
Citation: Yu, H.; Liu, Z.; Zou, S.;

Wang, W. CPACK: An Intelligent

Cyber-Physical Access Control Kit for

Protecting Network. Sensors 2022, 22,

8014. https://doi.org/10.3390/

s22208014

Academic Editor: Luigi Ferrigno

Received: 3 August 2022

Accepted: 26 September 2022

Published: 20 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

CPACK: An Intelligent Cyber-Physical Access Control Kit for
Protecting Network †

Haisheng Yu 1,2, Zhixian Liu 1, Sai Zou 3 and Wenyong Wang 1,2,*

1 University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu 611731, China
2 Macau University of Science and Technology, Wei Long Road, Taipa 999078, Macau
3 Guizhou University, College of Big Data and Information Engineering, Huaxi Load, Guiyang 550025, China
* Correspondence: wangwy@uestc.edu.cn
† This paper is an extended version of our paper published in Haisheng Yu; Dong Liu; Wenyong Wang; Keqiu

Li; Sai Zou; Zhaobin Liu and Yan Liu. An User-Driven Active Way to Push ACL in Software-Defined
Networking. In the 22nd International Conference, Parallel and Distributed Computing, Applications and
Technologies (PDCAT 2021) Guangzhou, China, 17–19 December 2021.

Abstract: Access Control Lists (ACL) are critical to protecting network and cyber-physical systems.
Traditional firewalls mostly use reactive methods to enforce ACLs, so that new ACL updates cannot
take effect immediately. In this paper, based on our previous work, we propose CPACK, an intelligent
cyber-physical access control kit, which uses a smart algorithm to upgrade the ACL list. CPACK
adopts a proactive way to enforce ACL and reacts to a new ACL update and network view update
in real time. We implement CPACK on both Floodlight and ONOS controller. We then conduct
a large number of experiments to compare CPACK with the Floodlight firewall application. The
experimental results show that CPACK has a better performance than the existing Floodlight firewall
application. CPACK is also integrated into the new version of Floodlight and ONOS controller.

Keywords: Access Control List (ACL); Software-Defined Networking (SDN); security; floodlight; ONOS

1. Introduction

The Internet, accommodating a variety of heterogeneous networks and distributed
applications [1], has achieved great success and has been an enormous power in promoting
social and economic development since it was proposed [2]. However, the current Internet
environment has changed dramatically as a result of the emerging network services and
cyber phsical system scale expansion. The traditional architecture of Internet has exposed
serious deficiencies, such as unexpected delays for data communication [3] and difficulty
in the traffic load balance among links [4]. The fundamental reason for that is the tight
coupling of control logic and data forwarding in network devices (e.g., router, switch) and
the distributed control of network devices [5].

To solve the problem, OpenFlow [6] has been proposed, which strips the control
logic from network devices and provides a set of well-defined interfaces for programming.
OpenFlow facilitates the realization of new network protocols and topologies without
changing network devices. The concept of Software-defined Networking (SDN) [7] is
created on the basis of OpenFlow and other research work such as SANE [8] and Ethane [9].
SDN migrates the control logic in network devices to individual computing devices called
controller to enforce centralized control. The control plane and forwarding plane in SDN is
connected using a standard interface protocol (e.g., OpenFlow). SDN provides an open
software programmable model and a diversity of network control functions [10]. It has
gained wide recognition and good support from both academia and industry.

Access Control List (ACL) is a network security enhancement. It applies a set of ACL
rules to each IP packet and determines whether to forward or drop the packet based on
its header fields [11]. ACL is similar to the stateless firewall or packet filtering firewall

Sensors 2022, 22, 8014. https://doi.org/10.3390/s22208014 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22208014
https://doi.org/10.3390/s22208014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22208014
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22208014?type=check_update&version=1

Sensors 2022, 22, 8014 2 of 12

which provides basic traffic filtering capabilities [12]. In traditional networks, ACL is
often placed in network devices (e.g., router, switch) and can be configured to control
both inbound and outbound traffic. Network devices examine each packet and determine
whether to forward or drop the packet on the basis of the rules specified in ACL [13].
Unfortunately, the approach has several deficiencies. Firstly, network devices should
have appropriate hardware and processing capabilities to enforce ACL, causing a vast
expense. Moreover, it is too complicated to design and configure ACL in distributed
network devices, not to mention the situation when network security policy changes. The
cumbersome maintenance of ACL in complex networks is also prone to error.

The root reason for this issue lies in the distributed way of enforcing ACL in traditional
networks. Software-defined Networking (SDN) provides a convenient network paradigm
to solve the problem [14]. SDN separates control logic and forwarding logic in traditional
networks, and SDN controller configures networks in a centralized manner rather than
distributed configuration [15].

There have been a few studies focusing on ACL in SDN up to now. D. Gamayunov et al.
proposed an approach to migrate ACL in traditional networks to SDN with security policy
preservation [16]. However, the approach chooses SDN topology based on how the subnets
are divided in traditional networks; therefore, it cannot adapt to the situation that a specified
SDN topology is given. Shin et al. designed an OpenFlow security application development
framework for developing OpenFlow-enabled detection and mitigation applications by
modular composition [17]. It aims at a holistic platform for implementing new security
applications which is much more sophisticated than ACL. Trandafir et al. presented
FirewallPK, a centralized Access Control List management application [18]. The application
was developed on the Cisco One Platform Kit framework and requires specified Cisco
network devices. X. Jia et al. proposed SDN based distributed firewalls for P2P networks,
while the firewalls do not leverage the centralized control feature which SDN provides [19].
Francois et al. reviewed approaches which implement in-network security functions such
as firewalls supported through OpenFlow devices [20]. Generally, two ways are adopted to
enforce ACL in SDN: reactive and proactive.

In a reactive way, controller compares each incoming Packet-in message against all
ACL rules from the highest priority until either a match is found or the list is exhausted.
When a match is found and the ACL rule denies the flow, the controller pushes a drop
flow entry; otherwise it pushes a regular forwarding flow entry [21]. Unfortunately,
this way shows defects in several aspects. Firstly, as a controller starts a comparison
process for each new Packet-in message, it increases forwarding delay. Secondly, there is
frequent interaction between switches and controller, which takes up a large portion of the
controller’s resources, especially when network traffic bursts. Moreover, the worst issue is
caused when a new ACL update occurs, as the reactive way cannot remove invalid flow
entries in time, resulting in a new ACL update that cannot take effect immediately, such
that the delay is unpredictable. For example, in Figure 1, suppose that Alice is sending
packets to Bob, and there is a flow entry forwarding all packets from Alice to Bob. When a
new added ACL rule denies all packets from Alice to Bob, that flow entry becomes invalid
immediately but is not removed. Therefore, Alice is still able to send packets to Bob as
long as the invalid flow entry remains in the switch. That is to say, the reactive way can
cause network security violation. M. Suh, J. Collings, T Javidet et al. implemented ACL
applications in a reactive way [22–24]. Timothy L. Hinrichs et al. proposed a declarative
policy language FML [25], which allows users to declare policy such as ACL rules. The
language is reactive and needs the policy engine to intercept every flow on the network.
The famous Floodlight [26] controller contains a firewall application [27] working in a
reactive way, too.

Sensors 2022, 22, 8014 3 of 12
2 ISSN: xxxx-xxxx

New rule: {src_ip=10.0.0.1/32, dst_ip=10.0.0.2/32,
action=DENY}

(Deny packets from Alice to Bob)

ACL

Packets Packets

no Packet-in message
Controller

Alice
10.0.0.1

Bob
10.0.0.2

Flow: {src_ip=10.0.0.1/32, dst_ip=10.0.0.2/32,
action=FORWARD to Bob}

(An invalid flow entry)

Figure 1. Network security violation in a reactive way

support from both academia and industry.
Access Control List (ACL) is a network security enhancement. It applies a set of ACL rules to each

IP packet and determines whether to forward or drop the packet based on its header fields. ACL is similar
to the stateless firewall or packet filtering firewall which provides basic traffic filtering capabilities [10]. In
traditional networks, ACL is often placed in network devices (e.g. router, switch) and can be configured to
control both inbound and outbound traffic. Network devices examine each packet and determine whether to
forward or drop the packet on the basis of the rules specified in ACL [11]. Unfortunately, the approach has
several deficiencies. Firstly, network devices should have appropriate hardware and processing capabilities
to enforce ACL, causing a vast expense. What’s worse, it is too complicated to design and configure ACL
in distributed network devices, not to mention the situation when network security policy changes. The
cumbersome maintenance of ACL in complex networks is also prone to error.

The root reason for that lies in the distributed way to enforce ACL in traditional networks. Software-
defined Networking (SDN) just provides an convenient network paradigm to solve the problem. SDN sepa-
rates control logic and forwarding logic in traditional networks, and SDN controller configures networks in
a centralized manner rather than distributed configuration [12].

There has been a few studies focusing on ACL in SDN up to now. D. Gamayunov et al. proposed an
approach to migrate ACL in traditional networks to SDN with security policy preservation [13]. However,
the approach chooses SDN topology on base of how the subnets are divided in traditional networks, therefore
it can’t adapt to the situation a specified SDN topology is given. Shin et al. designed an OpenFlow security
application development framework for developing OpenFlow-enabled detection and mitigation applications
by modular composition [14]. It aims at a holistic platform for implementing new security applications which
is much more sophisticated than ACL. Trandafir et al. presented FirewallPK, a centralized Access Control
List management application [15]. The application was developed on the Cisco One Platform Kit framework
and requires specified Cisco network devices. X. Jia et al. proposed SDN based distributed firewalls for P2P
networks, while the firewalls do not leverage the centralized control feature which SDN provides [16].

François et al. reviewed approaches which implement in-network security functions such as firewalls
supported through OpenFlow devices [17]. Generally, two ways are adopted to enforce ACL in SDN: reactive
and proactive.

In a reactive way, controller compares each incoming Packet-in message against all ACL rules from
the highest priority until either a match is found or the list is exhausted. When a match is found and the
ACL rule denies the flow, the controller pushes a drop flow entry; otherwise it pushes a regular forwarding
flow entry. Unfortunately, this way shows defects in several aspects. Firstly, as controller starts a comparison
process for each new Packet-in message, it increases forwarding delay. Secondly, there is frequent interaction
between switches and controller, which takes up a large portion of the controller’s resources especially when
network traffic bursts. What is the worst, when an new ACL update occurs, as the reactive way can’t
remove invalid flow entries in time, resulting in new ACL update can’t take effect immediately, and the
delay is unpredictable. For example, in Figure 1, suppose that Alice is sending packets to Bob, and there is

IJxxx Vol. x, No. x, May 2012: 1 – 12

Figure 1. Network security violation in a reactive way.

In a proactive way, the controller uses flow entry to block packets in switch in advance,
without being requested by Packet-in messages [28]. The proactive way avoids additional
forwarding delay and saves the controller’s resources. Justin Gregory V. Pena et al. pro-
posed a distributed flow-based firewall working in a proactive way [29]. The application
listens to the switch’s ConnectionUp events and pushes flow entry for ACL rules when a
new switch appears in the network. In the application, new added ACL rules do not take
effect in the switches that have already shown up, because no ConnectionUp events are
raised for those switches.

In our earlier work [30], we proposed a user-driven centralized ACL framework in
SDN, which adopts a proactive way to enforce ACL and thus to avoid additional delay and
save the controller’s resource. It reacts to a new ACL update and network view update
in real time to ensure network security. In this paper, we propose CPACK, an intelligent
Cyber-Physical Access Control Kit, which use smart algorithm to upgrade the ACL list.
CPACK uses an abstract network view to accelerate processing and undertakes a match
check for new added ACL rule to avoid the invalid rule. We elaborate on the update process
and upgrade algorithm of ACL in CPACK, and also describe the mandatory ACL update,
AP pair update, and the order of adding ACL rules to ensure that CPACK meets the needs
of users.We implement CPACK on both Floodlight and ONOS controller [31], and CPACK
is also integrated into the new version of both controllers.

2. CPACK DESIGN
2.1. Overview

Figure 2 depicts CPACK’s architecture, CPACK provides REST API for users and
contains two core modules, Accessing Pair (AP) Manager and Access Control List (ACL)
Manager. Each module has several submodules in charge of different processing.

In CPACK, each ACL rule contains several match fields and an action field. Packets
defined in match fields are forwarded or dropped following the action field. An ACL rule
is denoted as:

R: {id; nw proto; src ip; dst ip; dst port; action}

Each ACL rule has a distinct id. Match fields comprises nw_proto (network protocol),
src_ip (source IP address), dst_ip (destination IP address), dst_port (TCP or UDP destination
port). Match field value may be a wildcard, which can be substituted for all possible field
values. The src_ip and dst_ip field use CIDR IP address, which can designate many unique
IP addresses. The action field value is either “ALLOW” or “DENY”.

Sensors 2022, 22, 8014 4 of 12
IJxxx ISSN: xxxx-xxxx 3

gnivomeR PA ssecorP

gniddA PA ssecorP

etadpU PA ssecorP

yrtnE wolF LCA etareneG

kcehC hctaM

gnivomeR eluR ecrofnE

gniddA eluR ecrofnE

noitcnuF yreu

REST API

QteS PA niatniaM

eluR LCA evome

Accessing Pair (AP) Manager

R

etadpU ecrofnE

eluR LCA ddA

LCA etadpU

 reganaM)LCA(tsiL lortnoC sseccA

Figure 2. CLACK architecture

a flow entry forwarding all packets from Alice to Bob. When a new added ACL rule denies all packets from
Alice to Bob, that flow entry becomes invalid immediately but is not removed. Therefore Alice is still able to
send packets to Bob as long as the invalid flow entry remains in the switch. That is to say, the reactive way
can cause network security violation. M. Suh, J. Collings, T Javidet et al. implemented ACL applications
in a reactive way [18] [19] [20]. Timothy L. Hinrichs et al. proposed a declarative policy language FML [21],
which allows users to declare policy such as ACL rules. The language is reactive and needs the policy engine
to intercept every flow on the network. The famous Floodlight [22] controller contains a firewall application
[23] working in a reactive way, too.

In a proactive way, controller uses flow entry to block packets in switch in advance, without being
requested by Packet-in messages. The proactive way avoids additional forwarding delay and saves controller’s
resources. Justin Gregory V. Pena et al. proposed a distributed flow-based firewall working in a proactive
way [24]. The application listens to switch’s ConnectionUp events and pushes flow entry for ACL rules when
a new switch appears in the network. In the application, new added ACL rules don’t take effect in the
switches that have already shown up, for no ConnectionUp events are raised for those switches.

In this paper, we propose CLACK, an approach for user-driven centralized ACL in SDN. CLACK
adopts a proactive way to enforce ACL thus to avoid additional delay and save controller’s resource, it reacts
to new ACL update and network view update in real time to ensure network security. CLACK uses abstract
network view to accelerate processing and does match check for new added ACL rule to avoid invalid rule.
We implement CLACK on both Floodlight and ONOS controller [25], and CLACK is also integrated into
the new version of both controllers. 1

2. CLACK DESIGN
2.1. Overview

Figure 2 depicts CLACK’s architecture, CLACK provides REST API for users and contains two
core modules, Accessing Pair (AP) Manager and Access Control List (ACL) Manager. Each module has
several submodules in charge of different processing.

In CLACK, each ACL rule contains several match fields and an action field. Packets defined in
match fields are forwarded or dropped following the action field. An ACL rule is denoted as:

R : {id, nw proto, src ip, dst ip, dst port, action}
1source code available at http://dwz.cn/1YcUgj (for Floodlight) and http://dwz.cn/1YcS2d (for ONOS)

Title of manuscript is short and clear, implies research results (First Author)

CPACK

Figure 2. CPACK architecture.

CPACK provides a friendly and centralized user interface through REST API for users
to add, remove, and query ACL rules. Users can use CPACK easily by sending an HTTP
request containing JSON string, and they do not need to configure distributed switches one
by one any more because CPACK does all the work.

CPACK filters IP packets by ACL flow entries exactly reflecting ACL rules in ingress
or egress switches. After receiving the user’s new ACL update request, CPACK updates
ACL rules and ACL flow entries immediately.

We will describe CPACK’s core modules in the following subsections.

2.2. Accessing Pair Manager

In CPACK, the real network view is transformed to an abstract network view. The
abstract network view conceals internal network topology, and it only exposes the interfaces
between edge switches and external hosts in the networks, as Figure 3 depicts.

We use Accessing Pair (AP) to store the interface information in the abstract network
view. An AP is denoted as:

AP: {id,dpid,ip}

The fields represent AP id, edge switch’s dpid (data path id), and host’s IP address,
respectively.

Accessing Pair Manager is a CPACK module, which maintains AP information in real
time and provides a query function. AP Manager monitors host an update event in the
networks and store all interface information in AP Set.

When a new host appears or disappears in the networks, AP Manager updates AP Set
correspondingly and calls ACL Manager for further processing, which will be described in
Section 2.3.

AP Manager also provides a query function getSwitchSet. Given a CIDR IP address,
the function traverses AP Set and returns a switch set. Each switch in the set connects with
a host whose IP address is contained in the CIDR IP address. This function will be used
when generating ACL flow entry.

Sensors 2022, 22, 8014 5 of 12

2.3. Access Control List Manager

Access Control List (ACL) Manager is a CPACK module, which updates ACL, enforces
the update, and processes the AP update.

2.3.1. Intelligent Update ACL

In order to make ACL update intelligently, we use the following intelligent update
algorithm of ACL, as described in Algorithm 1.

Algorithm 1 Updating ACL

Require:
User’s request, req; ACL Rule Set, SRule; RuleToFlow Table, Tr2f .

Ensure:
updateACL(req)

1: if req.type == add then
2: Rnew <= parse(req)
3: for each R ∈ Srule do
4: if match(Rnew, R) == true then
5: Return;
6: end if
7: end for
8: Srule.add(Rnew)
9: en f orceAdding(Rnew)

10: else if f req.type == remove then
11: Srule.remove(req.ruleId)
12: en f orceRemoving(req.ruleId)
13: end if
Ensure:

enforceAdding(R)
14: if isWildcard(R.src_ip) = f alse then
15: Sswitch = getSwitchSet(R.src_ip)
16: else
17: Sswitch = getSwitchSet(R.dst_ip)
18: end if
19: for each S ∈ Sswitch do
20: F <= generateFlow(R, S.dpid)
21: pushFlow(F)
22: Tr2 f .put(R.id, F.id)
23: end for
Ensure:

enforceRemoving(ruleId)
24: S f lowId <= Tr2 f .get(ruleId)
25: for each f lowId ∈ S f lowId do
26: removeFlow(f lowId)
27: Tr2 f .remove(ruleId)
28: end for

After receiving a new ACL update request, ACL Manager verifies its validity and
returns an error message if not valid.

If a user requests to add a new ACL rule, ACL Manager firstly parses user’s request
JSON string and generates a new ACL rule. It then traverses ACL Rule Set to check whether
the new ACL rule matches another existing rule. The new rule is rejected if a match is
found. ACL Manager generates a distinct id for each rule passing match check, adds it to
ACL Rule Set and starts the enforcing stage.

Sensors 2022, 22, 8014 6 of 12
4 ISSN: xxxx-xxxx

10.0.0.1 00:00:00:00:00:00:00:01

Real network view

Abstract network view

AP : { id = 1, dpid = 00:00:00:00:00:00:00:01, ip = 10.0.0.1 }

Figure 3. Abstract network view and Accessing Pair (AP)

Each ACL rule has a distinct id. Match fields comprises nw proto (network protocol), src ip (source
IP address), dst ip (destination IP address), dst port (TCP or UDP destination port). Match field value
may be a wildcard, which can be substituted for all possible field values. src ip and dst ip field use CIDR IP
address, which can designate many unique IP addresses. action field value is either “ALLOW” or “DENY”.

CLACK provides a friendly and centralized user interface through REST API for users to add,
remove, and query ACL rules. Users can use CLACK easily by sending an HTTP request containing JSON
string, and they don’t need to configure distributed switches one by one any more for CLACK does all the
work.

CLACK filters IP packets by ACL flow entries exactly reflecting ACL rules in ingress or egress
switches. After receiving user’s new ACL update request, CLACK updates ACL rules and ACL flow entries
immediately.

We will describe CLACK’s core modules in the following subsections.

2.2. Accessing Pair (AP) Manager

In CLACK, the real network view is transformed to an abstract network view. The abstract network
view conceals internal network topology, and it only exposes the interfaces between edge switches and external
hosts in the networks, as Figure 3 depicts.

We use Accessing Pair (AP) to store the interface information in the abstract network view. An AP
is denoted as:

AP : {id, dpid, ip}
The fields represent AP id, edge switch’s dpid (data path id), and host’s IP address, respectively.
Accessing Pair (AP) Manager is a CLACK module, which maintains AP information in real time

and provides a query function. AP Manager monitors host update event in the networks and stores all
interface information in AP Set.

When a new host appears or disappears in the networks, AP Manager updates AP Set correspond-
ingly and calls ACL Manager for further processing which will be described in Section 2.3.

AP Manager also provides a query function getSwitchSet. Given a CIDR IP address, the function
traverses AP Set and returns a switch set. Each switch in the set connects with a host whose IP address is
contained in the CIDR IP address. This function will be used when generating ACL flow entry.

2.3. Access Control List (ACL) Manager

Access Control List (ACL) Manager is a CLACK module, which updates ACL, enforces update,
and processes AP update.

2.3.1. Update ACL

The algorithm for updating ACL is described in Algorithm 1.

IJxxx Vol. x, No. x, May 2012: 1 – 12

Figure 3. Abstract network view and Accessing Pair (AP).

Match check is important because it rejects invalid rules in order to reduce storage
overhead in both switches and controller. Two functions are used in match check, and they
give the definition of match:

cover(Rnew,Rold,field): A Boolean function, where Rnew, Rold denote ACL rules and field
denotes ACL rule’s match field. We say:

cover(Rnew,Rold,field) = true if:

For f ieldε{nw_proto, dst_portg}, Rold.field has a wildcard value, and Rnew.field has an
user-assigned value;

For f ieldε{src_ip; dst_ip}, Rold.field contains all the IP addresses in Rnew.field.
match(Rnew,Rold): A Boolean function. We say:

match(Rnew;Rold) = true if:

For f ieldε{nw_proto, src_ip, dst_ip, dst_port}, there is:
Rnew.field = Rold.field or cover(Rnew,Rold.field) = true.

We say ACL rule Rnew matches Rold if all packets filtered by Rnew is already filtered by
Rold, and Rnew will not work at all if added.

If the user requests to remove an existing ACL rule, ACL Manager firstly parses the
user’s request and gets the rule’s id. It then removes the rule from ACL Rule Set and starts
the enforcing stage.

2.3.2. Enforce ACL Update

After updating ACL, the ACL Manager enforces that update by ACL flow entries. An
ACL flow entry is a static flow entry generated by CPACK to enforce ACL, denoted as:

F: {id, priority, dpid, nw_proto; src_ip, dst_ip, dst_port, action}

After a new ACL rule is added, CPACK enforces that rule. Generally, CPACK pushes
ACL flow entries in ingress switches where packets enter the networks. However, if an
ACL rule’s src_ip field has a wildcard value, it is reasonable to push ACL flow entries into
egress switches where packets leave the networks. Therefore, the ACL Manager should
pass different IP addresses to function getSwitchSet provided by AP Manager module,
depending on whether the rule’s src_ip field has a wildcard value or not. The function
returns a set containing all the switches where CPACK should push ACL flow entries into.

For each switch S in the result set, the ACL Manager generates an ACL flow entry F
enforcing the new added rule R. The flow entry’s priority is carefully set to ensure earlier
generated ACL flow entry in switches always has higher priority. Other fields are:

Sensors 2022, 22, 8014 7 of 12

• F.dpid⇐= S.dpid
• F. f ield⇐= R. f ield, f ieldε{nw_proto, src_ip, dst_ip, dst_port}
• F.action⇐= “DROP” if R.action = “DENY”
• F.action⇐= “FORWARD to CONTROLLER” if R.action = “ALLOW”

ACL Manager pushes every new generated ACL flow entry into the right switch and
stores the mapping from ACL rule to ACL flow entry in a hash table called RuleToFlow (r2f)
Table. Then, the new added rule starts to take effect.

By ACL flow entries exactly reflecting new added ACL rule in appropriate ingress or
egress switches, CPACK enforces the ACL rule correctly and efficiently.

After an existing ACL rule is removed, the ACL Manager searches RuleToFlow Table
and gets ACL flow entries relevant to that rule. It then removes those flow entries from
switches and updates RuleToFlow Table.

2.3.3. Process AP Update

As is mentioned before, when a new AP update occurs in the networks, AP Manager
module calls ACL Manager module for further processing.

If a new host appears, ACL Manager traverses ACL Rule Set to check whether the
host’s IP address is contained in an ACL rule’s src_ip and dst_ip field. As we want to make
sure whether ACL flow entry should be pushed into ingress switches or egress switches, it
is necessary to firstly check whether the ACL rule’s src_ip field has a wildcard value. If the
ACL rule has a wildcard value in src_ip field, ACL Manager compares the host’s IP address
with dst_ip field, or src_ip field otherwise. If a relevant ACL rule is found, ACL Manager
generate a new ACL flow entry and pushes it to the switch connecting with the new host.

If an existing host disappears, ACL Manager removes ACL flow entry relevant to that
host. This is easy because the ACL Manager maintains a hash table storing the mapping
from AP to ACL flow entry.

2.3.4. Order to Add ACL Rules

As CPACK enforces new ACL rules instantly when they are added, earlier added ACL
rule always has higher priority. CPACK sets ACL flow entry’s priority carefully to ensure
the priority definition in ACL rule. Therefore, the order to add ACL rules is critical.

CPACK allows all IP packets by default, and an ACL rule is generally used to deny
packets. Note that if an ACL rule’s action field value is “ALLOW”, the rule is used to
forward a subset of packets dropped by another rule whose action field is “DENY”. Figure 4
depicts an example to show the vital importance of the order to add allowing ACL rules.

Suppose there are three hosts and one web server in the network. The networking
administrator intends to allow Alice but deny Bob and Chuck to access the web server on
port 80.

In (a), the administrator firstly adds an ACL rule Rule1 to allow Alice’s access; ac-
cordingly, CPACK pushes an ACL flow entry Flow1 in switch S1 where Alice accesses the
network. The administrator then adds Rule2 to deny Bob and Chuck, and CPACK pushes
Flow2 and Flow3 in S2 and S3. Note that in S1, Flow1 has higher priority than Flow2. When
Alice requests to access the web server, Flow1 forwards Alice’s first packet to controller in a
Packet-in message. The controller then pushes general forwarding flow entries for Alice.
To ensure validity, the forwarding flow entries must have larger priority than all ACL flow
entries. When Bob and Chuck request to access the web server, Flow2 and Flow3 drop their
requests directly in switches.

However, if the administrator adds the two ACL rules in an inverted order, like in (b),
Rule2 can not pass match check because it matches Rule1. As a result, CPACK rejects Rule1,
and all hosts in subnet 10.0.0.0/30 (including Alice) are unable to access the web server,
which violates the administrator’s intention.

Sensors 2022, 22, 8014 8 of 12IJxxx ISSN: xxxx-xxxx 7

Flow1: {id=1, priority=30000, nw_proto=TCP, src_ip=10.0.0.1/32,
dst_ip:10.0.0.100/32, dst_port=80, action=FORWARD to CONTROLLER}
--
Flow2: {id=2, priority=29999, nw_proto=TCP, src_ip=10.0.0.0/30,
dst_ip:10.0.0.100/32, dst_port=80, action=DROP}

S1

Web server
(10.0.0.100)

S2

ACL

Alice
(10.0.0.1)

Chuck
(10.0.0.3)

Bob
(10.0.0.2)

Rule1: {id=1, nw_proto=TCP, src_ip=10.0.0.2/32,
dst_ip:10.0.0.100/32, dst_port=80, action=ALLOW}

Rule2: {id=2, nw_proto=TCP, src_ip=10.0.0.0/30,
dst_ip:10.0.0.100/32, dst_port=80, action=DENY}

Flow3: {id=3, priority=30000, nw_proto=TCP, src_ip=10.0.0.0/30,
dst_ip:10.0.0.100/32, dst_port=80, action=DROP}

(a) Correct order to add ACL rules

Flow1: {id=1, priority=30000, nw_proto=TCP, src_ip=10.0.0.0/30,
dst_ip:10.0.0.100/32, dst_port=80, action=DROP}

S1

Web server
(10.0.0.100)

S2

ACL

Alice
(10.0.0.1)

Chuck
(10.0.0.3)

Bob
(10.0.0.2)

Rule1: {id=1, nw_proto=TCP, src_ip=10.0.0.0/30,
dst_ip:10.0.0.100/32, dst_port=80, action=DENY}
--
Rule2: {id=2, nw_proto=TCP, src_ip=10.0.0.2/32,
dst_ip:10.0.0.100/32, dst_port=80, action=ALLOW}

(An invalid ACL rule)

Flow2: {id=2, priority=30000, nw_proto=TCP, src_ip=10.0.0.0/30,
dst_ip:10.0.0.100/32, dst_port=80, action=DROP}

X

(b) Incorrect order to add ACL rules

Figure 4. An example for the order to add ACL rules

CLACK allows all IP packets by default, and an ACL rule is generally used to deny packets. Note
that if an ACL rule’s action field value is ”ALLOW”, the rule is used to forward a subset of packets dropped
by another rule whose action field is ”DENY”. Figure 4 depicts an example to show the vital importance of
the order to add allowing ACL rules.

Suppose there are three hosts and one web server in the network. The networking administrator
intends to allow Alice but deny Bob and Chuck to access the web server on port 80.

In (a), the administrator firstly adds an ACL rule Rule1 to allow Alice’s access; accordingly CLACK
pushes an ACL flow entry Flow1 in switch S1 where Alice accesses the network. The administrator then
adds Rule2 to deny Bob and Chuck, and CLACK pushes Flow2 and Flow3 in S2 and S3. Note that in S1,
Flow1 has higher priority than Flow2. When Alice requests to access the web server, Flow1 forwards Alice’s
first packet to controller in a Packet-in message. Controller then pushes general forwarding flow entries for
Alice. To ensure validity, the forwarding flow entries must have larger priority than all ACL flow entries.
When Bob and Chuck request to access the web server, Flow2 and Flow3 drop their requests directly in
switches.

However, if the administrator adds the two ACL rules in an inverted order, like in (b), Rule2 can
not pass match check because it matches Rule1. As a result, CLACK rejects Rule1, and all hosts in subnet
10.0.0.0/30 (including Alice) is not able to access the web server, which violates the administrator’s intention.

3. IMPLEMENTATION AND EVALUATION

CLACK is a logically centralized ACL, while it can be physically distributed. We implement CLACK
in two versions, single-controller version on Floodlight controller and multi-controller version on ONOS
controller. Both are integrated into the latest version of Floodlight and ONOS controller.

Title of manuscript is short and clear, implies research results (First Author)

Figure 4. An example for the order to add ACL rules.

3. Implementation and Evaluation

CPACK is a logically centralized ACL, while it can be physically distributed. We
implement CPACK in two versions: a single-controller version on Floodlight controller and
multi-controller version on ONOS controller. Both are integrated into the latest version of
Floodlight and ONOS controller.

The initial implementation of CPACK on Floodlight controller is based on a single
controller for simplicity. However, when the number and size of production networks
deploying OpenFlow increases, a single controller for the entire network will expose
several defects such as large amount of control traffic, long flow setup times and laten-
cies [32]. Therefore, we extend CPACK to a multi-controller version on ONOS controller.
Compared to the single-controller version, the multi-controller version CPACK provides
scalability while guaranteeing that the ACL is logically centralized, and it is also resilient
to controller failures.

The single-controller version CPACK is implemented as a Floodlight module using
Java. CPACK uses Floodlight’s IRestApiService to provide REST API and uses Floodlight’s
IStorageSourceService to manage the flow entry in switches. CPACK adds itself as a listener to
Floodlight’s IDeviceService service and will be notified if a new host event appears. CPACK
also utilizes several methods provided by Floodlight to operate on the CIDR IP address.

Sensors 2022, 22, 8014 9 of 12

The multi-controller version CPACK is implemented as an ONOS controller applica-
tion using Java. The CPACK application runs on each controller in an ONOS cluster, and
the ACL data is synchronized among all the CPACK applications using Raft consensus
algorithm. Therefore, all the CPACK applications share the same consistent ACL data and
can serve user’s ACL update request locally. When a user requests a new ACL update
in any controller in an ONOS cluster, the CPACK application running on that controller
would map the new ACL update to the ACL flow entry update and propagate both the
updates among the controller cluster. The right controller would then finish the ACL flow
entry update in the switch. Since the ACL data in all CPACK applications is consistent,
when one of the controllers in the cluster fails, another controller can take over it without
losing any ACL data.

The multi-controller version CPACK stores data using ONOS’s StorageService, all the
data is stored in one of the ONOS distributed primitives, ConsistentMap, which guarantees
strong consistency and ensures good scale out characteristic [33]. CPACK listens to ONOS’s
HostService for new host event and manages flow entry using ONOS’s FlowRuleService.

We compare CPACK with the Floodlight firewall application. As is mentioned before,
to enforce ACL, CPACK works in a proactive way while Floodlight adopts a reactive
way. This means that different events trigger their ACL enforcing process and the user’s
request for CPACK and Packet-in message for Floodlight firewall application; therefore, it
is unreasonable to compare their performance in general situation. We create a situation
such that a new ACL update conflicts with ACL flow entry in switches, and compare the
delay for a new ACL update to take effect, like in Figure 1.

We build a virtual network in Mininet [34] and run several experiments. For each
experiment, we add different numbers of ACL rules in advance and insure that CPACK has
to traverse ACL Rule Set during an update. Then we let host A in the network send ICMP
packets to host B using Ping command. If host A succeed to Ping host B at first, we add a
new ACL rule to deny the flow and record the delay until an ACL flow entry drops the
flow. If there is already a ACL rule denying the flow and host A fails to Ping host B at first,
we then remove that ACL rule and record the delay until an regular flow entry forwards
the flow. The experimental result is shown in Figure 5.

The delay in the Floodlight firewall application is more than 5000 ms because a flow
entry’s default idle timeout is set to 5000 ms in Floodlight, and no Packet-in messages is
sent to the controller as long as the ACL flow entry persists. As a result, a new ACL update
will not take effect at all until after at least an idle timeout. We regard the delay as 5000 ms
uniformly in Figure 5.

As Figure 5 shows, in the single-controller version, the delay for rule adding and
removing in CPACK goes up linearly as the existing ACL rule number increases because
CPACK needs to traverse ACL Rule Set. The delay for enforcing ACL update vibrates for
reason that CPACK needs to communicate with switches, and the delay depends on the
network quality at that time.

The evaluation result for the multi-controller version is mostly similar to the single-
controller version, except that the delay for rule removing remains almost unchanged. This
is because we use hash tables rather than a single set to store ACL rules, and hash tables
are move effective when processing indexing and updating.

The comparison result indicates that CPACK is considerably better than the Floodlight
firewall application when handling new ACL update requests at the collision situation.

Figure 6 illustrates the performance of different processes in the two CPACK versions.
The figure shows that the delay for all processes (except for rule removing and enforcing
process in the multi-controller version) increase almost linearly but slowly as the existing
ACL rule number increases sharply. It is obvious that CPACK causes little delay, and
its performance is pleasant. For the same process, the multi-controller version spends
more time than the single-controller version because it uses ONOS’s distributed store
service, and the operations on the distributed store takes more time than that on the local
store. Therefore, the single-controller version CPACK has a better performance in the

Sensors 2022, 22, 8014 10 of 12

scenario where only one controller is deployed, while in a multiple controller deploying
scenario, the multi-controller CPACK is a better choice for high availability and good
scale-out characteristic.

IJxxx ISSN: xxxx-xxxx 9

latot llawerif thgildoolF

)sm(yale

E

D

0.1

8.0

6.0

4.0

2.

5 , 0 0 0

0

8 , 1 2 , 1 6 , 2 0 , 0 0 00 0 00 0 00 0 04 , 0 0 0

(a) Add a new ACL rule (single-controller version)

latot llawerif thgildoolF
latot KCALC

gnicrofne gnivomer KCALC
gnivomer elur KCALC

rebmun elur gnitsixE

)sm(yaleD

0005

8.0

6.0

4.0

2.0

00002000610002100080004

(b) Remove an existing ACL rule (single-controller version)

4 0 0 0 8 0 0 0 1 2 0 0 0

2
4
6 0

0

latot llawerif thgildoolF
latot KCALC

gnicrofne gnidda KCALC
gnidda elur KCALC

rebmun elur gnitsixE

)sm(yaleD

0005

041
021
001

8

0
0

0000200061

(c) Add a new ACL rule (multi-controller version)

Title of manuscript is short and clear, implies research results (First Author)

CPACK rule adding
CPACK adding enforcing
CPACK total

(a)

IJxxx ISSN: xxxx-xxxx 9

latot llawerif thgildoolF
latot KCALC

gnicrofne gnidda KCALC
gnidda elur KCALC

rebmun elur gnitsixE

)sm(yaleD

0005

0.1

8.0

6.0

4.0

2.0

00002000610002100080004

(a) Add a new ACL rule (single-controller version)

latot llawerif thgildoolF

rebmun elur gnitsixE

)sm(yaleD

8.0

6.0

4.0

2.

5 , 0 0 0

0

4 , 8 , 1 2 , 1 6 , 2 0 , 0 0 00 0 00 0 00 0 00 0 0

(b) Remove an existing ACL rule (single-controller version)

4 0 0 0 8 0 0 0 1 2 0 0 0

2
4
6 0

0

latot llawerif thgildoolF
latot KCALC

gnicrofne gnidda KCALC
gnidda elur KCALC

rebmun elur gnitsixE

)sm(yaleD

0005

041
021
001

8

0
0

0000200061

(c) Add a new ACL rule (multi-controller version)

Title of manuscript is short and clear, implies research results (First Author)

CPACK rule removing
CPACK removing enforcing
CPACK total

(b)

IJxxx ISSN: xxxx-xxxx 9

latot llawerif thgildoolF
latot KCALC

gnicrofne gnidda KCALC
gnidda elur KCALC

rebmun elur gnitsixE

)sm(yaleD

0005

0.1

8.0

6.0

4.0

2.0

00002000610002100080004

(a) Add a new ACL rule (single-controller version)

latot llawerif thgildoolF
latot KCALC

gnicrofne gnivomer KCALC
gnivomer elur KCALC

rebmun elur gnitsixE

)sm(yaleD

0005

8.0

6.0

4.0

2.0

00002000610002100080004

(b) Remove an existing ACL rule (single-controller version)

4 , 0 0 0 8 , 0 0 0

2
4
6

1 2 , 0 0 0

0
0

latot llawerif thgildoolF

)sm(yale

E x i s t i n g r u l e n u m b e r

D

04

5 , 0 0 0

1
021
001

8

0
0

1 6 , 2 0 , 0 0 00 0 0

(c) Add a new ACL rule (multi-controller version)

Title of manuscript is short and clear, implies research results (First Author)

CPACK rule adding
CPACK adding enforcing
CPACK total

(c)

10 ISSN: xxxx-xxxx

latot llawerif thgildoolF

rebmun elur gnitsixE

)sm(yaleD

04

03

02

0

5 , 0 0 0

1

4 , 8 , 1 2 , 1 6 , 2 0 , 0 0 00 0 00 0 00 0 00 0 0

(d) Remove an existing ACL rule (multi-controller version)

Figure 5. ACL update delay comparison

0 0 8 0 0 1 2 0 0 1 6 0 0 0

1 6 0)noisrev rellortnoc-itlum(gnicrofne & gnivomer eluR
)noisrev rellortnoc-itlum(gnicrofne & gnidda eluR

)noisrev rellortnoc-elgnis(gnicrofne & gnivomer eluR
)noisrev rellortnoc-elgnis(gnicrofne & gnidda eluR

rebmun elur gnitsixE

)sm(yaleD

021

08

04

8.0
6.0
4.0
2.0

000020004

Figure 6. CLACK performance

version spends more time than the single-controller version because it uses ONOS’s distributed store service,
and the operations on the distributed store takes more time than that on the local store. Therefore, the
single-controller version CLACK has a better performance in the scenario where only one controller is
deployed, while in a multiple controller deploying scenario, the multi-controller CLACK is a better choice
for high availability and good scale-out characteristic.

4. CONCLUSION AND FUTURE WORK

In this paper, we propose CLACK, an approach for user-driven centralized ACL in SDN. CLACK
adopts a proactive way to enforce ACL and reacts to new ACL update and network view update in real
time. CLACK can avoid additional delay, save controller’s resource, and also ensure network security. We
implement CLACK on Floodlight and ONOS controller. We then conduct a large number of experiments to
compare CLACK with the Floodlight firewall application. The experimental results show that CLACK has a
better performance than the existing Floodlight firewall application. P. Porras et al. proposed the dynamic
flow tunneling scenario, which clearly shows that malicious application can evade ACL by simply adding a
few flow entries in SDN [29]. The root reason lies in that OpenFlow allows various Set-Field actions that can
dynamically change the packet headers [30]. P. Kazemian proposed a real time policy checking tool called
NetPlumber [31] based on Header Space Analysis [32]. We intent to add security check capability based on
HSA in CLACK to prevent attacks from adversaries in the future.

IJxxx Vol. x, No. x, May 2012: 1 – 12

CPACK rule removing
CPACK removing enforcing
CPACK total

(d)

Figure 5. ACL update delay comparison. (a) Add a new ACL rule (single-controller version);
(b) Remove an existing ACL rule (single-controller version); (c) Add a new ACL rule (multi-controller
version); (d) Remove an existing ACL rule (multi-controller version).

10 ISSN: xxxx-xxxx

latot llawerif thgildoolF
latot KCALC

gnicrofne gnivomer KCALC
gnivomer elur KCALC

rebmun elur gnitsixE

)sm(yaleD

0005

04

03

02

01

00002000610002100080004

(d) Remove an existing ACL rule (multi-controller version)

Figure 5. ACL update delay comparison

1 6

8 , 0 0 0

0)noisrev rellortnoc-itlum(gnicrofne & gnivomer eluR
)noisrev rellortnoc-itlum(gnicrofne & gnidda eluR

)noisrev rellortnoc-elgnis(gnicrofne & gnivomer eluR
)noisrev rellortnoc-elgnis(gnicrofne & gnidda eluR

rebmun elur gnitsixE

)sm(yaleD

021

08

04

8.0
6.0
4.0
2.0

4 , 1 2 , 1 6 , 2 0 , 0 0 00 0 00 0 00 0 0

Figure 6. CLACK performance

version spends more time than the single-controller version because it uses ONOS’s distributed store service,
and the operations on the distributed store takes more time than that on the local store. Therefore, the
single-controller version CLACK has a better performance in the scenario where only one controller is
deployed, while in a multiple controller deploying scenario, the multi-controller CLACK is a better choice
for high availability and good scale-out characteristic.

4. CONCLUSION AND FUTURE WORK

In this paper, we propose CLACK, an approach for user-driven centralized ACL in SDN. CLACK
adopts a proactive way to enforce ACL and reacts to new ACL update and network view update in real
time. CLACK can avoid additional delay, save controller’s resource, and also ensure network security. We
implement CLACK on Floodlight and ONOS controller. We then conduct a large number of experiments to
compare CLACK with the Floodlight firewall application. The experimental results show that CLACK has a
better performance than the existing Floodlight firewall application. P. Porras et al. proposed the dynamic
flow tunneling scenario, which clearly shows that malicious application can evade ACL by simply adding a
few flow entries in SDN [29]. The root reason lies in that OpenFlow allows various Set-Field actions that can
dynamically change the packet headers [30]. P. Kazemian proposed a real time policy checking tool called
NetPlumber [31] based on Header Space Analysis [32]. We intent to add security check capability based on
HSA in CLACK to prevent attacks from adversaries in the future.

IJxxx Vol. x, No. x, May 2012: 1 – 12

Figure 6. CPACK performance.

Sensors 2022, 22, 8014 11 of 12

4. Conclusions and Future Work

In this paper, we propose CPACK, an intelligent Cyber-Physical Access Control Kit,
which uses a smart algorithm to upgrade the ACL list. CPACK adopts a proactive method
and intelligent algorithm to enforce ACL and reacts to new ACL updates and network view
updates in real time. CPACK can avoid additional delay, save controller resources, and
also ensure network security. We implement CPACK on Floodlight and ONOS controller.
We then conduct a large number of experiments to compare CPACK with the Floodlight
firewall application. The experimental results show that CPACK has a better performance
than the existing Floodlight firewall application. P. Porras et al. proposed the dynamic
flow tunneling scenario, which clearly shows that malicious application can evade ACL by
simply adding a few flow entries in SDN [35]. The main reason for this is that OpenFlow
allows various Set-Field actions that can dynamically change the packet headers [36]. P.
Kazemian proposed a real time policy checking tool called NetPlumber [37] based on Header
Space Analysis [38]. We intend to add security check capability based on HSA in CPACK
to prevent attacks from adversaries in the future.

Author Contributions: This paper is contributed by all authors. Besides, there was collaborative
efforts in brainstorming the idea of this paper, proofread and formatting of this paper. All authors
have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (Grant No.
U2033212), the National Key Research and Development Project of China (Grant No. 2020YFB1711000)
and the Key Research and Development Project of Science and Technology Department of Sichuan
Province (Grant No.2021YFG0014), the Social Scientific Research Foundation of China (21VSZ126),
416 Natural Science Foundation of Guizhou Province(ZK[2022]-162), and the Science and Technology
417 project of Sichuan Province (2021YFG0014), the National Scientific Research Foundation of
Chongqing 418 (cstc2019jcyj-msxmX0509), the Doctoral Fund of Guizhou University (X2021167) and
Macau Science and Technology Development Funds (Grant No. 0005/2021/AIR and 0018/2021/A).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shrivastav, A.A. Reorganization of intruder Using Ad-Hoc Network And RFID. IAES Int. J. Robot. Autom. (IJRA) 2014, 3, 46–52.

[CrossRef]
2. Paulus, C. A Brief History of the Internet; Internet Society: Reston, VA, USA, 1997.
3. Vasalya, A.; Agrawal, R. Smart Telerobotic Surveillance System via Internet with Reduced Time Delay. IAES Int. J. Robot. Autom.

2012, 2, 11.
4. Manoj, N. Fuzzy controlled routing in a swarm robotic network. IAES Int. J. Robot. Autom. (IJRA) 2014, 3, 272.
5. Casado, M.; Foster, N.; Guha, A. Abstractions for software-defined networks. Commun. ACM 2014, 57, 86–95. [CrossRef]
6. Dave, T. OpenFlow: Enabling Innovation in Campus Networks. ACM SIGCOMM Comput. Commun. Rev. 2014, 38, 69–74.
7. Esch, J. Prolog to, “software-defined networking: A comprehensive survey”. Proc. IEEE 2015, 103, 10–13. [CrossRef]
8. Casado, M.; Garfinkel, T.; Akella, A.; Freedman, M.J.; Dan, B.; Mckeown, N.; Shenker, S. Sane: A protection architecture for

enterprise networks. In Proceedings of the 15th USENIX Security Symposium, San Jose, CA, USA, 31 July–4 August 2006.
9. Casado, M.; Freedman, M.J.; Pettit, J.; Luo, J.; McKeown, N.; Shenker, S. Ethane: Taking control of the enterprise. ACM SIGCOMM

Comput. Commun. Rev. 2007, 37, 1–12. [CrossRef]
10. Ibrar, M.; Wang, L.; Muntean, G.M.; Akbar, A.; Shah, N.; Malik, K.R. PrePass-Flow: A Machine Learning based technique to

minimize ACL policy violation due to links failure in hybrid SDN. Comput. Netw. 2021, 184, 107706. [CrossRef]
11. Asif, A.B.; Imran, M.; Shah, N.; Afzal, M.; Khurshid, H. ROCA: Auto-resolving overlapping and conflicts in Access Control List

policies for Software Defined Networking. Int. J. Commun. Syst. 2021, 34, e4815. [CrossRef]
12. Stallings, W. Network Security Essentials: Applications and Standards; Prentice Hall: Englewood Cliff, NJ, USA, 2010.
13. Cisco, I. Security Configuration Guide, Release 12.2; CISCO: San Jose, CA, USA, 2003.
14. Ahmad, S.; Mir, A.H. Scalability, consistency, reliability and security in SDN controllers: A survey of diverse SDN controllers. J.

Netw. Syst. Manag. 2021, 29, 1–59. [CrossRef]

http://doi.org/10.11591/ijra.v3i4.5917
http://dx.doi.org/10.1145/2661061.2661063
http://dx.doi.org/10.1109/JPROC.2014.2374752
http://dx.doi.org/10.1145/1282427.1282382
http://dx.doi.org/10.1016/j.comnet.2020.107706
http://dx.doi.org/10.1002/dac.4815
http://dx.doi.org/10.1007/s10922-020-09575-4

Sensors 2022, 22, 8014 12 of 12

15. Kim, H.; Feamster, N. Improving network management with software defined networking. IEEE Commun. Mag. 2013, 51, 114–119.
[CrossRef]

16. Gamayunov, D.; Platonov, I.; Smeliansky, R. Toward Network access Control with Software-Defined Networking. 2013.
Available online: http://www.researchgate.net/profile/Ruslan_Smeliansky/publication/236148336_Toward_Network_Access_
Control_With_Software-Defined_Networking/links/00b7d51caf777e947a000000.pdf (accessed on 2 August 2022).

17. Shin, S.W.; Porras, P.; Yegneswara, V.; Fong, M.; Gu, G.; Tyson, M. Fresco: Modular composable security services for software-
defined networks. In Proceedings of the 20th Annual Network & Distributed System Security Symposium, NDSS 2013, San Diego,
CA, USA, 24–27 February 2013.

18. Trandafir, R.; Carabas, M.; Rughinis, R.; Tapus, N. FirewallPK: Security tool for centralized Access Control List management. In
Proceedings of the 2014 RoEduNet Conference 13th Edition: Networking in Education and Research Joint Event RENAM 8th
Conference, Chisinau, Moldova, 11–13 September 2014; pp. 1–6.

19. Jia, X.; Wang, J.K. Distributed firewall for P2P network in data center. In Proceedings of the 2013 IEEE International Conference
on Consumer Electronics-China, Shenzhen, China, 11–13 April 2013; pp. 15–19.

20. François, J.; Dolberg, L.; Festor, O.; Engel, T. Network security through software defined networking: A survey. In Proceedings of
the Conference on Principles, Systems and Applications of IP Telecommunications, Chicago, IL, USA, 1–2 October 2014; pp. 1–8.

21. Zaballa, E.O.; Franco, D.; Jacob, E.; Higuero, M.; Berger, M.S. Automation of Modular and Programmable Control and Data Plane
SDN Networks. In Proceedings of the 2021 17th International Conference on Network and Service Management (CNSM), Izmir,
Turkey, 25–29 October 2021; pp. 375–379.

22. Suh, M.; Park, S.H.; Lee, B.; Yang, S. Building firewall over the software-defined network controller. In Proceedings of the 16th
International Conference on Advanced Communication Technology, PyeongChang, Korea, 16–19 February 2014; pp. 744–748.

23. Collings, J.; Liu, J. An OpenFlow-based prototype of SDN-oriented stateful hardware firewalls. In Proceedings of the 2014 IEEE
22nd International Conference on Network Protocols, Raleigh, NC, USA, 21–24 October 2014; pp. 525–528.

24. Javid, T.; Riaz, T.; Rasheed, A. A layer2 firewall for software defined network. In Proceedings of the 2014 Conference on
Information Assurance and Cyber Security (CIACS), Rawalpindi, Pakistan, 12–13 June 2014; pp. 39–42.

25. Hinrichs, T.L.; Gude, N.S.; Casado, M.; Mitchell, J.C.; Shenker, S. Practical declarative network management. In Proceedings of
the 1st ACM Workshop on Research on Enterprise Networking, Barcelona, Spain, 21 August 2009; pp. 1–10.

26. Morales, L.V.; Murillo, A.F.; Rueda, S.J. Extending the floodlight controller. In Proceedings of the 2015 IEEE 14th International
Symposium on Network Computing and Applications, Cambridge, MA, USA, 28–30 September 2015; pp. 126–133.

27. Morzhov, S.; Alekseev, I.; Nikitinskiy, M. Firewall application for Floodlight SDN controller. In Proceedings of the 2016
International Siberian Conference on Control and Communications (SIBCON), Russia, Moscow, 12–14 May 2016; pp. 1–5.

28. Sinha, M.; Bera, P.; Satpathy, M. An Anomaly Free Distributed Firewall System for SDN. In Proceedings of the 2021 International
Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), Dublin, Ireland, 14–18 June 2021;
pp. 1–8.

29. Pena, J.G.V.; Yu, W.E. Development of a distributed firewall using software defined networking technology. In Proceedings of the
2014 4th IEEE International Conference on Information Science and Technology, Shenzhen, China, 26–28 April 2014; pp. 449–452.

30. Yu, H.; Liu, D.; Wang, W.; Li, K.; Zou, S.; Liu, Z.; Liu, Y. An User-Driven Active Way to Push ACL in Software-Defined Networking.
In Proceedings of the International Conference on Parallel and Distributed Computing: Applications and Technologies, London,
UK, 30–31 July 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 113–120.

31. Onos—A New Carrier-Grade Sdn Network Operating System Designed for High Availability, Performance, Scale-Out. [EB/OL].
Available online: http://onosproject.org/ (accessed on 2 August 2022).

32. Tootoonchian, A.; Ganjali, Y. Hyperflow: A distributed control plane for openflow. In Proceedings of the 2010 Internet Network
Management Conference on Research on Enterprise Networking, San Jose, CA, USA, 27 April 2010; Volume 3.

33. Onos Distributed Primitives. [EB/OL]. Available online: https://wiki.onosproject.org/display/ONOS/Distributed+Primitives
(accessed on 2 August 2022).

34. Mininet: An iNstant Virtual Network on Your Laptop. [EB/OL]. Available online: http://mininet.org/ (accessed on 2 August
2022).

35. Porras, P.; Shin, S.; Yegneswaran, V.; Fong, M.; Tyson, M.; Gu, G. A security enforcement kernel for OpenFlow networks. In
Proceedings of the First Workshop on Hot Topics in Software Defined Networks, Helsinki, Finland, 13 August 2012; pp. 121–126.

36. Hu, H.; Han, W.; Ahn, G.J.; Zhao, Z. FLOWGUARD: Building robust firewalls for software-defined networks. In Proceedings of
the Third Workshop on Hot Topics in Software Defined Networking, Chicago, IL, USA, 22 August 2014; pp. 97–102.

37. Kazemian, P.; Chang, M.; Zeng, H.; Varghese, G.; McKeown, N.; Whyte, S. Real time network policy checking using header
space analysis. In Proceedings of the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13),
Lombard, IL, USA, 2–5 April 2013; pp. 99–111.

38. Kazemian, P.; Varghese, G.; McKeown, N. Header space analysis: Static checking for networks. In Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Implementation (NSD 12), San Jose, CA, USA, 25–27 April 2012; pp. 113–126.

http://dx.doi.org/10.1109/MCOM.2013.6461195
http://www. researchgate. net/profile/Ruslan_Smeliansky/publication/236148336_ Toward_Network_Access_Control_With_Software-Defined_Networking/links/00b7d51caf777e947a000000. pdf
http://www. researchgate. net/profile/Ruslan_Smeliansky/publication/236148336_ Toward_Network_Access_Control_With_Software-Defined_Networking/links/00b7d51caf777e947a000000. pdf
http://onosproject.org/
https://wiki.onosproject.org/display/ONOS/ Distributed+Primitives
http://mininet.org/

	Introduction
	CPACK DESIGN
	Overview
	Accessing Pair Manager
	Access Control List Manager
	Intelligent Update ACL
	Enforce ACL Update
	Process AP Update
	Order to Add ACL Rules

	Implementation and Evaluation
	Conclusions and Future Work
	References

