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Abstract: To improve the satisfaction and acceptance of automatic driving, we propose a deep
reinforcement learning (DRL)-based autonomous car-following (CF) decision-making strategy using
naturalist driving data (NDD). This study examines the traits of CF behavior using 1341 pairs of
CF events taken from the Next Generation Simulation (NGSIM) data. Furthermore, in order to
improve the random exploration of the agent’s action, the dynamic characteristics of the speed-
acceleration distribution are established in accordance with NDD. The action’s varying constraints
are achieved via a normal distribution 3σ boundary point-to-fit curve. A multiobjective reward
function is designed considering safety, efficiency, and comfort, according to the time headway
(THW) probability density distribution. The introduction of a penalty reward in mechanical energy
allows the agent to internalize negative experiences. Next, a model of agent-environment interaction
for CF decision-making control is built using the deep deterministic policy gradient (DDPG) method,
which can explore complicated environments. Finally, extensive simulation experiments validate the
effectiveness and accuracy of our proposal, and the driving strategy is learned through real-world
driving data, which is better than human data.

Keywords: deep reinforcement learning; naturalist driving data; speed-acceleration distribution;
action’s varying constraint

1. Introduction

With rapid growth in the scale of urban traffic and the standing increment of vehicles,
car following (CF) has become the most common driving behavior in daily driving. It
has been widely used in microscopic traffic simulation and autonomous driving [1]. For
autonomous vehicles (AVs), safe and comfortable driving will increase passenger satisfac-
tion and trust, minimize fuel consumption, and benefit auto owners financially. Poor CF
performance will lead to traffic congestion and oscillation [2].

The research object for car-following behavior is the interaction between people and
vehicles. It describes the interaction mechanism of vehicles on the road in the process
of longitudinal movement, taking into account factors such as safety, comfort, and effi-
ciency [3,4]. The driver models related to CF models are generally established based on
two approaches: the rule-based approach and the supervised learning approach [5–7]. The
former relies primarily on a differential equation model to develop a CF strategy, ranging
from simple control logic to advanced control logic, such as proportion integral differential
(PID) control [8,9], fuzzy control [10], and model predictive control (MPC) [11,12]. Due
to the model’s restrictions, a CF strategy based on a differential equation model lacks the
ability to generalize to unknown situations in a real traffic environment, and researchers
are unable to enumerate every scenario that might arise during the CF process. The latter
typically relies on data provided by human demonstrations, imitating driving strategies
from data extracted from human driving in a supervised manner, such as deep neural
networks (DNNs), long short-term memory (LSTM), and k-nearest neighbor (KNN) [13–15].
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However, it is challenging to develop an ideal driving strategy because it relies heavily on
a large amount of annotated driving data that essentially only simulates human driving
behavior rather than optimizing for safety, efficiency, and comfort. Furthermore, it is
insufficient to derive only empirical control rules from natural driving data. The advan-
tages of optimal control should be exploited and thoroughly combined with the driver’s
driving characteristics.

Aiming to address this limitation, the application of deep reinforcement learning
(DRL) methods to the processing of vehicle decision control has attracted the widespread
attention of researchers [16]. DRL combines deep learning and reinforcement learning to
deal with high-dimensional state space and discrete or continuous action spaces in decision-
making problems, enabling agents to make autonomous decisions in complex scenarios [17].
Accordingly, DRL-based methods can be applied at many levels, such as robots [18], traffic
lights [19], autonomous vehicles [6], and hybrid vehicle energy management [20]. Using
real-world driving data to drive model training can achieve better control performance;
that is, exploiting expert knowledge can provide the best training samples or preferences
for the agent to guide action exploration in the training process, thereby improving their
learning and adaptability.

In light of existing works, we use the characteristics of naturalist CF behavior, com-
bined with DRL and expert knowledge, to form an adaptive learning method. The main
contributions of this paper are as follows: (1) We analyze the dynamic characteristics of
CF from NGSIM data, and frequency statistics characterize the distribution of each char-
acteristic parameter in the CF process. The correlation coefficient is used to analyze the
significance of each characteristic parameter to following vehicle (FV) speed. (2) We propose
to utilize the deep deterministic policy gradient (DDPG) algorithm for decision-making
to obtain an autonomous CF control strategy for AVs. In addition, utilizing naturalist
driving data (NDD) to establish the dynamic characteristics of speed-acceleration distri-
bution enhances random exploration of the agent’s actions; to realize the action-varying
constraints, it fits the relationship curve according to the normal distribution of the 3σ
boundary points. A multiobjective reward function is designed that takes into account CF
behavior traits as well as driving efficiency, comfort, and safety objectives. (3) Validation:
The developed strategy is evaluated through extensive simulations. The simulation results
validate the strategy’s effectiveness in learning and evaluating the safety, efficiency, and
comfort performance of the CF decision-making process.

The paper is organized as follows: The related work is introduced in Section 2. Section 3
analyzes the characteristics of car-following behavior based on naturalist driving data. Then,
Section 4 presents details of the car-following decision-making strategy model based on deep
reinforcement learning. Extensive simulations are discussed in Section 5, and conclusions are
summarized in Section 6.

2. Related Work

In the past few decades, researchers have proposed many CF optimal control algo-
rithms and strategies [21]. For traditional car-following strategies based on differential
equation models, fuzzy self-optimizing PID [9] and fuzzy logic [10] have been proposed
to adapt to nonlinear and time-varying traffic flow behavior. In order to improve driving
comfort and robustness, Schmied et al. [22] proposed a CF method under multilane traffic
conditions. However, the difficulty in developing and applying adaptive cruise control
(ACC) lies in establishing a multiobjective control strategy that includes safety, comfort,
and economy. Among them, the ability of MPC to handle multiple constraints by rolling
the horizon has been widely used to solve the problem of CF. Goni-Ros et al. [11] estab-
lished an MPC car-following model based on a constant time headway (THW). With the
rapid development of data-driven technology, Moon et al. [8] proposed a PID-controlled
car-following model considering human factors based on a large amount of real test data.
Bolduc et al. [12] proposed an integrated, optimal ACC driver multimodel, which uses MPC
to track the reference trajectory that best represents the driver’s style model. However, the
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real traffic environment is full of complexity and randomness, which limits the flexibility
and generalization of traditional control methods. Likewise, researchers cannot enumerate
all the situations that may occur in the process of car following.

With the rapid development of communication technology, the application of commu-
nication technology to the CF model has become a research hotspot, making multiple CFs
connected into a platoon, which expands the vehicle’s perception ability and actively assists
by sharing traffic information vehicle control [23]. Although the information interaction
between vehicles reduces the complexity and randomness of the environment, it does not
essentially solve the complexity of rule-based design, nor can it continuously interact with
the environment through data self-learning [24].

The rapid development of data-driven and artificial intelligence technology has re-
ceived widespread attention in the field of transportation [1], and many researchers have
provided machine learning methods to learn human driving habits. Wang et al. [13]
proposed a DNN-based CF model using Next Generation Simulation (NGSIM) data.
Wei et al. [14] added a supervised network trained by real driving data to an actor-critic
network and proposed a car-following framework for supervised reinforcement learning.
Wang et al. [15] proposed a human-like maneuver decision-making method based on an
LSTM network and a conditional random field model for AVs. The above research shows
that a data-driven model has high accuracy in fitting human driving trajectories, which sig-
nificantly reduces the interference of developers in the strategy. However, it essentially only
simulates human driving behavior rather than optimizing safety, efficiency, and comfort,
and it is difficult to obtain an optimal driving strategy.

By comparison, DRL can adaptively update control strategy parameters by interacting
with the environment. Deep Q-network (DQN) and its derivatives, a combination technique
of Q-learning and large-scale nonlinear neural networks, have been presented in recent
years to solve the vehicle decision control problem. Xia et al. [25] adopted a DQN algorithm
to propose a driving strategy based on professional driver experience, which only relies
on an image input of a camera to achieve end-to-end control. To solve the problem of
DQN overestimation, Nageshrao et al. [26] proposed to use a dueling deep Q-network
(DDQN) to learn driving strategies and safety checks to constrain actions. However, these
approaches output discrete actions inefficiently in solving high-dimensional action space
problems. More importantly, the action is continuous and precise in terms of AV control. In
order to solve this continuous control problem, Lillicrap et al. [27] proposed a deterministic
policy gradient (DPG)-based actor-critic, a model-free algorithm for continuous action
space control. In an open racing car simulator (TORCS), Sallb et al. [28] used the same
driving scenario to compare the driving strategies of DQN and DDPG. The results showed
that a driving strategy based on DDPG completes a driving task more accurately and
smoothly than a driving strategy based on DQN. In order to avoid making unpredictable
decisions in the learning process based on historical driving data, Xiong et al. [29] designed
a safety mechanism based on artificial potential fields by using DDPG to learn driving
strategies. The research mentioned above makes progress in solving certain conditions
of CF driving. However, the end-to-end decision-making strategy with images as input
leads to insufficient driving status obtained by the DRL network. Moreover, the driving
strategy learned in a single-environment training scenario is difficult to apply directly to
the natural driving environment. Obtaining driving data through a vehicle test bench,
Sun et al. [30] proposed a DDPG-based decision-making strategy of ACC for heavy vehicles.
However, dividing a two-dimensional action space of acceleration and braking into a one-
dimensional independent training action space results in an unacceptable driving situation
in which acceleration and braking are output at the same time. Moreover, the fixed value
punishment term given to the completed conditions, such as too many lane departures
and collisions during training, is not conducive to the agent absorbing adverse experiences
and accelerating the convergence of the network. For AVs, the comfort of passengers
must be accepted in addition to the safety and efficiency of the vehicle. Zhu et al. [31]
proposed a safe, efficient, and comfortable DRL-based speed control method. It obtains a
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fixed acceleration range through NGSIM data and designs a collision avoidance strategy in
the face of an emergency, that is, braking at the maximum deceleration, but the occurrence
of a collision is a fixed penalty. From the perspective of shaping the reward function,
Pan et al. [32] collected and analyzed real-world car-following test data and developed a
DDPG car-following model with a human-like reward function. Nevertheless, the reward
function is all negative, there is no positive reward, and the punishment for collision is −1.
Similarly, Yan et al. [33] combined the advantages of cooperative adaptive cruise control
(CACC) and DDPG in car-following decision-making to output an optimal policy that
also contains all negative reward functions, and there is no punishment term for training
completed early.

The existing related work uses the DRL method to achieve vehicle decision-making
control, and the DDPG algorithm solves the continuous problem in the field of vehicle con-
trol very well. In addition, most of the actions applied in the DRL work are fixed empirical
constraints, and there are few considerations about how to use the driver’s acceleration
characteristics in the car-following strategy. Therefore, we first analyze NDD to extract
the driving characteristics of the car-following driver and determine the state space via
correlation analysis. Then, according to the speed-acceleration distribution characteristics,
the corresponding curve is fitted via 3σ boundary points of the normal distribution to
enhance random exploration of the DRL action output. Finally, a multiobjective reward
function combines safety, efficiency, and comfort. In order to create a CF model that can
faithfully simulate a driver’s following behavior and that employs the DDPG method to
solve the DRL problem, this work further studies the application of DRL to the modeling
of the autonomous CF decision-making problem.

3. Analysis of Car-Following Behavior-Based Naturalist Driving Data
3.1. Source of Naturalist Driving Data

This paper utilizes the following driving characteristics from real-world microscopic
driving data and combines them with DRL to realize autonomous following decision
control. NGSIM data are widely used in the field of traffic flow [34], which plays a vital
role in the analysis of driving behavior at the tactical level, especially in research into
vehicle interaction behavior in acceleration and lane change models. Among them, the I-80
dataset collects 45-min vehicle trajectory data in three periods, representing the process
from noncongestion to congestion and the peak period of traffic congestion, respectively.
According to relevant research work using these data [13,31,35], we have established
1341 pairs of CF events, including FV speed and acceleration, speed of leading vehicle
(LV), relative speed, and space headway. Moreover, two longitudinal safety parameters
are added in the CF process, which are usually used for driver assistance systems, THW,
and time to collision (TTC) [12]. In order to avoid the situation that space headway is zero
and TTC tends to infinite in the above driver-following trajectory analysis, inverse time to
collision (TTCi) is used instead of TTC analysis.

The CF events are used to analyze the driver’s naturalist driving behavior during the
CF process, and the DRL agent is used for training and testing. Among them, 70% (939) of
the CF events were selected as the training dataset, and the remaining 30% (402) as the test
dataset by random sampling algorithm. At the same time, the high-occupancy lane in the
US101 data is added for a single-scenario test and analysis.

3.2. Statistical Feature Analysis

In this section, we analyze the distribution of characteristic parameters based on
the 1341 groups of CF events to know the driver’s behavior characteristics during the
CF process. Figure 1 shows the empirical distribution of each characteristic parameter,
including frequency and cumulative frequency.
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Figure 1. Empirical distribution of characteristic parameters in car-following events, where (a–f) respec-
tively correspond to the following vehicle speed and acceleration, space headway, relative speed, time
headway, and inverse time to collision.

For Figure 1a, the FV speed distribution in this dataset lies in the main scope of
(6 m/s, 9.5 m/s), and 1% is greater than 18.6 m/s. This suggests that the FV mainly drives
at medium and low speeds, and road traffic conditions are congested. From the distribution
in Figure 1b, it can be seen that the acceleration of FV basically obeys a normal distribution
and lies in the main scope of (−3 m/s2, 2.5 m/s2). This indicates that the driver maintains
stable operation during the CF process, and there is basically no rapid acceleration or
deceleration. In the acceleration process, 99.9% of values are less than 2.8 m/s, while in the
deceleration process, 99.9% of values are less than 4 m/s. According to the actual testing
data in the literature [8], the results showed that the maximum comfort deceleration value
does not exceed 4 m/s2. Otherwise, it may cause discomfort to the occupant. From the
frequency distribution and percentile of space headway in Figure 1c, it can be seen that
around 1% is less than 40 m. If the driver keeps a short gap while following the car, it will
help improve the utilization rate of the road. However, the excessive pursuit of a small gap
can cause rear-end accidents easily, and it is also easy to cause psychological panic to the
driver or passengers. As shown in Figure 1d, the distribution of CF relative speed basically
conforms to a normal distribution, and the distribution range is [−2.5 m/s, 2.5 m/s]. The
driver follows the LV with a slight speed difference. About 1% of the relative speed exceeds
2 m/s, and the maximum value is 2.5 m/s.

In the process of CF, the driver will make different decisions according to the motion
relationship with the LV to maintain a safe driving state. THW and TTCi are used to
evaluate whether decision behavior is safe. A smaller THW value indicates that the
situation of the FV following the LV is more urgent, such as short space headway or high
speed of a FV. From Figure 1e, the distribution of THW shows that the 70% distribution
range is (1.3 s, 3 s), indicating that most drivers form a stable motion state with the LV, and
about 1% is less than 0.5 s, which may be due to the higher speed of the FV or the minor
space headway. TTCi is selected for the safety braking system, which is used to distinguish
the driver in the dangerous state and the driver in the control state. The distribution in
Figure 1f shows that the overall distribution of TTCi obeys a normal distribution, and only
0.6% is more significant than 0.25 s−1. According to the literature [12], a TTCi value of
0.25 s−1 is selected for safe collision avoidance.
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3.3. Correlation Analysis

In order to further clarify which characteristic parameters are the main factors affecting
the driver’s operating behavior, the decision-making basis for the driver’s decision-making
behavior is established. Therefore, the Spearman correlation coefficient (Equation (1)) is
used to analyze the correlation between the characteristic parameters [36].

ρ = 1−
6

n
∑

i=1
di

n(n2 − 1)
(1)

where di is the grade difference between the two variables, n is the number of samples, and
the range of correlation coefficient ρ is (−1, 1). Among these, the positive and negative
values indicate that the two variables are positively and negatively correlated. It is generally
believed that the absolute value of ρ is less than 0.4, and the correlation between the two
variables is weak. The two variables are highly correlated when the absolute value of ρ is
greater than 0.7. The correlation coefficients between the characteristic parameters and the
speed of FV are calculated, respectively, and the p-value of the significance tests is obtained.
Figure 2 shows the frequency and significance probability distribution of the correlation
coefficients among the parameters.
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Figure 2. Distribution of correlation between parameters and following vehicle speed, where (a) shows
the probability distribution of the maximum correlation coefficient, and (b) shows the p-values of the
significance test.

In Figure 2a, it can be seen that the probability that the absolute value of the correlation
coefficient between each parameter and the FV speed is greater than 0.4 is more than 50%,
and LV is the highest with that of FV, followed by space headway. In the process of CF, FV
speed is positively correlated with the speed and space headway of LV, while FV speed
is negatively correlated with space headway, THW, and TTCi, respectively. In order to
better reflect the correlation between each characteristic parameter and the speed of FV,
the distribution of the correlation coefficient is listed in Table 1. From the probability
distribution of the correlation significance test in Figure 2b, it can be seen that except for
TTCi (67%), the distribution probability of other parameters with a p-value of less than
0.05 exceeds 86%. It can be judged that LV speed, relative speed, space headway, and THW
have a specific impact on the CF process.
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Table 1. Ratio of correlation coefficient between each parameter and following vehicle speed.

Correlation |ρ| > 0.4 |ρ| > 0.7

vLV-vFV 80% 39%
vrel-vFV 49% 11%
drel-vFV 67% 32%

THW-vFV 55% 22%
TTCi-vFV 50% 11%

4. Deep Reinforcement Learning for Autonomous Car-Following Decision-Making
4.1. State Space

The state space is the information FV uses to determine what will happen, including
the environmental and FV state. Moreover, the state space should not only fully char-
acterize the characteristics of FV at a certain moment but also be directly related to the
convergence of DNN in the algorithm. From the analysis in Section 3, it can be seen that
the driver’s speed in the following process is significantly affected by the speed of LV,
space headway, relative speed, and THW. At the same time, THW is related to space
headway and speed. Therefore, the reference information st = {vFV, drel, vrel} is selected to
represent the driver’s action at t time by selecting the speed of FV, space headway, and
relative speed. In the process of autonomous decision-making following control, the agent
refers to the decision-making algorithm to interact with the environment. According to the
longitudinal kinematics characteristics between FV and LV, the iterative relationship of the
environmental state is described by a kinematic point mass model (Equation (2)):

vFV(t + 1) = vFV(t) + aFV(t)× Ts
vrel(t + 1) = vLV(t + 1)− vFV(t + 1)
drel(t + 1) = drel(t) +

vrel(t)+vrel(t+1)
2 × Ts

(2)

where drel is the space headway, Ts is the sampling period, vFV is the speed of the following
vehicle, aFV is the acceleration of the following vehicle, vrel is the relative speed, vLV is
the speed of the leading vehicle, and vrel is the difference in speed between the following
vehicle and the leading vehicle. The current moment and the next moment is represented
by t and t + 1, respectively.

4.2. Action Space

In most applications of DRL, the agent’s actions are constrained by fixed experience
without considering the driver’s dynamic characteristics. Therefore, to realize autonomous
following decision-making and enhance the exploration ability of the decision-making
algorithm, the dynamic relationship between the speed and acceleration of FV is established
with 939 pairs of CF events in the training dataset, as shown in Figure 3. It is evident from
the figure that the distribution of the data points is dense, sparse, and between two sides,
and the acceleration/deceleration value decreases with an increase in speed. In the low-
speed driving range (vFV ≤ 11 m/s), the acceleration distribution is very dense, accounting
for 87.5% of the training dataset. In the medium-speed range (11 m/s ≤ vFV ≤ 21 m/s), the
acceleration distribution is relatively dense, accounting for 12.3% of the training dataset.
The acceleration distribution is sparse in the low-speed driving range (vFV > 21 m/s),
accounting for 0.2% of the training dataset. Consequently, the normal distribution of the 3σ
boundary points of each data part is counted according to the density interval. The curve
fitting toolkit obtains the dynamic response curves of velocity and acceleration.
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The decision of action should be changed from a deterministic process to a random
process. Then, the action is sampled from this random process and passed to the environment
interaction. In order to make the FV have more CF decision-making, Gaussian noise is added
to the policy output of the policy network to make it randomly sample and explore in the
speed-acceleration distribution area. Therefore, the actual output action is at =
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where drel is the space headway, Ts is the sampling period, vFV is the speed of the following 
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Here, σ2 is the variance in Gaussian noise and is reduced by the decay rate ξ in each
training step, which can be expressed as Equation (3):

σt+1 = ξσt (3)

where ζ is the decay rate in each training step and σ is the variance in Gaussian noise.

4.3. Reward Function

The reward function guides the adjustment direction of the parameters of DNN so
that the output action can make FV perform as desired. Hence, the design of the reward
function affects the decision-making performance of FV. In a real traffic environment, a
vehicle controlled by a driver will take acceleration or deceleration action to adjust the
vehicle’s longitudinal motion state based on the driving environment so that the speed and
gap of the vehicle are within an acceptable, safe, and comfortable zone. In order to better
reflect the characteristics of the driver’s CF behavior, autonomous CF decision-making is
achieved. The multiobjective reward function is designed by referring to the driving task,
such as safety, efficiency, and comfort. Thus, the principle of reward function is as follows:
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(i) Safety: As the most basic and essential control purpose, it directly affects vehicle
and passenger life and property safety. According to the relevant data [37], rear-end
collision is the most frequent traffic accident in driving. TTC indicates vehicle crash risk,
and smaller TTC values correspond to higher crash risk and vice versa. Therefore, to
avoid the case of small TTC to improve driving safety, a too-small TTC value is given great
punishment, where the logarithmic function conforms to this feature. For the CF driving
task, this paper chooses TTCi instead of TTC as the safety evaluation parameter, so the
constructed safety reward function is as Equation (4)

rs(t) =

{
log( TTCi∗+α

TTCi(t) ) TTC(t) ≥ TTC∗

0 otherwise
(4)

where TTCi is the inverse time to collision, TTCi* represents the threshold of TTCi, α is the
weight parameter, and rs is the constructed safety reward.

(ii) Efficiency: Under the guarantee of the safe driving of AVs, improving road utiliza-
tion is directly reflected in achieving the desired gap by adjusting its speed. Thus, THW
is used to represent the driving efficiency of the vehicle. According to the THW proba-
bility distribution, an appropriate reward mapping relationship is determined. Figure 5
shows the THW probability density distribution in the training dataset. The data are
fitted by the normal distribution function, lognormal distribution function, and kernel
density estimation (KDE) function [38]. Obviously, the fitting effect of KDE is closer to
the actual THW distribution. Especially at the maximum probability density of THW, the
probability density value of KDE is 4.6% more than that of the lognormal distribution, the
corresponding THW is about 7%, and the fitting effect of the normal distribution is the
worst. For the CF driving task, the constructed efficiency reward function is expressed as
Equations (5) and (6):

re(t) = fKDE[THW(t)] (5)

fKDE =
1

nh

n

∑
i=1

K(
x− xi

h
) (6)

where K (·) is the kernel function, n is the amount of data observed, h is the bandwidth, and
xi is the sample point of the independent distribution. The Gaussian function is selected as
the kernel function of KDE.
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(iii) Comfort: Jerk is an essential indicator for evaluating ride comfort, which is
determined by acceleration variation [39]. By constraining the jerk change in the driving
process, the great inertia impact from driving brought by a vehicle to its passengers will be
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reduced, improving ride comfort and reducing fuel consumption. For the CF driving task,
the constructed passenger comfort reward function is expressed as Equation (7):

rc(t) = β[aFV(t)− aFV(t− 1)]2 (7)

where β is the weight parameter, aFV is the acceleration of the following vehicle, and rc
is the constructed passenger comfort reward. Considering the above three driving levels
to build the reward function, the agent is not very intelligent in trial-and-error learning
and does not learn from the error events. For example, in the training process, only the
training process is stored for collision, or extremely conservative collision avoidance leads
to stopping. Therefore, in order to make the agent learn adverse experiences and accelerate
the convergence of the network, a kinetic energy penalty reward (such as collision) and a
potential energy penalty reward (such as early stop) are introduced, respectively. In the
training process, the penalty reward of kinetic energy in the form of collision is expressed
as Equation (8):

rK(t) = δ
[
vFV(t)2

]
1(done = collision) (8)

where δ is the weight parameter, vFV is the speed of the following vehicle, and rK is the
penalty reward of kinetic energy. The term 1 (done = collision) means that the value is 1
when FV collision occurs; otherwise, it is 0. The penalty reward in the form of potential
energy for the early stop is as Equation (9):

rP(t) = ε
[
drel(t)2

]
1(done = over) (9)

where ε is the weight parameter, drel is the space headway, and rP is the penalty reward in
the form of potential energy. The term 1 (done = over) means that the value is 1 when FV
early stop occurs; otherwise, it is 0. In summary, the overall reward function is the above
linear combination as per Equation (10):

r(t) = Normal[rs(t) + re(t) + rc(t) + rK(t) + rP(t)] (10)

4.4. Termination Conditions

In order to avoid learning the optimal local strategy, if at least one of the following
events occurs during the training process, the episode ends and enters the next episode of
the reset environment state.

(i) Collision: the FV is not effectively braked, resulting in traffic accidents.
(ii) Early stop: the FV has too conservative collision avoidance, leading to stopping.
(iii) Vehicle stuck: the FV speed is always lower than 0.1 m/s within 10 steps.
(iv) No reward increase: no increase within 100 steps in each episode.

4.5. CF Decision-Making Algorithm

This study combines the DDPG algorithm with the driver’s behavior characteristics
to learn the optimal driving strategy. Figure 6 shows an agent-environment interaction
model for autonomous car-following decision-making control, i.e., the interaction between
the following tasks, driving characteristics, and traffic information. Through extensive
real-world, data-driven decision model training, the actor network receives state st and
outputs deterministic policy. After obeying the Gaussian distribution and training dataset
speed-acceleration constraint boundary, the actor network outputs action to achieve CF’s
purpose. The actor network parameter update follows the deterministic policy gradient
theorem as per Equation (11):

∇θµ J(µ) ≈ 1
N ∑

t

[
∇aq(st, a)

∣∣∣a=µ(st)+N · ∇θµ µ(st)
]

(11)
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where N is the time range of the sampling time, θµ denotes the policy parameters, µ(st)
is the deterministic policy, q(st, a)|a=µ(st)+N is the action-value function, a is the actor’s
action in the actor network, and s is the current state.
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Figure 6. Agent-environment interaction model for autonomous car-following decision-making-
based NGSIM data.

The update method of the critic network is to minimize loss, as per Equation (12), and
the term yt is derived from the critic target network and actor target network (Equation (13)).

L(q) =
1
N ∑

t
[yt − q(at)]

2 (12)

yt = rt + γq′(a′t+1) (13)

where yt is the current real reward value, rt is the overall reward of the present moment, γ′

is the discount factor of the future reward value, q′(a′t+1) is the action-state value function
corresponding to the next moment, L(q) is the loss function, and q(at) is the action-value
function of the current moment.
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During each iteration, the actor-critic target network parameters are slowly approxi-
mated to the current actor-critic network parameters by the soft update (Equation (14)):{

θµ′ ← τθµ + (1− τ)θµ′

θq′ ← τθq + (1− τ)θq′
(14)

where τ is the update rate with τ << 1, and θµ and θq are the parameters of the current
actor-critic network. In this way, the network parameters change slowly, improving the
learning process’s stability.

Since the input of the decision system does not need to be presented in the form of
images, it only needs to obtain measurement information, such as the speed and space
headway of the car-following event, which is combined in a vector to form an MDP state
st at time t. Thus, we decide to use DNN instead of the traditional CNN structure, which
can significantly simplify the network and reduce computational burden. Additionally,
the architecture of the actor-critic network shown in Figure 7 is designed according to
the car-following tasks. Considering the problem’s complexity, convergence rate, and
computational complexity, we use a multilayer DNN, and the network size decreases layer
by layer. In an actor network, the hidden layer is 3, and the number of nodes in each hidden
layer is 64, 48, and 24, respectively. The activation function is ReLU, and the output layer
is Tanh. In the critic network, the hidden layer structure is the same as the actor, but the
output layer is linear activation.
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5. Simulation Results and Discussion
5.1. Simulation Setup

To verify the effectiveness and accuracy of our proposed car-following strategy, a
simple numerical car-following model is implemented. The developed strategy is evaluated
through extensive simulations. Each episode of the training process is randomly selected
from the training dataset, and the selected first row of the car-following event is taken as
the initial state, i.e., vFV = datan(0,0), drel = datan(0,1), and vrel = datan(0,2). The FV learns
the deterministic policy from trial and error to achieve continuous control and then iterates
to generate FV speed, relative speed, and space headway at the next moment based on
Equation (4). Table 2 shows the detailed parameters of the training.
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Table 2. Simulation parameter setting for autonomous car-following decision-making strategy.

Parameter Value

Learning of actor network 0.0001
Learning of critic network 0.00001

Discounting factor of reward 0.9
Soft assign rate 0.001

Capacity of replay buffer 20,000
Size of minibatch 256

Decay rate 0.9995
Initial variance in the exploration space 3

Weight parameters: α, β, δ, ε 1 × 10−5, 0.028, 10, 5

5.2. Simulation Results

(i) DRL learning efficiency: We first evaluate the learning ability of the DRL method.
Inspired by the control variable method, we designed three similar DRL strategies (i.e.,
reference action space and reward functions) and an MPC-based approach to compare
our car-following decision-making strategy. The following are the simulation results
and discussions on different aspects. Under the same simulation conditions, we use the
following strategies to compare simulation performance:

(a) We use the DDPG algorithm combined with NDD to achieve an autonomous car-
following decision-making strategy. The penalty reward in the form of mechanical
energy is introduced in the design of the reward function, which is a function of speed
and space headway rather than constant reward. Meanwhile, the 3σ boundary of
the speed-acceleration fitting curve of the training dataset is used to realize varying
constraints for FV action (recorded as our proposal).

(b) In the application of some DRL algorithms, the action output by the agent generally
uses fixed empirical constraints. Thus, the fixed empirical constraint (FEC) action
range of FV is determined by referring to NDD, i.e., [amin, amax] = [−4 m/s2, 2 m/s2],
and the other parameters are the same as our proposal (recorded as FEC).

(c) In some DRL studies, constants are used as punishment rewards for collision or
lane departure in agent training. Hence, a constant value for FV collision and early
stop is used as the reward function, i.e., Equation (8) is changed to rk(t) = −100,
and Equation (9) is changed to rp(t) = −50. Furthermore, FV’s action also uses fixed
empirical constraints (recorded as FEC w/CP).

(d) The DRL strategy established uses the same varying constraint as our proposal and
constants as the reward function of collision and early stop (recorded as VC w/CP).

(e) A rule-based control strategy is established regarding the characteristics of car-
following behavior, combined with safety, efficiency, and comfort as multiobjective
constraints. An MPC car-following model based on constant THW is constructed,
in which the model parameters are determined according to the distribution of the
characteristic parameters of car-following behavior. Similarly, the reward function is
designed similarly to our proposal (recorded as MPC-based).

The efficiency performance evaluation results are shown in Figure 8, which shows the
reward obtained by FV and training events under different strategies. It can be seen from
Figure 8a that with an increase in the episode, the established DRL-based learning strategies
gain a gradually stable return (i.e., from negative to positive values). This suggests that
autonomous driving strategies have been well learned, maximizing long-term rewards.
However, the rewards of the FEC and VC w/CP strategies fluctuate significantly in each
episode, and the learned driving strategies are unstable. The real-world car-following data
established in this paper are complicated and dynamic, enabling autonomous decision-
making. The reward function contains a nonconstant penalty reward, and the reward
value of each episode is larger (value less than −100) before training. This is because
FV has no driving experience during the initial training period, and the probability of
action exploration is larger, resulting in more rear-end collisions and early stop events.
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Our proposal contained 395 collisions and 141 early stops, and 47 car-following events
were completed in the collision training episode. There were 315 collisions, 174 early
stops, and 58 car-following events in the collision training episode for FEC. To better reflect
learning during strategy training, Table 3 lists the overall results. By comparing the reward
values during training, we find that our proposal is relatively the best. From Figure 8b, the
mean reward value of our proposal is greater than 0.5 (in episodes 683 to 729). In the next
300 episodes, the agent explores and exploits actions to learn the optimal driving strategy,
resulting in a fluctuation of the reward value in this part of the training episode. After
the 1062nd episode, the mean reward value is greater than 0.5, and the average reward
value in the remaining training episode is 0.61. For FEC, the mean reward value at the
beginning of training is similar to our proposal, and its mean reward value at the 647th
episode is 0.57. However, with the training process value decreasing, the 883rd episode
began to be less than 0.5 until it trended to 0.01. For constant penalty terms, the episodes
of mean reward greater than zero are shorter, but VC w/CP is more volatile, the values
are small, and the mean reward value fluctuates around 0.18. For FEC w/CP, the mean
reward is greater than 0.5 at the 410th episode, but the extreme deviation in fluctuation
in the remaining episodes is 0.13. The mean reward for MPC-based fluctuates around
0.52. However, for fixed empirical action and constant strategy, FV can obtain a larger
reward value in the middle of the training, but the stability of the strategy is poor, with an
increase in the episodes that cannot be well explored and used for DRL action. Since the
reward function guides the adjustment direction of DNN parameters, the output action
enables FV to perform as desired. The constant penalty makes similar decisions for different
termination events, resulting in poor stability in learning driving strategies.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 22 
 

 

reward value in the remaining training episode is 0.61. For FEC, the mean reward value 

at the beginning of training is similar to our proposal, and its mean reward value at the 

647th episode is 0.57. However, with the training process value decreasing, the 883rd ep-

isode began to be less than 0.5 until it trended to 0.01. For constant penalty terms, the 

episodes of mean reward greater than zero are shorter, but VC w/CP is more volatile, the 

values are small, and the mean reward value fluctuates around 0.18. For FEC w/CP, the 

mean reward is greater than 0.5 at the 410th episode, but the extreme deviation in fluctu-

ation in the remaining episodes is 0.13. The mean reward for MPC-based fluctuates 

around 0.52. However, for fixed empirical action and constant strategy, FV can obtain a 

larger reward value in the middle of the training, but the stability of the strategy is poor, 

with an increase in the episodes that cannot be well explored and used for DRL action. 

Since the reward function guides the adjustment direction of DNN parameters, the output 

action enables FV to perform as desired. The constant penalty makes similar decisions for 

different termination events, resulting in poor stability in learning driving strategies. 

M
e
an

 r
e
w

ar
d

Episode

400200 300

-10

-14

-12

600 1300 2000

0.65

0

0.5

0.25

600 1300 2000
0.58

0.6

0.59

0.61

600 1300 2000
0

0.4

0.2

0.62

R
ew

a
rd

Episode

0 100 200

0

-40

-20

600 1300 2000

1

-0.5

0.5

0

400 500 600

1

-40

-20

Our proposal FEC FEC w/ CP VC w/ CP MPC-based

(a) (b)

 

Figure 8. Changing of episode reward achieved during training, where (a) is episode reward for the 

five strategies, respectively, (b) is episode mean reward for the five strategies, respectively, and 

mean reward is the average of mean episode rewards across a rolling window with size 100. 

Table 3. CF situations with different strategies in collision episodes achieved during training. 

Strategy Collision Early Stop Completion of CF Event During Collision 

Our proposal 395 141 47 

FEC 315 174 58 

FEC w/CP 178 57 14 

VC w/CP 205 46 29 

Next, to verify the strategy’s effectiveness, we take the car-following events of the 

test dataset as the vehicle trajectory input and compare the reward values of the car-fol-

lowing events obtained by the saved policy models. All strategies did not collide during 

the whole test. Figure 9 shows the reward values of each car-following event in the test 

dataset. As seen from the figure, our proposal and FEC w/CP achieve the smallest reward 

fluctuation, and our proposed value is more concentrated (only one peak), while MPC-

based and VC w/CP obtain the largest fluctuation. For the average reward value of all test 
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reward is the average of mean episode rewards across a rolling window with size 100.
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Table 3. CF situations with different strategies in collision episodes achieved during training.

Strategy Collision Early Stop Completion of CF Event During Collision

Our proposal 395 141 47
FEC 315 174 58

FEC w/CP 178 57 14
VC w/CP 205 46 29

Next, to verify the strategy’s effectiveness, we take the car-following events of the test
dataset as the vehicle trajectory input and compare the reward values of the car-following
events obtained by the saved policy models. All strategies did not collide during the whole
test. Figure 9 shows the reward values of each car-following event in the test dataset. As
seen from the figure, our proposal and FEC w/CP achieve the smallest reward fluctuation,
and our proposed value is more concentrated (only one peak), while MPC-based and VC
w/CP obtain the largest fluctuation. For the average reward value of all test car-following
events, our proposal is 313% higher than FEC, 32% higher than FEC w/CP, 226% higher
than VC w/CP, and 19% higher than MPC-based, respectively.
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(ii) Decision-making performance: To illustrate our approach to autonomous decision-
making, FV safely, efficiently, and comfortably follows LV. Firstly, we choose our proposal,
FEC w/CP, and MPC-based decision-making models to analyze the decision-making
performance of different strategies from a car-following event. Then, our proposal is
used to simulate all car-following events in the test dataset and analyze the characteristic
parameters generated by the FV decision. Finally, we compare our statistics with the
distribution of the test dataset.

Single scenario: The training process’s minimum reward value (−464.66) is used for
vehicle decision-making performance analysis as the car-following event. The initial space
headway is 19.27 m, the LV speed is 7.5 m/s, and the FV speed is 9.7 m/s. Figure 10 shows
the decision performance of different strategies in the single-scenario training dataset. It
can be seen from the figure that the changing trends in FEC and our proposal in space
headway, speed, and THW curve basically coincide, but FEC acceleration has an obvious
continuous step change at 1.2 s until the end of the car-following event, resulting in a
large inertial impact (i.e., step change in jerk) in the car-following process. The VC w/CP
method adopts a more conservative car-following strategy because, at the beginning of the
process, the vehicle decelerates at −4 m/s2, the acceleration curve change trend is basically
consistent with our proposal after 5 s, and all THW values are greater than 2 s. At the end
of the car-following event, the shortest space headway between our proposal is 7.88 m,
which is 30% smaller than human, 36% smaller than MPC-based, 2% smaller than FEC, 22%
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smaller than FEC w/CP, and 520% smaller than VC w/CP. Additionally, after about 5 s, our
proposal THW values basically stabilize at about 1.2 s for car following, while FEC w/CP
basically stabilize at around 1.43 s after roughly 7 s. At the beginning of the acceleration
curve change, our proposal, FEC, and FEC w/CP strategies all accelerate (ainitial = 2 m/s2)
to approach LV, while the human and MPC-based strategies decelerate (ainitial = −4 m/s2)
and VC w/CP also decelerates (ainitial = −1.5 m/s2). For safety analysis, the TTCi value of
our proposal exceeds the threshold in the previous 2 s, and the maximum value exceeds
the threshold by 11% (TTCimax = 0.28 s−1). For FEC, the value of TTCi only exceeds the
threshold in the previous 2.5 s, and the maximum value exceeds the threshold by 31%
(TTCimax = 0.36 s−1).
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Figure 10. Comparison of decision performance of different strategies in single-scenario training
dataset, where (a–f) correspond to space headway, speed, acceleration, jerk, THW, and TTCi, respec-
tively.

For a single scenario in the test dataset, the initial state of the space headway is 70.45 m,
the FV speed is 21.03 m/s, and the LV speed is 15.57 m/s. The single-scenario decision-
making performance of the five decision-making models is shown in Figure 11. As can
be seen from the figure, the changing trend of each performance index curve is basically
consistent with the single scenario in the training dataset. Among them, the changing trend
of FEC and FEC w/CP is similar to that of our proposal curve, but FEC acceleration has an
obvious continuous step change in 8 s until the end of the car-following event, resulting in a
large inertial impact (i.e., step change in jerk) in the car-following process. At the end of the
car-following event, the shortest space headway between our proposal is 22.81 m, which is
67% smaller than human, 45% smaller than MPC-based, 9% smaller than FEC, 32% smaller
than FEC w/CP, and 50% smaller than VC w/CP. Moreover, after about 7 s, our proposal
THW values basically stabilize at about 1.16 s for car following, while FEC w/CP basically
stabilize at about 1.7 s. At the beginning of the acceleration curve change, our proposal,
FEC, FEC w/CP, and MPC-based strategies all accelerate (ainitial = 2 m/s2) to approach LV.
In contrast, the human and VC w/CP strategies decelerate (ainitial = −4 m/s2). For safety
analysis, the TTCi value of our proposal is the same as the threshold in the previous 4.5–5 s.
For FEC, the value of TTCi only exceeds the threshold in the previous 4.3–6 s, and the
maximum value exceeds the threshold by 19% (TTCimax = 0.31 s−1).
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where (a–f) respectively correspond to space headway, speed, acceleration, jerk, THW, and TTCi.

For a single scenario in US101 (high-occupancy lane), the initial state of the space headway
is 50.4 m, the FV speed is 15.23 m/s, and the LV speed is 14.45 m/s. The single-scenario
decision-making performance of the five decision-making models is shown in Figure 12. As
can be seen from the figure, the changing trend of each performance index curve is basically
consistent with the single scenario in the training and test dataset. Among them, the changing
trend of FEC and FEC w/CP is similar to that of our proposal curve, but FEC acceleration has
an obvious continuous step change in 10 s until the end of the car-following event, resulting
in a large inertial impact (i.e., step change in jerk) in the car-following process. At the end of
the car-following event, the shortest space headway between our proposal is 20.11 m, which
is 38% smaller than human, 28% smaller than MPC-based, 8% smaller than FEC, 32% smaller
than FEC w/CP, and 54% smaller than VC w/CP. Moreover, after about 8 s, our proposal
THW values basically stabilize at about 1.17 s for car following, while FEC w/CP basically
stabilize at about 1.7 s after about 11 s. At the beginning of the acceleration curve change,
our proposal, FEC, FEC w/CP, and MPC-based strategies all accelerate (ainitial = 2 m/s2) to
approach LV. In contrast, the human and VC w/CP strategies decelerate (ainitial = −0.86 m/s2,
−0.14m/s2). For safety analysis, only the value of FEC at 6.3 s–6.4 s TTCi is the same as the
threshold value.

In conclusion, based on the test analysis, our proposal can learn a safer, more efficient,
and more comfortable car-following strategy. Among them, the changing trend of FEC
and FEC w/CP is similar to our proposal, but FEC produces continuous step acceleration
when the space headway is small, resulting in a large inertial impact. VC w/CP is a very
conservative car-following strategy, with a space headway of about 40 m from the LV.
The decision-making performance of MPC-based in the test scenarios with small space
headway and low-speed driving is close to our proposal, but significant space headway
and high-speed driving are poor.

All scenarios: In this section, we design a multiobjective reward function that is
secure, effective, and comfortable to compare human driving performance with that of our
proposed car following.

(1) Safety: Instead of TTC, we utilize TTCi to assess driving safety. From the TTCi
distribution in Figure 13, it can be seen that the TTCi distribution of the five strategies
presents the characteristics of normal distribution, and the distribution is more concentrated
than that for humans. In all test scenarios, the percentiles corresponding to TTCi* for human,
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MPC-based, FEC, FEC w/CP, VC w/CP, and our proposal are 27.1%, 99.98%, 99.9%, 99.98%,
and 99.3%, respectively. Therefore, it is possible to achieve FV driving safely by using DRL
to create an autonomous car-following decision-making strategy.
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(2) Efficiency: We choose THW to represent the driving efficiency of AVs and use
KDE to fit the THW probability density distribution curve in the training dataset to design
the reward function. From the THW distribution in Figure 14, it can be seen that the
distribution range of FEC, FEC w/CP, and our proposal is smaller and concentrated and
can make THW tend to a fixed value during the car-following process. In all test scenarios,
THW values less than 1.2 s account for 27.1%, 19.8%, 22.6%, 0.7%, 4.4%, and 43% of human,
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MPC-based, FEC, FEC w/CP, VC w/CP, and our proposal, respectively. The overall results
for different efficiency levels are shown in Table 4.
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Table 4. Ratio of efficiency for different strategies.

Strategy THW ≤ 1.2 THW ≤ 1.5 THW ≤ 2

Human 27.1% 47.1% 72.6%
MPC-based 19.8% 54.7% 87.7%

FEC 22.6% 96.4% 98.4%
FEC w/CP 0.7% 1.1% 98%
VC w/CP 4.4% 10.6% 20.7%

Our proposal 43% 96.4% 98.4%

(3) Comfort: We enhance ride comfort by constraining the jerk change during driving.
From the jerk distribution in Figure 15, it can be seen from the jerk distribution in Figure 9
that the distributions of MPC-based, FEC w/CP, VC w/CP, and our proposal show obvious
normal distribution characteristics. The distribution range of FEC w/CP, VC w/CP, and
our proposal is smaller and concentrated. The distribution range of FEC is mainly around
[−60 m/s3, −40 m/s3], 0 m/s3, and [40 m/s3, 60 m/s3]. In all test scenarios, the proportion
of an absolute impact value of less than 1.5 m/s3 is 56.5%, 85%, 59.1%, 97.9%, 98.6%, and
92% for human, MPC-based, FEC, FEC w/CP, VC w/CP, and our proposal respectively.
The overall results of different comfort-level ratios are listed in Table 5.
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Table 5. Ratio of comfort for different strategies.

Strategy |Jerk| ≤ 1.5 |Jerk| ≤ 2 |Jerk| ≤ 5

Human 56.5% 65.8% 94.5%
MPC-based 85% 90% 99.1%

FEC 59.1% 59.4% 60.1%
FEC w/CP 97.9% 98.3% 99.1%
VC w/CP 98.6% 99% 99.6%

Our proposal 92% 96.2% 99.2%

6. Conclusions

This paper proposes an agent-environment interaction model of an autonomous car-
following decision-making model to provide automatic driving that is safe, effective, and
comfortable. Firstly, the distribution of speed-acceleration is established according to
NGSIM data, and the corresponding curve is fitted according to the 3σ boundary point
of a normal distribution to realize the variable constraint of the agent’s actions. However,
most research into applied deep reinforcement learning uses fixed constraints on actions.
Secondly, a safe, efficient, and comfortable multiobjective reward function for the automatic
driving task is designed. A punishment term in kinetic and potential energy is introduced
to make the agent remember the adverse experience, making the training agents perform
better. The extensive simulation results show that our proposal can learn autonomous
driving strategies through real-world driving data, which is significantly better than human
driving. For future work, we will collect enough individual drivers’ driving behaviors as
historical data to further train the model to serve personalized driving.
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