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Abstract: We report on the characterization of the thermoelectric properties of Bi2Se3 epifilms. MBE-
grown Bi2Se3 films on GaAs (111) A are nanomachined with integrated Pt elements serving as
local joule heaters, thermometers, and voltage probes. We suspended a 4 µm × 120 µm Bi2Se3 by
nanomachining techniques. Specifically, we selectively etched GaAs buffer/substrate layers by citric
acid solution followed by a critical point drying method. We found that the self-heating 3ω method
is an appropriate technique for the accurate measurement of the thermal conductivity of suspended
Bi2Se3. The measured thermoelectric properties of 200 nm thick Bi2Se3 at room temperature were
κ = 1.95 W/m K, S = −102.8 µV/K, σ = 75,581 S/m and the figure of merit was ZT = 0.12. The
study introduces a method to measure thermal conductivity accurately by suspending thin films.

Keywords: Bi2Se3; MBE; thermoelectric; nanostructuring; 3ω method

1. Introduction

Thermoelectric (TE) devices that create a voltage by heat waste have been under
development for a few decades [1–3]. However, their applications are limited to a few
industries due to their low efficiency in energy conversion [4,5]. The efficiency of TE devices
is determined by the dimensionless figure of merit defined by the Seebeck coefficient
(S), electrical conductivity (σ), thermal conductivity (κ) and the temperature (T). A high
Seebeck coefficient, high electrical conductivity, and low thermal conductivity are required
to maximize the figure of merit [6]. However, the interdependence of the Seebeck coefficient,
electrical conductivity, and the electronic contribution to the thermal conductivity makes
the optimization of ZT difficult. The electrical conductivity and electrical contribution to
thermal conductivity are linked to each other by the Wiedemann–Franz law. According to
the simple theory for nearly free electrons, the Seebeck coefficient of metals or degenerate
semiconductors [7] decreases when the carrier concentration (n) increases. However, when
the carrier concentration (n) increases, the electrical conductivity (σ) and electronic thermal
conductivity (κe) increase [8].

To overcome these correlations between the quantities, one needs to maximize the
power factor (S2σ) by optimizing the carrier concentrations (1019~1021 carriers per cm3) [8]
and/or minimize the lattice thermal conductivity (κl) by increasing phonon scattering. The
introduction of point defects and doping effectively controls the carrier concentration and the
power factor [9–11]. Nanostructuring, alloying, and the application of grain size and strain
are used to enhance the phonon scattering and reduce the lattice thermal conductivity [12–15].
Because the mean free path (mfp) of electrons is much shorter than that of phonons in heavily
doped semiconductors, nano-structuring effectively reduces the lattice contribution to thermal
conductivity while preserving the electrical conductivity [12,16]. Recently, such material
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systems as phonon-glass electron-crystal, where phonon transport is confined in plane, have
advanced thermoelectric research [17–19].

Despite the progress in nanostructuring reported for nanowires, superlattices, and
nanocomposites in thermoelectric research of nano-films, there have been difficulties asso-
ciated with heat diffusion to the substrate [20–24]. We present the self-heating 3ω method
to measure the fundamental thermal properties by suspending the film [25–27]. Consider
a suspended rod-like metal for thermal conductivity measurements [28]. An electrical
current of the form I0 sin ωt is sourced from outside probes. This results in Joule heating of
the form 0.5I2

0 R (1− cos 2ωt), where R is the resistance of the metal. This periodic Joule
heating results in temperature oscillation at a frequency of 2ω, which causes the resistance
of the metal to oscillate at 2ω. This leads to a voltage fluctuation at 3ω across the rod
due to the injected electrical current at ω and the oscillation of the resistance at 2ω. The
amplitude of the voltage at 3ω is determined by the thermal properties and described by
the 1D heat diffusion equation. With proper boundary conditions and an initial condition,
an explicit solution for the 1D heat-conduction equation at the low frequency limit can be
found and the thermal conductivity (κ) can be measured from the excitation current (I),
electrical resistance (R) and its differential respect to temperature (R′ = dR/dT), geomet-
rical length (L) and cross-section area (A), and measured V3ω signal. [29] This solution is
obtained from the assumption that the joule’s heat fully dissipates in the rod and not in
its surroundings, particularly the underlying substrate. A freely suspended structure best
meets these important criteria. The 3ω methods can be applied to materials with a linear
Ohmic current-voltage behavior.

The best TE materials typically degenerate semiconductors that have high carrier
mobilities and a low electronic contribution to thermal conductivity [14]. Bi2Se3 is a
semiconductor with a narrow bandgap of about 0.3 eV, which meets the conditions for a
large Seebeck coefficient [9]. Naturally occurring Se-vacancies that act as electron donors
result in high electrical conductivity, thus Bi2Se3 is known as one of the best TE materials [8].
A recent theoretical prediction of a topologically protected surface states in Bi2Se3 has
rekindled interest in the development of high-quality materials [30,31]. In this study, we
epitaxially grew 200 nm thick Bi2Se3 films on a GaAs (111) A substrate by molecular
beam epitaxy (MBE). Nanostructuring techniques enable the accurate measurement of the
thermal conductivity by freely suspending the Bi2Se3 from the GaAs substrate. Additionally,
nanostructuring effectively suppresses the lattice’s contribution to thermal conductivity
due to the low dimension [9].

2. Materials and Methods

In this study, Bi2Se3 epifilms were grown on a semi-insulating GaAs (111) A sub-
strate using effusion cells charged with Bi (99.9999%), Se (99.999+%), Ga (99.999%), and As
(99.99999+%). In the growth chamber, after standard deoxidation, a substrate temperature
of 700 ◦C, a 40 nm thick GaAs buffer layer was grown at a deposition rate of 1 nm/min
under As-rich conditions. Then, 200 nm Bi2Se3 epifilms were grown at a substrate tem-
perature of 300 ◦C with a growth rate of 2 nm/min under Se-rich conditions with the flux
ratio (ΦSe/ΦBi) of ~20 [32,33]. The growth rate and surface morphology were monitored by
RHEED using oscillations and typical surface reconstructions (Figure 1a,b) [34,35]. Finally,
a Se-capping layer was deposited below 150 ◦C to minimize the Se-vacancies. The result-
ing morphologies and crystal structures (Figure 1) are characterized by a commercially
available non-contact mode AFM and from high resolution XRD measurements. Epifilms
for this study all showed characteristic triangular pyramid morphologies with sizes and
densities being dependent on the stoichiometry and other growth conditions. Thickness
was measured by SEM and a profilometer.
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Figure 1. RHEED patterns during epitaxial growth of (a) the GaAs buffer layer and (b) Bi2Se3,
(c) 1 µm × 1 µm AFM scan image, (d) high-resolution X-ray diffraction of Bi2Se3.

After epitaxy deposition, the samples were readied for nanofabrication by mild thermal
treatment at 200 ◦C to remove the Se-capping layer. All nanopatterning was conducted
by a modified commercially available SEM. The first alignment marks were realized af-
ter lift-off of DC sputter deposition of 20 nm thick Pt [36] after a negative resist process
using an image reversal of AZ520X. Then, Bi2Se3 was patterned into a nanobeam struc-
ture (0.2 µm × 4 µm × 120 µm) by a similar image reversal process and mildly etched in
a commercially available RIE in Ar plasma (0.015 mTorr and 150 W) with an etch rate of
100 nm/min. Then, necessary electrical probes and resistive thermometer in contact with a
Bi2Se3 nanobeam as well as in-situ joule heaters situated on the GaAs substrate in proximity
to the Bi2Se3 nanobeam were used again after the lift-off process of DC sputtered 200 nm Pt.
To minimize substrate effects in thermal-transport measurements, the Bi2Se3 nanobeam was
freely suspended by first patterning an etch window and then selectively etching the underly-
ing GaAs using a mild citric acid solution (volumetric 6:1 ratio of citric acid and hydrogen
peroxide) [37] at an etch rate of 100 nm/min. After suspending the Bi2Se3 nanobeam, the
sample is dried in a commercially available critical point dryer (CPD). The final structure is
shown in Figure 2f.

After nanofabrication, electrical contacts were formed by Au wire-bonding. Electrical
probes on Bi2Se3 were verified as being Ohmic from I–V measurements. Then, the fabricated
Pt thermometer in proximity to the Bi2Se3 nanobeam was calibrated by measuring its
resistivity while monitoring the sample temperature in a vacuum cryostat (<0.1 mTorr)
using a commercially available temperature controller (LakeShore, Westerville, OH, USA,
LS330). As expected, the Pt thermometer’s resistivity showed a linear dependence to the
temperature range reported in this study (60–300 K) (Figure 3b). As the Pt thermometer
was in physical contact with the Bi2Se3 nanobeam, the joule heater was placed in proximity
to the nanobeam on the semi-insulating GaAs substrate. Accordingly, the thermometer and
heater were electrically isolated.
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Figure 2. Schematic illustration of the nanomachining process used to freely suspend the Bi2Se3 epifilm.
After mild thermal treatment to remove the Se capping layer (a), the Bi2Se3 structure was defined by
standard photolithography methods (b) and formed by mild Ar plasma etching in RIE (c). Pt metallic
thermal and electrical probes were patterned by standard e-beam lithography methods (d) and formed
by lift-off after DC sputter deposition (e). Suspended structure was formed by selectively etching the
underlying GaAs layer by a citric acid solution and drying it in a critical point dryer (f).
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Figure 3. (a) False colored SEM image and schematic representation of the device for the Seebeck
coefficient measurement. (b) Linear dependence of the resistance of Pt with the temperature (for the
whole temperature range (inset)) when the Joule heater was ‘on’ (red square) and ‘off’ (blue circle).

Figure 3a schematically depicts the DC thermal-transport measurements (i.e., Seebeck
effect). First, to measure the thermal gradient, the resistivities of the two thermometers
were determined at substrate temperature. Then, a DC current was allowed to flow in one
of the heaters and its magnitude was determined by a constant power condition of 100 mW
while varying the substrate temperature. Then, the resistances of the two thermometers are
measured using an ac-lock-in technique (17 Hz and 27 Hz with IAC 5 µA) to determine the
temperature gradient, which was found to be in the range 0.1 K/µm at 300–0.01 K/µm at
60 K. Considering that GaAs thermal conductivity greatly increases at lower temperatures
and is an order of magnitude higher than that of Bi2Se3, this result (lower thermal gradient
at lower temperature) indicates that the effect of the substrate (i.e., increase in thermal
conductivity of the GaAs substrate at low temperature) cannot be easily ignored. After
a time delay of 10 s after the heater is turned on to insure a thermal equilibrium, the DC
voltage across the Bi2Se3 nanobeam was averaged and recorded after the probes, as the
thermometers are disconnected by relay signals. The process was repeated from room
temperature to 60 K while the substrate temperature was monitored and maintained.
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Figure 4 schematically depicts AC thermal-transport measurements (i.e., thermal
conductivity). We utilized two phased-locked ac lock-in amplifiers. To validate the 3ω
method, we swept the ac current (IAC) at f = 13 Hz. One ac lock-in at f was used to measure
the electrical ac conductivity of the Bi2Se3 nanobeam, while the other lock-in at 3f was
recorded as V3ω. Figure 5b shows the expected cubic dependence of V3ω to the injected
current IAC. Similar to the above Seebeck effect measurements, the sample temperature
was varied from room temperature to 60 K. From these measurements, we recorded the
electrical conductivity σ, V3ω, and determined R′ = [R(T1)− R(T2)]/[T1 − T2].
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3. Results

From the Bi2Se3 epifilms, we successfully fashioned a versatile thermal-transport
measurement platform in which the epifilm to be characterized is freely suspended to
minimize thermal transport through the substrate. From in-situ RHEED monitoring during
growth as well as post-growth morphologies characterized by non-contact mode AFM
and high-resolution XRD, the resulting Bi2Se3 epifilms (Table 1) were found to compare
favorably to those reported elsewhere [28,38–40]. Then, the resulting suspended Bi2Se3
with integrated electrical probes as thermometry in its proximity were then characterized
in a cryogenic cryostat. First, the temperature dependence of the electrical conductivity of
the as-grown Bi2Se3 epifilm and Bi2Se3 nanobeam is depicted in (Figure 6b). Characteristic
temperature dependence indicate that the nanomachining processes had a minimal effect.
At room temperature, for the 200 nm Bi2Se3 nanobeam, the electrical conductivity (σ) was
75,580 Ω−1·m−1. Again, this value is favorable compared with that of similarly sized bulk
nanoribbon samples reported elsewhere [38].

Table 1. Summary of selected thermoelectric measurements of Bi2Se3.

Type of Bi2Se3 κ (W/mK) σ (104 S/m) S (µV/K) ZT

mechanically
exfoliated Bi2Se3 [28] ~2.1 N/A N/A N/A

nanoribbon
synthesized via VLS
(S2) [38]

~1.7 ~7 −120 0.17

30 nm epifilm [39] N/A ~6 −100 N/A

77 nm vapor solid
grown Bi2Se3 [40] N/A 15.9 −99.9 N/A

200 nm epifilm
(this report) ~1.9 ~7.6 −103 0.12

bulk [41] 4 16 −70 0.05

Using the patterned thermometry elements near the Bi2Se3 nanobeam, Pt resistive
thermometers in contact with Bi2Se3, and the Pt joule heater in proximity, we showed that
a steady temperature gradient (∆T ranging from 1 K to 10 K) can be maintained across the
Bi2Se3 nanobeam for the temperature range presented here (60–300 K). Interestingly, for the
equal heater power, higher temperature gradients were achieved at higher temperatures.
This suggests that at lower temperatures, a significant amount of heat flows underneath the
suspended Bi2Se3 nanobeam across the GaAs substrate. With a controllable temperature
gradient and electrical probes to measure the electrical potential across the nanobeam,
the Seebeck voltage can be directly measured. Figure 6a plots the Seebeck voltage for the
200 nm Bi2Se3 nanobeam structure. The sign of the voltage as well as the temperature
dependence agree with the expected dominant n-type carriers from Se vacancies. Again,
the Seebeck voltage of −102.8 µV/K for our 200 nm Bi2Se3 nanobeam compares favorably
to values obtained from Bi2Se3 film grown by MBE [39], vapor-solid method [40] and
Bi2Se3 nanoribbon synthesized by the vapor liquid solid method, which are also suspended
from the substrate [38]. As the Seebeck voltage is expected to be dominated by thermal
carrier diffusion, the fact that the absolute measured values of the Seebeck voltage for the
nanobeam were slightly smaller than those of the nanoribbon possibly indicated a higher
quality Bi2Se3 epifilm.
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To ultimately quantize the thermoelectric figure of merit (ZT), we needed to accurately
determine the thermal conductivity (κ) of the Bi2Se3 nanobeam. As mentioned above in the
Seebeck voltage measurements, although the nanobeam is suspended from the substrate,
we still found that a significant amount of heat was conducted through the substrate. Due
to this uncertainty, we were not able to accurately determine κ by simply measuring the
heating power and the temperature differently. Then, as mentioned in the introduction,
we applied the 3ω method, specifically the self-heating method derived from the 1D heat
diffusion equation [28]. As the heat was transferred directly to the nanobeam, the resulting
measurements were robust with minimal substrate contributions.

Starting from the 1D heat diffusion model, thermal conductivity (κ) can be quantified
by the self-heating 3ω method. An injected current of ω is used to “self-heat” the sample,
and by trigonometric identity and joule heating, we can measure the Vω to determine the
electrical conductivity (σ) and V3ω. Then, along with σ (T), dR/dT, and Vω, a temperature
dependence of κ (≈

[
4RR′LI3][π4 AV3ω

]−1) can be seen as depicted in Figure 6c. At 300 K,
the Bi2Se3 nanobeam κ was found to be ~1.95 Wm−1 K−1 (see Supplementary Materials).
Similar to the nanoribbon sample [28,38], the measured value of κ and its temperature
dependence compared favorably. The monotonic increase in κ with a decrease in tem-
perature is consistent with metallic-like behavior found in Se-vacancy dominated Bi2Se3
materials. Along with the temperature dependent measurement of the Seebeck voltage,
electrical conductance, and thermal conductance, the thermoelectric figure of merit (ZT)
temperature dependence is plotted in Figure 6d. The uncertainty in our measurements is
limited from thickness measurements, which we found from RHEED oscillations as well as
stylus profilometer measurements and is typically within 5%. However, in determining
the ZT values, the geometrical factors are cancelled out. With suppressed thermal conduc-
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tivity from the reduced dimensionality of the nanobeam, we found the ZT values to be
significantly larger than the reported bulk values at room temperature.

4. Summary

To more accurately determine the thermoelectric properties of Bi2Se3 epifilms, we
utilized nanomachining techniques to freely suspend the structure. We also integrated ther-
mometric and electrical probes. We applied the self-heating 3ω method to more accurately
measure thermal conductivity. This method further minimizes heat transfer into the sub-
strate and allows for more accurate determination as an ac measurement technique. From
the characterization of the surface morphology and electrical measurements, we found
our Bi2Se3 epifilms to be comparable to other reported epifilms. Electrical measurements
conducted after nanofabrication processing showed minimal effects on the quality of the
Bi2Se3. A reduction in the dimensionality of the epifilms resulted in a significant decrease
in thermal conductivity compared to the bulk [41], with minimal decreases in the electrical
conductivity and an increase in the Seebeck coefficient. Such changes in the thermal electric
properties resulted in an increase in the figure of merit (ZT) compared with the bulk and
reported studies, as in [41,42].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s22208042/s1, Figure S1: Replot of Figure 5b in main text; Figure S2:
Temperature dependence of 200 nm Bi2Se3 nanobeam.
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