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Abstract: Fiber Bragg grating (FBG) sensors have been applied to assess strains, stresses, loads,
corrosion, and temperature for structural health monitoring (SHM) of steel infrastructure, such as
buildings, bridges, and pipelines. Since a single FBG sensor measures a particular parameter at
a local spot, it is challenging to detect different types of anomalies and interactions of anomalies.
This paper presents an approach to assess interactive anomalies caused by mechanical loading
and corrosion on epoxy coated steel substrates using FBG sensors in real time. Experiments were
performed by comparing the monitored center wavelength changes in the conditions with loading
only, corrosion only, and simultaneous loading and corrosion. The theoretical and experimental
results indicated that there were significant interactive influences between loading and corrosion for
steel substrates. Loading accelerated the progress of corrosion for the epoxy coated steel substrate,
especially when delamination in the epoxy coating was noticed. Through the real-time monitoring
from the FBG sensors, the interactions between the anomalies induced by the loading and corrosion
can be quantitatively evaluated through the corrosion depth and the loading contact length. These
fundamental understandings of the interactions of different anomalies on steel structures can provide
valuable information to engineers for better management of steel structures.

Keywords: corrosion; fiber Bragg grating (FBG) sensors; interactive anomalies; structural health
monitoring (SHM)

1. Introduction

Reinforced concrete (RC) and steel are the most common construction materials for
civil infrastructures [1,2]. As time goes, civil infrastructures made by reinforced concrete or
steel will deteriorate and anomalies or damages may accumulate in the structures, which
may result in safety concerns for structures that lead to tragedies of property and life
losses. Among the various types of structural degradations, steel corrosion and local stress
accumulations are well known as some of the main concerns/threats to the structural
integrity, durability, and reliability of RC and steel structures. To prevent and mitigate
steel corrosion, various protective measures can be applied to steel in the RC or steel
structures, such as cathodic protection, corrosion inhibitor, anti-corrosion alloys, and
coatings. Cathodic protection mitigates corrosion through the use of the metal as the
cathode of an electrochemical cell [3,4]. Corrosion inhibitor prevents access of the corrosive
substance to the metal, thus, prevents corrosion [5,6]. The anti-corrosion alloys form
corrosion-resistant alloys, such as stainless steel alloys and aluminum alloys, through
adding high corrosion-resistant components into the steel materials [7]. Compared to
the above-mentioned corrosion mitigation approaches, the application of anti-corrosive
coatings is a cost-effective method to protect metals with additional benefit to reduce
local stress accumulations since they provide an extra layer between the substrates and
loading [8,9]. Among the anti-corrosive coatings, a thin layer of epoxy coating is one of the
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most commonly used coatings to isolate structures from the external corrosive environment
for steel corrosion protection [10–12].

In addition to protective coatings, to detect steel corrosion and loading-induced
damages, in practice, visual inspection is commonly applied due to its simplicity. However,
the visual inspection may not be accurate, as the occurrence of corrosion or loading-induced
damages are usually located beneath the protective coatings and are hard to see directly,
and it may not be timely due to the large scale of the associated structures [13]. Searching
for a more reliable inspection method for steel corrosion, weight loss coupon measurement
is widely used in practice, in which steel coupons are placed at the location of concerns
and weight losses are measured after a period time of exposure to estimate corrosion
rates [14]. This approach is more quantitive compared to visual inspection, however, it
suffers from some unavoidable drawbacks, such as long inspection time, high maintenance,
and labor costs. Additionally, this method cannot detect loading-induced damages on the
structure and also may require disassembly of a part of structures resulting in a loss of
structural integrity.

To address the limitations of the above-mentioned traditional approaches to detect
steel corrosion and local stress accumulations, non-destructive evaluation (NDE) methods
have become popular. The NDE methods do not bring any interruptions or damages
to the original structures, and also provide high accuracy and ease of use. However,
most NDE techniques are highly dependent on the applied sensors which mostly rely
on the transmission and detection of electrical signals, such as acoustic and ultrasonic
sensors, magnetic sensors, microwave, or guided wave sensors, etc., resulting in lack
of detection accuracy with the existence of electrical–magnetic interference in the field
applications [15,16]. More importantly, as the NDE techniques are mostly external to a
structure, their application may require additional tool sets and skilled labor. Therefore, the
NDE techniques are usually used for scheduled periodic inspections or needed inspections
and may not be cost effective for wide and long-term monitoring applications [2].

In recent years, structural health monitoring (SHM) has been widely recognized as
an effective onsite monitoring method of early abnormalities in many industries, such as
aerospace, mechanical, and civil engineering fields [17,18]. A proper SHM system can detect
early initiation of degradations and monitor the cumulation of degradations and damages,
such as overstress, cracks, and corrosion in existing and new structures to guide a cost-
effective structural maintenance plan and avoid collapses and the resultant tragedies [19,20].
There are many types of sensors can be used in an SHM system, such as electrical strain
gauges, acoustic and ultrasonic sensors, cameras, and fiber optic sensors [21–23]. Among
the various existing sensors for SHM systems, fiber optic sensors, especially fiber Bragg
grating (FBG) sensors, attract intensive attention from researchers due to the unique advan-
tages of high sensitivity and precision, satisfiable linearity, immunity to electromagnetic
interference, resistance to harsh environments, light weight, small physical dimensions,
easy-operability, and relatively low cost [2,24]. The FBG sensors, as the most commonly
used fiber optic sensors, have been applied in many industries for the monitoring of strains,
stress, loads, and temperatures [17]. As corrosion can be investigated by monitoring strain
changes inside or on the surface of a steel structural component, FBG sensors have also
been applied to detect steel corrosion for bare and coated steel structures [25–27].

Although FBG sensors have been used as a tool to monitor structural performance
and damages, as an FBG sensor belongs to a category of local point sensors, most of
the research used FBG sensors to detect one single measure of structural performance or
damage. However, structures may not only suffer from corrosion, but also have damages
induced by accumulation of local stresses as various natural factors, such as wind, snow,
and moving loads may introduce extreme loads to structures.

Recent investigations have shown that the interaction of loading and corrosion could
mutually promote damages induced by each other, which may pose threats to the health
condition and safety of structures. Accelerated corrosion results from previous research [28]
indicated that the compressive load level could simultaneously influence the corrosion
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rate of a steel bar and the corrosive cracking behavior of reinforced concrete. Through
the evaluation of the deflections of RC beams under load and accelerated corrosion, it
was noticed that during the initial stage of corrosion, the deflections of beams increased
significantly due to the flexural tension and the expansive stresses caused by corrosion
products, resulting in crack propagations on the tension sides of beams [29]. In addition,
researchers found that both the corrosion of reinforcements and the cyclic loading obviously
reduced the bond properties of concrete structures [30]. Severe corrosion led to significant
degradation of the bond during the first five cycles, the corrosion process was weakened
with loading, and the corrosion of rebars under compression was more severe than that
under tension [31,32].

However, to date, there is yet to be real-time monitoring of the interaction between
corrosion and load-induced damages on steel structures. In this paper, systematic exper-
imental studies were performed to investigate such interactive influences between steel
corrosion and static loads on epoxy coated steel using FBG sensors. Periodic temporary
static loads were applied every six days on the coated steel substrates which were immersed
in 3.5% NaCl solutions for accelerated corrosion. The interactions between the loads and
corrosion were investigated by data mining the patterns of the recorded center wavelength
changes of the FBG sensors.

2. Theoretic Analysis
2.1. Sensing Principles

A typical single-mode optical fiber is composed of a fused silica core and cladding.
The refractive index of the core is higher than that of the cladding, resulting in total
internal reflection of light waves at the core-cladding interface. The total internal reflection
allows light waves to propagate along the fiber length. An FBG sensor is manufactured
by engraving periodic Bragg gratings in an optical fiber. When the incident light passes
through the gratings, light waves with a specific Bragg wavelength (λB) are reflected, while
the rest of light waves are transmitted. The value of the Bragg wavelength (λB) of an FBG
sensor can be determined using the effective refractive index (ne f f ) of the fiber and the
Bragg grating period (Λ) [24,33,34] as:

λB = 2ne f f ·Λ (1)

The effective refractive index of a particular FBG sensor is a constant, while the fiber
Bragg grating period is sensitive to temperature and strain changes [35]:

∆λ = λB[(1 − Pe)·εc + (α + ξ)∆T] (2)

where ∆λ is the Bragg wavelength shift; Pe is the photo elastic coefficient of the fiber; εc is
the strain change along the grating direction; α and ξ are the thermo expansion coefficient
and the thermo-optic coefficient of the fiber, respectively; and ∆T is the change of external
temperature. If the temperature is unchanged or compensated using an FBG sensor that is
nearby and free of strain change, Equation (2) can be rewritten as:

∆λ = λB(1 − Pe)·εc (3)

Strain changes along the grating can be determined by measuring the wavelength
shift of a FBG sensor. The strain changes can be induced by mechanical loads, corrosion,
and other effects.

2.2. Calibration of FBG Sensors

In this study, the FBG sensors were attached to steel specimens using a two-part epoxy.
The epoxy served as adhesive and provided protection for the optical fiber. The strain
sensitivity of the FBG sensor embedded in epoxy was calibrated through tension tests to
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eliminate the strain transfer effect [36–38] on the strain measurement results. The strain
transfer ratio (k) is expressed as [39]:

k =
εc

ε1
(4)

where ε1 is the strain in the steel plate and εc is the strain measured from the FBG sensor.
The test was performed using a Mechanical Testing and Simulation (MTS) loading

machine under tension as shown in Figure 1a. The strain in the steel plate was evaluated
using an extensometer, and the strain in the FBG sensor was simultaneously measured
using an interrogator (model: National Instrument NI PXIe-1071) as shown in Figure 1b.
The sampling rate of the interrogator and MST machine were 10 Hz. Three calibration tests
were performed on the FBG strain sensor. In addition, another FBG sensor was attached to
a plate which did not load tension for temperature compensation. All the calibration tests
were performed at room temperature of 22 ◦C.
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Figure 1. Calibration of strain transfer ratio: (a) tensile test setup and (b) FBG interrogator.

Figure 2 shows the average tensile test data after temperature compensation from the
three calibration tests. The strains in the steel plate and the FBG sensor were approximately
proportional. The slope of the curve represents the strain transfer ratio, which is 0.39
according to linear regression. The coefficient of determination of the linear regression
analysis was 0.99. Based on Equations (3) and (4), the strain changes of epoxy-coated steel
plates can be estimated by monitoring the Bragg wavelength changes under corrosion and
mechanical load.
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Figure 2. Calibration results of the strain transfer ratio of the adopted FBG sensors.

2.3. Measuring the Depth of Pitted Corrosion

Corrosion of a local spot where the protective coating of steel is damaged is categorized
as pitted corrosion. Previous studies [40–46] assumed that the corrosion products of pitted
corrosion mainly accumulate within a small area in the vertical direction. The shape of
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pitted corrosion is considered as the hemispherical hole, as shown in Figure 3a. The depth
of pitted corrosion (d) can be used to characterize the severity of corrosion [47]:

d =
1.2∆
(c − 1)

(5)

where ∆ is the upward displacement of coating induced by pitted corrosion, and c is the
volume ratio between the corrosion product and the original steel [47].
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Figure 3. Schematic illustration of pitted corrosion effect on the deformation of the epoxy coating
(a) deformation under only corrosion, and (b) deformation under loading and corrosion.

If a mechanical load is applied to the location where corrosion occurs, the epoxy on top
of the corrosion will be subjected to two types of forces, with one caused by the mechanical
load and the other one induced by the expansion from the corrosion products, which can
be simplified as concentrated loads (F1) and (Fc) as shown in Figure 4a, respectively. As
the corrosion products lift a small area of epoxy, debonding of epoxy coating would occur
along the width of the corrosion. Since all other areas other than the corrosion width
remain bonded to the substrate [47], the debonded epoxy can be simplified as a fixed
beam, which is subjected to both uplifting force induced by corrosion products (Fc) and
downward external mechanical load (F1) as shown in Figure 4a. In other words, the FBG
sensor measures the strains in the epoxy that is subjected to a combination of mechanical
loads and corrosion effect.
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external load on the epoxy instrumented with a FBG sensor: (a) illustration of the beam model and
(b) illustration of the deformation.

In practical application of steel structures, comparing the large span of steel com-
ponents, the deformation induced from external loads or corrosion is considered small.
Thus, the dimension along steel surfaces generally remains curveless, from which it is
assumed that in the deformation of the epoxy with FBG sensor under mechanical loading
and corrosion can be simplified to be a triangular shape as shown in Figure 4b. When there
is only external load, it can be assumed that the original length of the fixed beam model, L0,
is the diameter of the external load. The displacement at the middle span is expressed as:

∆ =
1
2

√
L2 − L2

0 (6)
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where L0 is the original length of the beam model, and L is the deformed length of the
beam model.

The strains in the embedded FBG sensor are expressed as:

L − L0

L0
= εc (7)

Substituting Equation (7) into Equation (6), the maximum deformation of the epoxy
can be expressed as:

∆ =
1
2

L0·
√

εc·(εc + 2) (8)

With Equations (3), (5) and (8), the depth of pitted corrosion (d) can be determined
based on the wavelength shift of the FBG sensor:

d =
0.6L0

(c − 1)
·
√

α∆λ·(α∆λ + 2) (9)

where α = 1
λB(1−Pe)

.

2.4. Measuring the Width of Pitted Corrosion

With the progress of corrosion and the vertical accumulation of pitted corrosion
products, the FBG sensor is gradually lifted. Meanwhile, with the external load on top of
the corrosion products, the debonded length of the epoxy coating, which is defined as the
width of pitted corrosion, wc, continuously changes. Before extensive corrosion and under
the vertical external load, the corrosion product is compacted into a thin film. Thus, the
contact length of the external load and epoxy coating, L0, can be considered equal to the
initial debonded length, wc, as shown in Figure 3b. As seen in Figure 3b, a larger width of
pitted corrosion indicates a larger corrosion product diffusion area and a larger corrosion
area. Thus, the width of pitted corrosion can be used to evaluate the corrosion severity and
the interaction between external load and corrosion. Based on the fixed end beam model,
the maximum deflection of the beam can be more accurately estimated as:

∆ =
Fw3

c
384EI

(10)

where F = Fl − Fc, E is the elastic modulus, and I is the moment of inertia.
Integrating Equations (10) and (3) into Equation (8), the relationship between the

Bragg wavelength changes and the loading contact length is expressed as:

1
2

L0·
√

α∆λ·(α∆λ + 2) =
Fw3

c
384EI

(11)

where α = 1
λB(1−Pe)

. Based on the loading only condition, by monitoring the Bragg
wavelength changes under different conditions, the corresponding width of corrosion, wc,
can be obtained:

w3
c

L3
0
=

√
α∆λ·(α∆λ + 2)√

α∆λ0·(α∆λl + 2)
(12)

where ∆λ0 is the Bragg wavelength change under the loading only. If F1 � Fc, it can be
assumed that F = Fl − Fc ≈ Fl . So, the width of the corrosion can be approximated as:

wc =
6

√
∆λ·(α∆λ + 2)

∆λl ·(α∆λl + 2)
·L0. (13)
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Therefore, by monitoring the Bragg wavelength changes, both the corrosion depth
(d) and the width (wc) can be measured to investigate the interaction between damages
induced by external temporary loading and corrosion.

3. Experimental Program

To test the interaction between steel corrosion and static load-induced damages, corro-
sion and periodic static loads need to be applied simultaneously. However, before applying
simultaneous corrosion and loads, separate loading and corrosion tests are also needed to
understand how the coated steel behaves under each of the conditions. Thus, one control
test of loading only, and one control test of corrosion only was first conducted to compare
with multiple tests with simultaneous loading and corrosion to investigate the interaction
of loading and corrosion.

3.1. Materials and Dimensions

In all the experiments, epoxy coated steel plates were used as the testing substrate.
FBG sensors were embedded inside the epoxy coating at the central axis of the steel plate
as shown in Figure 5. A36 structural steel was used as the material of steel plates and their
dimensions were 6.75 in. × 6.75 in. × 0.125 in. Epoxy resin (Duralco 4461) was used as the
protective coating. The FBG sensors (os1100) manufactured by LUNA were used and the
properties of the used FBG sensors are listed in Table 1 (provided by manufacture). The
same FBG interrogator as in Figure 1b was used to collect the Bragg wavelength changes.
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Table 1. Properties of the FBG sensors.

FBG Length 10 mm

Strain limit 5000 µε
Strain sensitivity ~1.2 pm/µε

Operating temperature range −40 to 120 °C
Thermal sensitivity ~9.9 pm/◦C

Fiber coating Polyimide
Fiber re-coating diameter 145–165 µm

3.2. Loading-Only Tests
3.2.1. Test Set-Up

In this paper, concentrated load was applied on top of the embedded FBG sensor
to investigate the loading effects. To create a loading mechanics, the steel plate was
elevated away from a perforated stainless-steel table using four stainless-steel bolts and
nuts (diameter of 1/2 in.) as shown in Figure 6a,b. The distance between the center of two
bolts was set to be 6 in. as seen in Figure 4. Then, the concentrated loads were applied at
the center of the steel plate through a simple point load frame as shown in Figure 6a,b. A
stainless-steel bar with a diameter of 0.75 in. was welded to a stainless-steel plate with a
size of 6 in. × 6 in. × 0.125 in. to provide the point contact between the loads and the coated
testing steel plate samples. The cross-section of the stainless-steel bar is large enough to
ensure the loads remain stable when the weights are placed on top of the plate during the
loading tests. Discrete accumulated weights were placed on top of the stainless-steel plate
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to generate the static loads. To be statistically valid, three identical specimens were tested
in the loading-only tests in addition to a fourth specimen for temperature compensation.
The samples for loading-only tests were labeled as L1, L2, L3 for loading tests and LT for
temperature compensation.
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Figure 6. Test set-up of loading experiment: (a) schematic view and (b) a photo.

3.2.2. Determination of the Static Loading Levels

To actually determine the loading levels to be applied on the loading frame as shown
in Figure 6b for inducing noticeable stress or damages on the epoxy coated steel plate,
a compression loading calibration test was conducted to set up a relationship between
the strains on the FBG sensor and the static loads on top of the steel plate. Figure 7
shows the test setup. The same test sample as shown in Figure 6 was used to perform the
calibration test. Instead of using discrete loads, an MTS loading machine was used to apply
a gradually increasing compression load on top of a 3/4 in. diameter steel rod. During the
calibration test, the same sampling rate of 10 Hz was used for both the FBG interrogator
and MTS machine.
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Figure 8 shows the result of compression test. Figure 8 indicated a linear correlation
between the obtained strains (µε) from the FBG sensor and the load (N) on top of the plate
of 0.6 µε/N.
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Since corrosion on epoxy coated steel is a very slow process, corrosion is unlikely to
induce sudden shifts of Bragg wavelength for the FBG sensors. On the other hand, loading
on the FBG sensors will induce a sudden significant amount of Bragg wavelength shifts. To
have noticeable changes in the Bragg wavelength changes induced by loading during the
further combined loading–corrosion tests, a 20 pm of Bragg wavelength change induced
by a discrete load level was selected to have a more obvious observation. According to
Equation (3), a Bragg wavelength shift of 20 pm corresponds to a strain level of approx-
imately 20 µε in the axial direction of the FBG sensor. From Figure 8, it can be seen that
20 µε of strain changes in the axial direction of the FBG sensor required a load increase of
30 N. Therefore, the discrete weight level to be placed on top of the steel plate was selected
to be 30 N.

To investigate the impacts of loads on steel corrosion, a five-level loading and unload-
ing test were designed using each load level of 30 N. To produce such a static load level,
two steel plates with the size of 6 in. × 6 in. ×6 in. were fabricated and used as weight
for 30 N, as shown in Figure 6b. Thus, for the five-level loading and unloading tests, a
total of 10 such steel plates were prepared. For each static weight level, a load duration
of 2 min was used to ensure a stable load. Table 2 lists the static load values (N) and the
corresponding expected strain levels (µε) based on the calibration loading test results in
Figure 8 of the five-level loading test.

Table 2. Load values and corresponding expected strain levels of the five-level loading test.

Load Level Load Value (N) Expected Strain Value (µε)

1st 30 18
2nd 60 36
3rd 90 54
4th 120 72
5th 150 90

3.3. Corrosion-Only Tests

Corrosion-only tests were also set up to investigate how the epoxy coated steel behaves
under corrosion only environments. To create a corrosion environment on the epoxy coated
steel plates, PVC pipes with a diameter of 4 in. were attached to the surfaces of epoxy coated
steel plate specimens using epoxy adhesive as shown in Figure 9a. After the adhesive was
fully cured, PVC pipes were filled with 3.5 wt% NaCl solution to simulate an accelerate
corrosive environment. To be statistically valid, four identical specimens were tested at
the same time, one of which was used for temperature compensation without loading and
corrosion. The samples for corrosion-only tests were labeled as C1, C2, C3, and CT (CT was
used for temperature compensation). Since epoxy coating has great corrosion protection,
if there are no defects or damages on the epoxy coatings [48], it would take too long for
the corrosion tests if there were no pre-fabricated damages on the epoxy coating. Thus, to
accelerate the corrosion process, one artificial crack with a length of 1 in. was introduced
to the epoxy coating using a micro-grinder. The artificial crack was located 0.5 in. away
from the FBG sensor on each steel plate sample as shown in Figure 9b. In this paper, the
corrosion tests were conducted for up to 120 days.
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3.4. Combined Loading–Corrosion Tests

To investigate the interaction between load- and corrosion-induced damages, com-
bined loading–corrosion tests were also conducted. Figure 10 shows the designed test setup
for the combined loading–corrosion tests. The corrosion test was first set up following
the same setup as in Section 3.3. During the corrosion process, there was one cycle of
static loading applied to the samples every six days following the loading test setup as
in Section 3.2. Each loading cycle lasted 20 min from loading to unloading, and each
loading/unloading level lasted 2 min to stabilize the wavelength changes. The combined
loading–corrosion tests lasted for 120 days to be consistent with the corrosion only tests.
During the 120 days, there were 20 cycles of interactive loading tests performed on each test
sample. Table 3 provides the schedule of interactive loading and corrosion tests. The same
samples which previously performed loading tests, L1, L2, and L3 were used to conduct the
combined loading–corrosion tests renamed B1, B2, and B3. With temperature compensation
samples for each test, all the experimental results and analysis in next section are presented
after compensating temperature effects.
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Table 3. Schedule of interactive loading and corrosion tests.

Time (Days) Test Operation

0 Corrosion test start
4 1st cycle of loading test
10 2nd cycle of loading test
16 3rd cycle of loading test
22 4th cycle loading test
. . . . . .
120 20th cycle of loading test
120 Corrosion test end

4. Experimental Results

All the following analysis of experimental test results are based on the Bragg wave-
length changes induced by loading and corrosion. The corresponding strain changes
caused by loading and corrosion in the FBG sensors and the test samples can be calculated
according to Equations (3) and (4), which will show the same changing law as the Bragg
wavelength changes.

4.1. Loading-Only Tests

Figure 11 shows the Bragg wavelength shifts of three testing samples during the
five-level loading and unloading tests. As each test sample was tested three times, Figure 11
shows the average wavelength shifts for each sample. From the figure, it is noted that the
wavelength changes of all three samples yielded stepwise wavelength changes. The total
wavelength shifts of L1, L2, and L3 exceeded 100 pm and reached the expected wavelength
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variation ranges as expected in Table 1, with 180 pm, 210 pm, and 110 pm, respectively.
The variations of differences in strain sensitivity for the three samples accounted for the
variance of FBG sensor location during loading and the possibility that a slight bending of
FBG sensors existed during samples manufacturing, which revealed the differences in the
FBG sensors among the three tested samples. It also provided corresponding comparative
control for the analysis of the results of the combined loading–corrosion tests. During
the loading interval of 2 min, Sample L1 and Sample L2 showed noticeable increases in
wavelength, which may be induced by the inelasticity of epoxy coatings. A longer time
interval may be needed for stable loading/unloading of strains. Since this study focuses
on the interaction between loading and corrosion, these temporal fluctuations would not
impact the analysis results. Figure 11 will be used as control test results to compare with
the combined loading–corrosion tests.
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4.2. Corrosion-Only Tests

Figure 12 shows the wavelength changes obtained from the corrosion-only tests. The
slight wavelength shift at beginning of the test was induced by the creation of the artificial
crack. With the recorded Bragg wavelength changes, the corrosion rate of each sample can
be estimated using [26]:

CR = γ·d∆λ

dt
(14)

where, γ is the sensitivity of the sensor to the rate of metal corrosion. Based on Equation (14),
Table 4 lists the estimated average corrosion rate during the entire testing period of each
sample. The average corrosion rate of the three epoxy-coated steel plate samples with
prefabricated crack ranging from 0.28 to 1.13 µm/year.
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Table 4. Average corrosion rates of three samples.

Sample No. Corrosion Rate for Corrosion-Only Conditions (µm/year)

C1 1.13
C2 0.52
C3 0.28

4.3. Combined Loading–Corrosion Tests

Figure 13 shows the monitored Bragg wavelength shifts of the three tested samples
during the entire combined loading–corrosion tests, including the gradual changes caused
by corrosion and the sudden changes induced by the loading and unloading cycles. In
Figure 13, each sudden wavelength change peak indicates a loading cycle. Due to the
long timescale, the change of wavelength for each cycle is shown as a wavelength change
peak. Figure 14a–c show the visual inspection of the three tested samples at the end of
the combined loading–corrosion tests. From Figure 13, it can be seen that the changing
trends of B1 and B3 were basically the same with similar wavelength shifts, indicating that
they had experienced a similar extent of corrosion. However, B2 showed a different trend.
This different trend of B2 was because the rod holding the weights for static loading was
accidental tipped over during the first loading cycle. This accident may have caused pre-
mature delamination between the epoxy and the substrate, which may have accelerated the
development of corrosion and made the corrosion more serious than B1 and B3, which has
been illustrated in Figure 14b, which shows that the epoxy coating of B2 had delaminated,
and a large amount of brown-red corrosion products were generated at end of the test. With
the premature delamination, a sudden significant amount of wavelength increases was
noticed during and after the 6th and the 13th loading cycles, indicating that the loading may
have further induced cracks which accelerated corrosion. At around 2000 h, the corrosion
rate (CR) of B2 was estimated to be 39.04 µm/year according to Equation (14), which is
close to the corrosion rate of 39.26 µm/year for bare A36 structural steel with corrosion
cracks from the previous Tafel test [26]. It indicated that the steel under the epoxy coating
had been severely corroded with the existences of cracks.
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Figure 15 compares the Bragg wavelength shifts of the three tested samples under
corrosion-only and under combined loading–corrosion tests, and Table 5 compares the
average corrosion rate during the entire testing period of the corresponding tested samples
under these two testing conditions. The results show that external temporary load had
promoted corrosion significantly compared to corrosion-only conditions. Specifically, since
significant coating delamination occurred for Sample B2 and Sample C2 and Sample B3
and Sample C3, while no coating delamination occurred for Sample B1 and Sample C1,
Figure 15 and Table 5 indicate that the effect of loading depended on the condition of the
epoxy coating. If delamination exists in the coating, external temporary load can induce
severe corrosion up to 12 times higher at the end compared to no external loads, and the
interactive damages induced by interaction between corrosion and loads can occur in a
relatively short period of time within one week (168 h) after the first loading cycle.
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Table 5. Measured average corrosion rates of the tested samples.

Samples
Corrosion-Only

Average Corrosion
Rate (µm/year)

Combined
Loading–Corrosion
Average Corrosion

Rate (µm/year)

Percentage of
Corrosion Rate

Increase (%)

1 1.13 1.63 44.3%
2 0.52 6.80 1207.7%
3 0.28 1.72 514.3%

5. Discussions
5.1. Corrosion Depth Severity Ratio

To investigate the influence of external temporary loading on the corrosion severity,
based on the corrosion depth, d, as in Equation (5), in this paper, a corrosion depth severity
ratio (Rd) s defined as:

Rd = d0/d1 (15)

in which, d0 is the depth of corrosion with corrosion only and d1 is the depth of corrosion
with combined corrosion with external temporary loading cycles. With an expectation that
external loads would increase corrosion depth, the corrosion severity ratio is expected to
be smaller than 1 and a smaller corrosion depth severity ratio indicates a higher impact of
external temporary loading cycles on the corrosion progressing.

Figure 16a–c show the estimated corrosion depths, d0 and d1, and Figure 16d illustrates
the corrosion depth severity ratio, Rd, for all three tested samples. It is noted that for all three
samples, the external temporary loading cycles had significantly increased the corrosion
depths for all three tested samples. Clear abrupt changes in Figure 16b after Loading No. 5,
14, and 15 indicate that significant and sudden development of pitting corrosion occurred
after these loading cycles. Figure 16d clearly indicates that after three loading cycles, all
three samples had promoted corrosion severity compared to before three loading cycles.
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The corrosion depth severity ratio shows a trend to approach zero if coating delamination
exists. In addition, since C1–B1 and C2–B2 had showed delamination in the epoxy coating,
loading had a more pronounced effect on the corrosion development at the beginning
of corrosion.
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Figure 16. Comparison corrosion depth severity ratio: (a) Sample B1-C1, (b) Sample B2-C2, (c) Sample
B3-C3, and (d) Corrosion depth severity with impact from external temporary loads.

5.2. Corrosion width Severity Ratio

According to Equation (13) and the monitored Bragg wavelength changes in
Figures 15 and 17a–c, which show the changes of corrosion width severity ratio, which
is defined as dividing the actual corrosion width (wc) by the initial assumed corrosion
width (L0), under the combined loading–corrosion tests of the three tested samples with
five different loading levels. As the original width of corrosion is unknown, in this study,
the original width of the corrosion (L0) is assumed to be the diameter of the external load
which equals to 0.75 in. (diameter of the loading rod) in this experiment. As the actual
corrosion width usually is less than the diameter of the external load (0.75 in.), the corrosion
width severity is expected to be a value of less than 1.0. The accumulation of corrosion
products under FBG sensors induce an upward lift leading to the increase of the corrosion
width, and as the corrosion grows more severe, the corrosion width is expected to be
comparable and even larger than the external load diameter. Thus, the corrosion width
ratio is expected to increase back to 1.0 or higher as the corrosion continuously grows. From
Figs. 17(a–c), among the three samples, the corrosion width ratio of B2 was restored to 1.0,
indicating that the corrosion width of B2 grew to be equal to or larger than the diameter
of the external load (0.75 in.) at the end of the experiment. In addition, because of the
compacting effect of external loads on the corrosion products, most of the contact lengths
vary significantly during each loading test from level 1 to level 5. Overall, by comparing
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the corrosion width ratio of different samples after all the loading tests, it was found that
B2 has the largest corrosion width followed by B1 and B3, which is consistent with the
findings in Sections 4 and 5.1.
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Figure 17. Changes of corrosion width severity ratio (wc/L0) under the combined loading–corrosion
tests: (a) Sample B1, (b) Sample B2, and (c) Sample B3.

6. Conclusions

Experimental results proved that the FBG sensors were able to accurately monitor
corrosion and the significant interactions between corrosion and external loads in real time.
The most remarkable findings in this paper are listed below:

1. The wavelength changes among different samples were compared. It was found that
delamination of the epoxy coating would significantly accelerate corrosion in epoxy
coated steel and increase the contribution of external loads on impacting corrosion.

2. The comparison between the wavelength changes under corrosion-only and combined
loading–corrosion tests and the corrosion depth analysis indicated that temporary
external loading can significantly accelerate corrosion up to 12 times compared to no
external loading, especially in the condition when the coating was delaminated.

3. With combined external temporary loading and corrosion, the variation of restoration
of corrosion width ratio went back to a value closer to 1.0, indicating the influence of
the compacting effect of loose corrosion products under external loading.

The current studies were conducted in laboratory environments which may limit the
effects of loading on corrosion. In the future, further study will be performed to assess the
long-term interaction of corrosion and static loads in practical applications.
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