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Abstract: Traditional soil nitrogen detection methods have the characteristics of being time-consuming
and having an environmental pollution effect. We urgently need a rapid, easy-to-operate, and non-
polluting soil nitrogen detection technology. In order to quickly measure the nitrogen content in
soil, a new method for detecting the nitrogen content in soil is presented by using a near-infrared
spectrum technique and random forest regression (RF). Firstly, the experiment took the soil by the
Xunsi River in the area of Hubei University of Technology as the research object, and a total of
143 soil samples were collected. Secondly, NIR spectral data from 143 soil samples were acquired, and
chemical and physical methods were used to determine the content of nitrogen in the soil. Thirdly,
the raw spectral data of soil samples were denoised by preprocessing. Finally, a forecast model for
the soil nitrogen content was developed by using the measured values of components and modeling
algorithms. The model was optimized by adjusting the changes in the model parameters and Gini
coefficient (∆Gini), and the model was compared with the back propagation (BP) and support vector
machine (SVM) models. The results show that: the RF model modeling set prediction R2

C is 0.921,
the RMSEC is 0.115, the test set R2

P is 0.83, and the RMSEP is 0.141; the detection of the soil nitrogen
content can be realized by using a near-infrared spectrum technique and random forest algorithm,
and its prediction accuracy is better than that of the BP and SVM models; using ∆ Gini to optimize
the RF modeling data, the spectral information of the soil nitrogen content can be extracted, and the
data redundancy can be reduced effectively.

Keywords: near-infrared spectroscopy; soil nitrogen content; random forest algorithm

1. Introduction

With the continuous development of technology, the national population base and
the demand for quality food are increasing. Agricultural production is the foundation
of ensuring national living standards and protecting food security. Therefore, improving
agricultural production efficiency is the current top priority.

Applying agricultural chemical fertilizers to crops is one of the most important meth-
ods used to improve agricultural production at present. Pesticides and fertilizers can
increase the nutrients in the soil, thereby boosting the production of crops. However,
imprecise fertilization can have negative effects. Too little fertilizer application will result
in an insufficient nutrient supply for crops, which cannot meet the growth needs, conse-
quentially resulting in low yields and affecting agricultural production efficiency. Excessive
fertilization will cause excess nutrients to deposit in the soil. These nutrients not only
disrupt the physical properties and nutrient balance of the soil, but also lead to an excess
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of metals and an infestation of harmful bacteria. In the long run, soil productivity will
decline, and it will lead to eutrophication of groundwater, rivers and lakes, causing serious
pollution to the environment. Therefore, it is very important to obtain soil composition
information quickly and accurately.

In the development stage of precision agriculture in the 21st century, ensuring soil
safety protects the foundation of crop production. The detection of soil components can
not only effectively control the nutrient requirements of crops, but can also avoid the abuse
of chemical fertilizers that cause environmental pollution. The nitrogen content in soil
is a very important index of soil nutrition. The content of nitrogen in soil is the main
composition of plant proteins, nucleus acid, enzymes, and so on. It is also the foundation
of life activity and genetic variation. Without nitrogen, the growth of crops is slow and
there are few branches and leaves. Too high a nitrogen content often manifests as breakage
and a low yield of crops [1].

The traditional methods for detecting the nitrogen content in soil are: the Kjeldahl
method [2,3], ion electrode [4], and ultraviolet spectrophotometry. Although the test results
are accurate, they have the disadvantages of a long test process, being time-consuming,
pollution, inconvenient operation and promotion, and high requirements regarding the
quality of operators. Due to unstable factors such as geography and space, remote sensing
methods [5–7] are not feasible to use to obtain the soil nitrogen content. At present, the
means of obtaining agricultural soil information is relatively simple. The information
technology gap for the rapid detection of the soil component content is the bottleneck of
modern precision agriculture [8]. There is an urgent need for a rapid, easy-to-operate,
non-polluting, and convenient soil composition detection method.

Infrared spectroscopy has become a mature major chemical analysis technology [9].
At present, it has been rapidly developed and used in important industries, such as
food [10–12], chemical industry [13–15], and medicine [16–19]. Near-infrared spectroscopy
technology has the following characteristics: a fast speed, convenient detection, low cost,
no pollution in the detection process, wide detection range, high detection efficiency,
non-destructive, able to simultaneously determine multiple groups, etc. With the rapid
development of computer application technology, chemometrics methods, statistical theory,
and the high integration of multi-disciplinary technologies have been put forward, and their
feasibility for NIR detection has been verified [20–24]. At the same time, random forest (RF)
is a common machine learning method that is usually used to deal with classification [25–27]
and regression [28–30] problems. This method improves the prediction accuracy without
significantly increasing the computational complexity. In addition, the results are more
robust to missing data and unbalanced data. This paper uses near-infrared spectroscopy
and RF to realize a low-cost, green, and rapid soil composition detection system.

2. The Related Work

Fang et al. [31] (2015) collected the spectral data of 394 farmland soil samples and
used a least squares support vector machine (LS-SVM) model to prove that the detection of
soil components can be achieved by using near-infrared spectroscopy. Li et al. [32] (2017)
used visible–near-infrared spectroscopy to predict nitrogen, phosphorus, and potassium
concentrations in non-isotropic soils, which could reduce the cost of the rapid determination
of soil nutrients. Chen et al. [21] (2018) concluded that it was possible to optimize and
integrate the FT-NIR analysis model with suitable stoichiometric methods. Compared
with the traditional model, the BPN-DL model showed its superiority in the training and
testing of soil nutrient component models. Xiang et al. [33] (2019) used the preprocessing
algorithm to denoise the original spectral data of the near-infrared spectrum collected from
the soil and showed that Savitzky–Golay convolution smoothing and the least squares
support vector machine use the spectral data in the 400–850 nm band. The established soil
phosphorus content prediction model has the best effect, and it also proves that the NIR
spectroscopy technology combined with the LS-SVM regression algorithm used to establish
the soil phosphorus content prediction model can realize the detection of the soil phosphorus
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content. Wang et al. [34] (2021) demonstrated that VIS/NIRS has a large potential to detect
black soil characteristics in real time. Qiao et al. [22] (2022) demonstrated that SVD-CNN
has a good prediction and generalization ability in soil component content detection.

Xu et al. [35] (2017) showed that the convolution smoothing competitive adaptive-
random forest model established by near-infrared spectroscopy has a high prediction
accuracy for the sugar content and acidity of red grapes. Li et al. [27] (2018) used the
near-infrared spectral detection technology to study the research on the non-destructive
detection of fruit sugar, and showed the feasibility of the fruit near-infrared non-destructive
detection model established by the random forest algorithm. Li et al. [28] (2019) proved that
NIR spectroscopy combined with RF is an effective means to rapidly detect the methanol
content in methanol gasoline. Kartakoullis et al. [29] (2019) showed that fat and moisture
content can be detected by building a random forest model using a full spectrum over a
wide temperature range using a smartphone-based spectrometer with a good detection
accuracy (RPD > 7), comparable to the accuracy of benchtop spectrometers. The results of
Liu et al. [36] (2020) demonstrated that NIR spectroscopy combined with the random forest
algorithm is a quick and non-destructive method used to detect sunset yellow in cream.
Du et al. [37] (2021) demonstrated that the ADA content in flour can be precisely determined
by NIR combined with the random forest algorithm.

Liu et al. [30] (2017) showed that the RF algorithm is able to strongly optimize the
information of soil organic matter, reduce the dimension of spectral data, and optimize
the model. At the same time, the experimental study also showed that the near-infrared
spectroscopy technology combined with the RF algorithm can realize the detection of the
soil organic matter content. Shahrayini et al. [38] (2020) showed that VIS-NIR has the
ability to detect electrical conductivity (ECe), organic carbon (OC), and texture (including
sand, silt, and clay) classifications. Cui et al. [39] (2021) adopted various preprocessing
techniques and band screening algorithms, and then combined the least squares method
and random forest to establish an organic matter prediction model used to measure the true
value of soil organic matter. The results indicate that the competitive adaptive reweighting
(CARS) random forest (RF) model is the best. The author designed a portable soil organic
matter content detector based on CARS-RF. Luo et al. [40] (2021) showed that near-infrared
optical disc technology is effective and fast in the prediction of the content of organic matter
in soil. Hong et al. [41] (2021) showed that Cd-contaminated soil leads to a decrease in
spectral reflectance. Combined with the CR preprocessing-SMOTE strategy-RF algorithm,
the prediction model is the best, and the verification accuracy is the highest (kappa = 0.74).
This model can realize the detection of soil Cd. This research provides a theoretical basis for
rapidly identifying and monitoring soil cadmium pollution in urban and suburban areas.

To sum up, the NIR spectroscopy detection technology has been widely used in the
rapid detection of soil components, but the prediction accuracy of the obtained model still
has room for improvement and the model can also be optimized. The research field of
near-infrared detection based on a random forest is very wide, and the prediction accuracy
is high. In terms of soil detection, random forests are often used in soil regression and
classification studies, such as organic matter and metal element content prediction and soil
texture classification. The accuracy of the results can be improved, the model still has room
for optimization, and many other components can also be predicted. Therefore, this paper
combines infrared spectroscopy technology and the random forest algorithm to study soil
composition prediction.

3. Materials and Methods
3.1. Materials

The material used in the experiment was the soil of the Xunsi River basin near Hubei
University of Technology. Soil samples were collected from 143 sampling points. The
topsoil was removed with a small shovel and soil was taken at 10–20 cm. The mass of the
sub sample taken was 200 g. After the soil sample was retrieved, the fresh wet soil sample
was spread on a clean storage box or paper and broken into pieces. Then, it was spread
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into a thin layer of approximately 2 cm and placed in a ventilated place indoors in the light
to dry. Impurities such as stones, roots, leaves, and insects were removed. The soil samples
after drying were packed in beakers and placed in an electric blast dryer for dehydration.
The dehydrated soil samples were then ground and passed through an 80-mesh sieve
because the soil particle size will affect the detection accuracy. After weighing with an
electronic balance, it was put in a clean plastic bag and labelled. The weight distribution of
the collected and subpackaged soil samples was 8.205–9.385 g, with an average value of
8.646 g and a mean square error of 0.246.

3.2. Measurement of Actual Nitrogen Content

The experimental principle of the Kjeldahl method is as follows:
A catalyst and concentrated sulfuric acid are added to the soil sample and stirred well.

Organic nitrogen in the soil will be converted to inorganic ammonium salts. The ammonium
salt is then converted to ammonia under alkaline conditions, and the ammonia in solution is
absorbed by boric acid. Finally, the prepared standard concentrated sulfuric acid and indicator
are used. The solution is titrated and the standard amount of concentrated sulfuric acid at the
time of titration is recorded. The nitrogen content of the soil is calculated by the formula.

In this paper, soil nitrogen content was determined by Kjeldahl method.
Soil digestion: firstly, approximately 1.0 g of the soil sample to be tested was weighed

and put into the bottom of the dried digestion tube for soil digestion. Secondly, 5 mL
concentrated sulfuric acid, 1 mL distilled water, and 2 g catalysts were added to the tube.
Then, it was mixed and shaken well. Thirdly, the bottom of the cooking tube was put on
the cooking stove and heated on low heat. The temperature was controlled to keep the
soil liquid in the digestion tube slightly boiling. The heating temperature and time should
not be too high to prevent the loss of nitrogen content in the soil. Fourthly, during the
digestion process, the sulfuric acid vapor was condensed and refluxed at the third position
of the nozzle. Fifthly, we waited until the color of the soil liquid changed to gray-white and
slightly green, and it was cooked for another hour. Finally, blank experiments were carried
out in the same manner.

Distillation: distillation uses an automatic Kjeldahl nitrogen analyzer. Firstly, the
distillation pipeline was cleaned and the instrument parameters were set. Secondly, the
previously configured reagents were added separately to each set point. Thirdly, the
Kjeldahl nitrogen analyzer was preheated until the instrument detection was stable. Finally,
the liquid to be tested was distilled.

Titration: a mixed indicator was added to the receiving solution and titrated with
0.02 mol/L sulfuric acid standard solution. The blank value of Kjeldahl nitrogen determina-
tion cannot exceed 0.8 mL. If the blank value is too high, it means that there is a systematic
error in the instrument and the sample is not digested well. It was titrate to the end point
color; the end point color is gray-red, and the excess titration color is wine red.

After the above three steps, the actual value of nitrogen content has been measured.
Equation (1) shows the results of the calculation of the nitrogen content in the soil.

N(g/kg) =
(V1 −V0)×C× 14.01× 1000

m
× 0.001 (1)

where V1 is the volume of sulfuric acid standard titrant consumed in mL of the test solution.
C is the sulfuric acid standard titration solution in mol per liter (mol/L). V0 is the volume
of the standard titrant used in ml. m is the weight of the dry soil sample (g). In addition,
14.01 is the molar weight of the nitrogen atom (g/mol)

Materials required in the experiment included:

1. Freshly prepared deionized water;
2. Premium pure concentrated sulfuric acid: ρ(H2SO4) = 1.84 g/mL;
3. Mixing catalysts: selenium powder, copper sulfate pentahydrate (CuSO4•5H2O), and

potassium sulfate (K2SO4) were mixed in a ratio of 100:10:1;
4. Premium pure sodium hydroxide (NaOH);
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5. Premium pure boric acid (H3BO3);
6. Sodium hydroxide solution: ρ(NaOH) = 400 g/L;
7. Methyl red-bromocresol green mixed indicator: 0.1 g of methyl red was added to

100 mL of ethanol solution, then 0.5 g of bromocresol green was weighed into the
mixture and mixed well;

8. A total of 20 g/L boric acid-indicator solution: 2 g of boric acid was added to
100 mL of distilled water, and then 3 to 4 drops of methyl red-bromocresol green
mixed indicator were added to the mixture. The mixed solution was adjusted to
Ph = 4.8, and the color changed to slightly purple-red;

9. Standard stock solution of sulfuric acid: c(H2SO4) = 0.02 mol/L.

The actual nitrogen content distribution of 143 soil samples collected was 0.609–2.104 g/kg,
with an average value of 1.471 g/kg. Among 143 samples, 43 samples were randomly selected
as the test set, and the remaining 100 samples were the modeling set. The ratio is 3:7.

3.3. Spectral Acquisition

The NIR Quest (256–2.5) NIR spectrometer of Ocean Optics, optical fiber measurement
equipment, HL-2000 tungsten-halogen light source, and computer were used to build a
near-infrared spectrum system. The system is shown in Figure 1.
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Figure 1. Schematic diagram of the experimental system.

The detection principle of near-infrared spectroscopy is as follows.
When a molecule is irradiated by infrared light, resonance occurs only when the

vibrational frequency of the group in the molecule is the same as the vibrational frequency
of the radiation photon. After resonance, the dipole moment of the molecule changes, and
the group absorbs infrared radiation photons and transitions. The near-infrared absorption
spectrum in the table is the absorption region of some components, and there are also
absorption regions of some metal-inorganic/organic bonds (such as potassium, cadmium,
phosphorus). However, these absorptions are caused by the different components of the
measured substances. The shift in the infrared absorption band is also the reason why
most substances cannot determine the absorption spectral band. The absorption of material
components on the near-infrared spectrum provides a theoretical basis for the qualitative
and quantitative detection of nitrogen, potassium, organic matter, and other substances in
soil components using near-infrared spectroscopy.

The spectrometer used in this study was the NIR Quest (256–2.5) NIR spectrometer of
Ocean Optics, the appearance of which is shown in Figure 2. The light source was HL-2000
halogen tungsten light source. The parameters are shown in Table 1.

Table 1. Instrument parameter table.

Instrument Parameter

Integration time 1~400 ms
NIR Quest (256–2.5) Wavelength range 900~2500 nm

Optical fiber connector SMA905
Wavelength range 360~2400 nm

Tungsten halogen lamps Output range 8.8 mA
Color temperature 3000 K
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Figure 2. Near-infrared spectrometer.

The principles of system construction are as follows. A tungsten halogen lamp is
irradiated on the soil sample through a fiber optic probe. The near-infrared light interacts
with the interior material of the soil sample, and the rest of the near-infrared light, which
carries information about the composition of the soil, is collected by the spectrometer.
Spectra collected by the spectrometer are presented by computer-enabled instrument
software, and the spectrum data are stored in the computer. Table 2 is the experimental
parameter setting table.

Table 2. Experimental parameter setting table.

Name Parameters

Detection wavelength range 860~2600 nm
Resolution 7 nm

Number of scans 10 times
Laboratory temperature 24~26 ◦C

When collecting spectra with Spectrasuite, the light source was blocked and the
background noise was tested. “Dark Bulb” was clicked to record background noise. Then,
“Subtract Dark Bulb” was clicked to deduct background noise during the test. Then, the
light source was turned on and “Bright Bulb” was clicked to collect the raw spectrum. The
reflectivity should be 100% when the probe is aimed at an empty petri dish, as shown
in Figure 3. In this way, the reflection spectra collected by the spectrometer are all of the
remaining spectra after the near-infrared light reacts with the soil sample.
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In order to reduce the influence of operation error and instrument error on the results,
five points near the center of each soil sample were scanned ten times each. The result was
the average of ten numbers. The spectral data representing this point are shown in Figure 4.
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Figure 4. Five-point sampling spectrum of the sample.

The mean of the spectral data of the five points represents the soil sample spectrum
data. Normalizing the procedure as described above and changing the background spec-
trum every hour. Some obviously problematic data points were eliminated by preset
conditions. The spectral data of 143 soil samples were collected by setting the parameters
of the experimental instrument and controlling the collection environment. The spectral
data are shown in Figure 5.
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Figure 5. Original spectrogram of soil sample.

From the original spectra of the soil sample, it can be seen that the overall spectral
trend of each sample is consistent at 800–2600 nm. However, there are some differences
in the spectra of different samples. Because of the difference in the content of each soil
sample, the spectrum information also contains many sample components, and it is feasible
to build a NIR detection model.

3.4. Spectral Denoising

In the process of spectral data collection, optical noise will be generated due to op-
eration errors, instrument errors, environmental errors, etc. Therefore, after the data
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spectrum is collected, it is necessary to perform data smoothing and noise reduction to
reduce the interference of light noise and improve the modeling accuracy. Common smooth
noise reduction methods are as follows [42]: moving average (movmean), Gaussian filter
(Gaussian), moving median (movmmedian), local weighted regression (lowess), local poly-
nomial regression fitting (loess), robust local weighted regression (rlowess), robust local
polynomial regression (rloess), and least squares smoothing filter (sgolay). A variety of
spectral denoising methods were used to denoise the collected original spectra, and the
spectral data in the 1600–1800 nm band were observed. The result is shown in Figure 6.
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As can be seen from Figure 6, the data peaks after moving average and robust local
weighted regression processing are significantly lower than the original data and are also
lower than other smoothing methods. If robust local weighted regression and moving
average methods are used, spectral data will be distorted. The error of the result is large,
so it is excluded. However, other methods cannot judge whether the effect is good or bad
from the figure, so the smoothing effect was comprehensively evaluated by introducing the
root mean square error (RMSE) evaluation index. The smaller the calculated RMSE value,
the better the selected smoothing method.

As shown in Table 3, the root mean square error (RMSE) value of local polynomial re-
gression fitting is the smallest. This means that the smoothing effect of the local polynomial
regression fitting (loess) method is the best. Therefore, the algorithm used in this paper
was loess smoothing denoising. Figure 7 below shows the spectral data of 143 soil samples
after smoothing and denoising. It can be seen from the figure that the denoised spectral
image appears as smoother.

Table 3. Experimental parameter setting table.

Smoothing Method RMSE

movmean 3.14
Gaussian 1.90

movmmedian 3.25
Lowess 1.93

loess 0.84
Rlowess 2.66
Rloess 1.68
Sgolay 1.49
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3.5. RF Regression Modeling Methods

Random forest is a (parallel) ensemble algorithm composed of decision trees. Random
forest completes classification and regression by integrating classification and regression
trees (CART). Its modeling is shown in Figure 8. The principle of random forest is as
follows: applying resampling method can continuously generate new training set data. N
decision trees are generated by randomly sampling N samples from all training set data.
The splitting feature of the decision tree is generated by random extraction. All CART
regression trees are trained up to the maximal depth of the tree, and the random forest
model is formed.
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Regression analysis based on the stochastic forest algorithm was used to obtain the
corresponding regression value by dividing all of the nodes in the forest. Then, the average
estimation of the regression value for all decision trees was completed. This mean represents
the predicted value of the random forest model. The schematic diagram of the random
forest algorithm modeling is shown in Figure 8.

3.6. Model Optimization
3.6.1. Parameter Optimization

RF regression model contains a large number of decision trees. Each decision tree will
decompose the variable into different leaf nodes to achieve its natural growth. Ntree and
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NSV are the most important factors in RF model. RF model can be optimized by optimizing
the number of decision trees (Ntree) and the number of nodes (NSV).

3.6.2. Wavelength-Based Filtering Random Forest Model Optimization

In the near-infrared spectral data modeling, the random forest model predicts the
composition of each soil sample based on the soil spectral data. Different spectral data have
different contributions to the split growth of the CART regression tree in the random forest
modeling process. Different spectral features have different correlations with component
content. Therefore, by comparing the relative contribution of each wavelength to the
construction of the CART regression tree, the spectral data with high relative importance
can be selected, thereby reducing data redundancy and model complexity and optimizing
model prediction speed.

The Gini coefficient represents the contribution of each eigenvalue pair to the split
growth process of the CART regression tree in random forest modeling. The smaller the
Gini value at each node, the smaller the probability of feature error, and the higher the
information purity. The greater the change in Gini above and below each node, the greater
the contribution value and the greater the importance of the feature. When the RF model is
established in the near-infrared spectrum, the Gini value of the reflection spectral feature of
each wavelength is calculated. The calculation formula is shown in Equation (2).

G(i) = 1−
N

∑
j=1

(
a(i, j)

∑N
j=1(a(i, j))

)
(2)

where a(i,j) represents the reflectance of the jth near-infrared spectral sample at the ith
characteristic wavelength. For the spectral data measured for each soil sample, the Gini
coefficient values of all its characteristic wavelengths were calculated. Then, the minimum
value of the G value of the spectral sample point and the corresponding characteristic
wavelength v can be obtained.

[G(t), v] = min{G(i) | i ∈ t} (3)

Another Gini variation was introduced: ∆Gini. ∆Gini refers to the change in Gini
during the splitting process of each node of the decision tree. For example, if a node
is split into multiple nodes, the Gini value of the first node will also be divided into
Gn (n = 1,2,3 . . . n). Then, ∆Gini is G − (G1 + G2 + . . . + Gn). The contribution importance
of each feature wavelength in constructing the random forest CART regression tree was
measured by the change in G [43]. The Gini coefficient values of all CART regression tree
nodes before and after splitting and the mean ∆Gini of each feature spectrum were jointly
calculated. All characteristic wavelengths were optimized by ∆Gini to optimize the data
optimization and the prediction accuracy of the RF regression model.

3.7. Other Modeling Algorithms
3.7.1. Principle of Support Vector Machine (SVM)

In the process of support vector regression modeling, the regular regression function is
f(x) = ω · x + b and the fitting accuracy εwas set. To better control the error, the relaxation
factor ξi, ξ∗i (ξi, ξ∗i ≥ 0) was increased. It can become:

yi −ω · xi − b ≤ ε+ ξi
ω · xi + b− yi ≤ ε+ ξ

∗
i

(4)

In Equation (4), b represents the deviation, and ω represents the normal vector of
the hyperplane.
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The regression optimization problem of SVM is to minimize 1
2‖ω‖2 + C ·

I
∑

i=1
(ξi + ξ

∗
i ),

where C is the penalty coefficient. While in condition
I

∑
i=1

(ai − a∗i ), 0 ≤ ai, a∗i ≤ C,

i = 1, 2 · · · I, the calculation process becomes a dual problem. Its maximum objective
function is expressed as Equation (5).

W(a, a∗) = −ε
I

∑
i=1

(ai + a∗i ) +
I

∑
i=1

(a∗i − ai) ·
(

a∗j − aj

)(
xi · xj

)
(5)

In the formula, ai is not all 0, and the support vector is the corresponding sample data.
Then, the regression function is:

f(x) = w · x + b =
1
2

I

∑
i,j=1

(a∗i − ai)
(
xi · xj

)
+ b∗ (6)

In Equation (6), ai represents the optimal solution of the dual problem and b* represents
the optimal deviation of the dual problem.

In nonlinear problems, the low-dimensional nonlinear problem is only converted into
a high-dimensional linear problem. The low-dimensional kernel function K(xi,xj) is used to
replace the high-dimensional inner product operation. Therefore, the objective function
becomes as shown in Equation (7).

W(a, a∗) = −ε
I

∑
i=1

(ai + a∗i ) +
I

∑
i=1

(ai − a∗i )−
1
2

I

∑
i,j=1

(a∗i − ai) ·
(

a∗j − aj

)
k
(
xi · xj

)
(7)

The corresponding regression function is transformed into Equation (8).

f(x) = ω · x + b =
I

∑(a∗i − ai)k
(
xi, xj

)
+ b (8)

Because SVM has a good effect on linear and nonlinear data regression.

3.7.2. Principle of Back Propagation Neural Network

Back propagation (BP) neural network is the most classic and successful algorithm in
neural network. The BP network structure is mainly composed of input layer, hidden layer,
and input layer. The schematic diagram of its model construction is shown in Figure 9.
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Each hidden layer contains multiple neurons. The neuron format is shown in Figure 10.
The number of input X and output Y is set as required, but X0 is the specified value −1.
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Each input corresponds to a weight win, and X0 corresponds to w0θ. In the calculation
process, the sum is first and then the mapping is performed.
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Where X and W are shown in Equation (9).

X = [X0, X1, . . . , Xn], W =


wi0
wi1

...
win

 (9)

So neti =
n

∑
j=1

WijXj − θ = XW (10)

Thus, the output can be represented as:

yi = f(neti ) = f(XW) (11)

In this way, the calculation of one neuron is completed. The reference for the construc-
tion of the entire BP neural network model is shown in Figure 11.
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The result of each layer of neurons is the sum of the products of the previous layer
and the weights. We continued in turn until the predicted value Y was output, and then
compared it with the actual value. An error ε6 was generated. F6(e) pushed the error
backwards, and Errors ε4 and ε5 were formed in F4(e) and F5(e) in turn. The error backward
calculation is shown in Equations (12) and (13).

ε4 = W46ε6 (12)

ε1 = W14ε4 + W15ε5 (13)

In this way, the errors of all levels were calculated backward in turn. Then, we started
from the first layer to adjust the weights of all levels to reduce errors. Then, we calculated
forward, and repeated the operation until the error with the actual value was between the
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set value. At this point, the constructed model is the established BP neural network model.
The number of neurons in the model and the setting of the training function are the keys to
affecting the accuracy of the model.

3.8. Model Evaluation Metrics

After the prediction model is established, the fitting effect and prediction effect of
the model should be evaluated. In order to obtain modeling results, evaluation metrics
should be applied when modeling. The models were evaluated and compared through the
evaluation indicators to select the optimal model.

In this paper, model evaluation indicators such as root mean square error (RMSE),
mean squared error (MSE), and coefficient of determination (R2) in statistics were used to
evaluate the model. The formula is as follows: (14), (15), (16). The following will introduce
these several model evaluation methods, respectively.

• Mean square error:

MSE =
1
n

(
n

∑
i=1

(yi − ŷi)
2

)
(14)

yi refers to the measured value of the component content.
∧
yi refers to the predicted

value of the component content. The root mean square error refers to the expected value of
the square of the difference between the measured value and the predicted value of the
component content.

• Root Mean Square Error:

RMSE refers to the error between the measured value and the predicted value of the
component content. The RMSE value becomes smaller, the model effect becomes better,
and the prediction accuracy becomes higher. The minimization of the RMSE index value
was taken as the optimal parameter to set the optimization goal.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (15)

Among them, n is the number of samples in the data set, yi is the measured value of

the component content, and
∧
yi is the predicted value of the component content. Root mean

square error of calibration (RMSEC) refers to the root mean square error of the modeling
set. Root mean square error of prediction (RMSEP) refers to the root mean square error of
the test set.

• Determination coefficient R2:

The coefficient of determination R2 refers to the fitting effect between the predicted
value and the measured value. R2

C refers to the model set cross-validation coefficient of
determination, and R2

P refers to the test set coefficient of determination.

R2 =
∑n

i=1 (
∧
y− yi)

2

∑n
i=1 (y− yi)

2 (16)

In the formula, n refers to the number of samples, yi is the measured value of the

component,
∧
yi is the predicted value of the model, and yi is the average value of the

measured value. The closer the coefficient of determination R2 is to 1, the higher the fitting
degree of the algorithm model and the better the model modeling effect. The closer R2 is to
0, the worse the fitting degree of the model and the poorer the modeling effect.
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4. Results and Discussion
4.1. RF Modeling

The modeling data adopt the 100 samples data randomly sampled earlier. The data
statistics of the modeling set are shown in Table 4.

Table 4. Statistical table of component content of soil pond sample modeling set.

Ingredient Category Number of Samples Average Value Standard Deviation

nitrogen 100 1.445 0.331

Among the 100 soil samples in the modeling set, the nitrogen content was distributed
between 0.655 and 2.104 g/kg; the standard deviation was 0.331 g/kg.

Spectral data and the measured nitrogen content from simulated soil samples were
incorporated into random forest models. The MSE error rate spectrum corresponding to
the parameter Ntree was obtained using a cross-validation method. The spectral lines are
shown in Figure 12.
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Figure 12. Nitrogen content error rate varies with tree number.

As can be seen from Figure 12, the larger the value of Ntree, the more stable the
corresponding random forest model. It also shows that RF is robust to overfitting. Different
combinations of the number of regression trees and the number of split nodes were chosen.
The value of the number of regression trees was kept unchanged, so that the number of
split nodes could be debugged within the optional range. Then, the best parameter value
was selected. The number of nitrogen content trees, the number of split nodes, and the
RMSEC statistics are shown in Table 5. The comparison of the predicted and measured
values of model nitrogen content can be seen in Figure 13.

Table 5. Nitrogen content tree number and split node number setting and RMSEC statistical graph.

Ntree Fetching Values Optimal Number of Split Nodes RMSEC

800 80 0.117
600 90 0.116
500 70 0.117
400 60 0.118
300 50 0.115
150 70 0.117
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trum and random forest algorithm, the nitrogen random forest prediction model was ad-
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Figure 13. Comparison of predicted and measured nitrogen content in random forest model.

There are a total of 43 soil samples in the test set. The statistics of the measured values
of soil samples in the test set are shown in Table 6. The distribution of nitrogen content is
0.609~2.092 g/kg, and the standard deviation is 0.332 g/kg.

Table 6. Soil sample prediction set component content statistics table.

Ingredient Category Number of Samples Average Value Standard Deviation

nitrogen 43 1.531 0.332

To verify the feasibility of detecting soil components using the near-infrared spectrum
and random forest algorithm, the nitrogen random forest prediction model was adjusted
to the optimal model parameters. The spectral data of 43 soil samples in the test set were
brought into the random forest model. It was concluded that the coefficient of determination
(R2

P) for the prediction of the nitrogen content in the test set was 0.83, and the root mean
square error (RMSEP) was 0.141. The comparison between the predicted value of the test
set component content and the measured value is shown in Figure 14.
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4.2. Analysis of Experimental Results

The RF regression optimal parameter (Ntree, NSV) for adjusting the soil nitrogen content
is (300, 50). The cross-validation result R2

C is 0.921 and the RMSEC is 0.115. In the process of
splitting and growing the decision tree, the Gini coefficients before and after each split node
were obtained. Then, the mean of all ∆Gini values for each wavelength of the 300 decision
trees was calculated as an indicator of the importance of the wavelength to the component
content. The nitrogen content of soil samples based on 256 wavelengths ∆Gini of RF modeling
is shown in Figure 15. The importance of all wavelengths was further determined by the size
of ∆Gini: the larger the ∆Gini, the more information the wavelength contains.
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As can be seen from Figure 15, the wavelength is more important between 860 and
1900 nm. The first 148 wavelengths with a higher ∆Gini were selected as the preferred
wavelengths. A random stand prediction model was established based on the optimal
wavelength characteristics The R2

C accuracy of the built model is 0.918 and the RMSEC
accuracy is 0.119. The results are similar to the full-wave modeling result. It was demon-
strated that the near-infrared spectrum associated with the soil nitrogen content can be
optimized by ∆Gini.

Combined with Figure 15 and Table 7, it indicates that the spectral information related
to the soil N content can be extracted by optimizing RF modeling data based on ∆Gini.
This also shows that the optimal features based on ∆Gini can reduce redundant data and
thus can simplify the model, thereby optimizing the model prediction speed.

Table 7. Comparison of preferred wavelength and full-wavelength-based RF modeling results.

Models Wave Length RMSEC R2
C RMSEP R2

P

RF 148 0.1178 0.951 0.1453 0.899

RF 256 0.1155 0.957 0.1412 0.909

5. Comparison of Different Models

Support vector machines [44–46] (SVM) and neural networks [47–49] (BP) are two
common high-precision modeling algorithms in the study of soil composition detection us-
ing near-infrared spectroscopy. The superiority of the two algorithms has been highlighted
in many near-infrared spectroscopy detection literatures.

To further test the performance of the model, SVM algorithm and BP neural network
modeling commonly used in the detection of soil components by near-infrared spectroscopy
were selected for comparison.
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5.1. Support Vector Machine Modeling

The preprocessed spectral data and the measured soil nitrogen content were predicted
using SVM modeling with different kernel functions. The parameters were optimized
and tuned. Five-time cross validation was applied to obtain the parameters of the model
evaluation. The results are shown in Table 8.

Table 8. Modeling results of soil nitrogen content with different kernel functions SVM.

Model Kernel Function RMSE R2

SVM
linear 0.156 0.78

secondary 0.280 0.30
Gaussian 0.161 0.76

From Table 8, in terms of the SVM modeling results of the soil nitrogen content,
the SVM modeling results based on the linear kernel function are the best. Its model
determination coefficient R2 is 0.78, and its root mean square error RMSE is 0.156. The best
linear and Gaussian SVM modeling prediction results are shown in Figure 16. In the scatter
plot, it can also be seen that the prediction results of the linear SVM model are closer to the
measured results, and the prediction effect is the best.
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Figure 16. (a) Prediction results of soil nitrogen content using support vector machine model based
on linear kernel function; (b) prediction results of soil nitrogen content using support vector machine
model based on Gaussian kernel function.

5.2. BP Neural Network Modeling

The preprocessed spectral data were used as the input of the BP neural network, and
the measured value of the soil nitrogen content was used as the output of the BP neural
network. The number of hidden neurons was adjusted and different training functions
were chosen in order to choose the optimal modeling parameters. The modeling results
are shown in Table 9. The percentage of error between the model predicted value and the
measured value is shown in Figure 17.

Table 9. BP neural network modeling results based on different training models.

Model Training Function Neurons RMSE R2

BP
Levenberg–Marquardt 18 0.111 0.876

Bayesian Regularization 18 0.132 0.835
Scaled Conjugate Gradient 18 0.124 0.851
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Figure 17. (a) Prediction results of soil nitrogen content using back propagation neural network based
on Levenberg–Marquardt training function; (b) prediction results of soil nitrogen content using back
propagation neural network based on Bayesian regularization training function; (c) prediction results
of soil nitrogen content using back propagation neural network based on scaled conjugate gradient
training function.

From Table 9, it is clear that, when the BP neural network adopts the Levenberg–
Marquardt training model, and the number of neurons is 18, the model is the best. The
model determination coefficient R2 is 0.876 and the root mean square error is 0.111. In the
model prediction scatterplot, it can also be seen that the BP neural network based on the
Levenberg–Marquardt training function has a closer correlation with the prediction results
of the soil nitrogen content and the measured results. The prediction effect is the best.

From the results of the RMSE and R2 index data in Table 10 and the error values of
the model prediction results in Figure 17, the following conclusions can be drawn. In the
modeling of each component, compared with the BP and SVM models, the random forest
model RF prediction results are closer to the measured results, and the prediction effect is
better. At the same time, it further verified the feasibility and superiority of forest-based
near-infrared spectroscopy for the detection of various soil components.

Table 10. Comparison of prediction performance of different models.

Serial Number Model RMSE R2

1 SVM (linear) 0.156 0.780

2 BP (Levenberg–Marquardt) 0.111 0.876

3 random forest 0.116 0.921

6. Conclusions

In this paper, the 143 spectral data obtained from the experiment were smoothed and
denoised. The moving average (movmean), Gaussian filter (Gaussian), moving median
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(movmmedian), local weighted regression (lowess), local polynomial regression fitting
(loess), robust local weighted regression (rlowess), robust local polynomial regression
(rloess), least squares smoothing filter (sgolay) data spectrogram, and root mean square
error results were compared. The local polynomial regression fitting (loess) method has
the best smoothing effect. The local polynomial regression fitting (loess) method can also
eliminate noise and reduce the error of the component prediction results.

Based on the near-infrared spectrum of soil and the measured value of the nitrogen
content, a random forest prediction model was established. The parameters were adjusted
to obtain the model with the best prediction effect. Firstly, the pre-processed spectrum data
were used as the input of the model, and then a random forest regression model was set up.
The number of CART regression trees (Ntree), the number of split nodes (NSV), and the
MSE results were adjusted to optimize the parameters of the random forest model. The
wavelength was optimized by ∆Gini, the data dimension was reduced, and the result was
compared with the full wave. The results show that, when the parameters of the nitrogen
content prediction model based on a random forest are at (300, 50), the 860–1900 nm band
is the most suitable for modeling. At this point, the model cross-validation R2

C is 0.918,
and the RMSEC is 0.119. It is also proved that the optimal wavelength of ∆Gini can be
optimized for the near-infrared spectrum associated with the soil nitrogen content, which
can reduce redundant information of data and optimize the model.

The optimum prediction model of the soil nitrogen content was validated. The spectral
data and component measured values of the 43 soil samples used as the verification part
were measured, and the local polynomial regression fitting (loess) method was used to
smooth and denoise the spectral data. The optimal model was selected for prediction. The
results show that: the RF model modeling set prediction R2

C is 0.921, the RMSEC is 0.115,
the test set R2

P is 0.83, and the RMSEP is 0.141. The prediction of soil components is very
close to the measured value. Therefore, the feasibility of predicting the nitrogen content in
soil components using the optimal model based on a random forest is verified.

The soil composition detection model based on the near-infrared spectrum was estab-
lished with common neural network (BP) and support vector machine (SVM) algorithms.
The optimal BP and SVM models were selected by adjusting the model parameters. By com-
paring the two evaluation indicators of the root mean square error (RMSE) and correlation
coefficient (R2) with the random forest, the RF model has a better accuracy and prediction
effect than the BP and SVM models. The feasibility and superiority of soil multi-component
detection based on RF and NIR spectroscopy technology were further verified.
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