG Method Proposed Method

Scene1 33 0.6471 0.7500 0.8049 0.8684 0.8919 0.9167 1
Scene2 11 0.6471 0.7857 0.8462 0.9167 0.9167 1 1
Scene3 16 0.6667 0.7273 0.7273 0.8421 0.8421 0.8889 0.9412
Scene4 52 0.8000 0.8667 0.8966 0.9630 1 1 1
Scene5 15 0.5556 0.7143 0.8333 0.8824 0.9375 1 1

4. Conclusions

In this article, the adaptive CFAR ship target detection method based on an attention
contrast enhancement mechanism is presented, and the effectiveness of this method is
verified using a lot of multi-target scene SAR images. The algorithm firstly combines
the intensity feature of the target block in the local sliding window area and its intensity
dissimilarity with different surrounding background blocks, and based on the texture
structure described by non-uniform LBP, the texture difference between the target block
and the clutter background block in the local window area is counted. Then, the target
attention contrast enhancement is achieved by combining the intensity and texture feature
differences. After the attention contrast enhancement processing, the optimal selection of
the statistical distribution model is achieved through the goodness-of-fit, analyses, and the
CFAR ship target detection is carried out based on the optimal GΓD model. Through a large
number of experiments and comparative analyses of different methods, it is verified that
the algorithm in this article can significantly improve the TCR. In addition, it has a better
enhancement effect for ships and background suppression effect in a complex multi-target
environment, reduces the false alarm rate caused by speckle, and significantly improves
the detection performance of small ship targets. In the future, the more effective feature
differences between ship targets and clutter background and fused mechanism will be
further explored to improve the detection accuracy and sea clutter suppression ability in
complex scenes.
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