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Abstract: An automatic colorization algorithm can convert a grayscale image to a colorful image using
regression loss functions or classification loss functions. However, the regression loss function leads
to brown results, while the classification loss function leads to the problem of color overflow and the
computation of the color categories and balance weights of the ground truth required for the weighted
classification loss is too large. In this paper, we propose a new method to compute color categories
and balance the weights of color images. In this paper, we propose a new method to compute color
categories and balance weights of color images. Furthermore, we propose a U-Net-based colorization
network. First, we propose a category conversion module and a category balance module to obtain
the color categories and to balance weights, which dramatically reduces the training time. Second, we
construct a classification subnetwork to constrain the colorization network with category loss, which
improves the colorization accuracy and saturation. Finally, we introduce an asymmetric feature
fusion (AFF) module to fuse the multiscale features, which effectively prevents color overflow and
improves the colorization effect. The experiments show that our colorization network has peak
signal-to-noise ratio (PSNR) and structure similarity index measure (SSIM) metrics of 25.8803 and
0.9368, respectively, for the ImageNet dataset. As compared with existing algorithms, our algorithm
produces colorful images with vivid colors, no significant color overflow, and higher saturation.

Keywords: colorization; category conversion module; category balance module; U-Net; classification
subnetwork; asymmetric feature fusion

1. Introduction

Colorization has played an important role in processing grayscale pictures such as
medical pictures, night vision pictures, electron microscopic pictures, satellite remote
sensing pictures, and old photos. However, colorization is a complex and diverse problem,
since the same piece of clothing can be red, blue, brown, or other colors. Therefore, it
currently remains a challenging subject.

Traditional colorization methods are mainly divided into two types: color expansion
through adjacent pixels [1–4] and color transfer through reference images [5–8]. However,
both methods require a lot of manual interaction and rely heavily on the accuracy of color
marking or the selection of reference maps. In recent years, with the rapid development of
deep learning, a large number of automatic colorization algorithms based on convolutional
neural networks (CNNs) have been proposed. However, most colorization algorithms
use regression loss functions (such as L1 and L2) [9–21]. These algorithms resolve the
features of grayscale images and add color channels to achieve colorization. The generated
colorful images have been relatively satisfactory, but the problem of brown and unsaturated
generated images has persisted, as shown in Figure 1. To generate vibrant and saturated
colorful images, Zhang et al. [22] used the classification loss function for colorization.
However, this algorithm triggered very serious color overflow, as shown in Figure 1.
Moreover, the long training time of his network made it difficult to train.
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Figure 1. Problems with the current colorization networks. Using regression loss functions (such as
Iizuka et al. [11]) results in a brownish, unsaturated result. Using classification loss functions (such as
Zhang et al. [22]) results in color overflow.

In order to improve the brown and unsaturated phenomenon of generated images,
suppress the color overflow of generated images and reduce the training time of classifi-
cation loss function network, we propose a new method to compute color categories and
balance weights of color images. Furthermore, we propose a colorization network based
on U-Net [23]. First, we propose a category conversion module and a category balance
module to obtain the color categories and to balance weights. These two modules replace
the original point-by-point calculation by matrix indexing, which significantly reduces the
training time. Second, in order to obtain richer global features for the colorization network,
we construct a classification subnetwork which classifies grayscale images according to
1000 image categories of the ImageNet dataset. The classification subnetwork constrains the
colorization network with category loss to improve the colorization accuracy and saturation.
Finally, inspired by Cho [24], we introduce an AFF module to fuse the multiscale features.
Multiscale feature fusion enables the colorization network to grasp both global features
and local features, which effectively prevents color overflow and improves the colorization
effect. As a result, our colorization algorithm produces vibrant images with no visible color
overflow. The contributions of this work are:

1. A category conversion module and a category balance module are proposed to signifi-
cantly reduce the training time.

2. A classification subnetwork is proposed to improve colorization accuracy and saturation.
3. An AFF module is introduced to prevent color overflow and to improve the colorization effect.

2. Related Work
2.1. Traditional Colorization Method

Traditional colorization methods require manual interaction. They are divided into
two types: color expansion through adjacent pixel points and color transfer through
reference pictures.
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2.1.1. Color Expansion

The color expansion method was proposed by Levin et al. [1]. This work pointed
out that two neighboring pixel points with similar grayscale values have similar color
and based on this, the manually labeled colored lines were expanded to the whole image.
On the basis of the abovementioned finding, Yatziv et al. [2] added a weighted distance
function between pixels to guide colorization. Qu et al. [3] and Luan et al. [4] used image
texture feature similarity to reduce the computational complexity. The color expansion
method generates color-symbolic images as expected, but color confusion occurs due to
inaccurate, manually labeled colored lines or at the edges of the image.

2.1.2. Color Transfer

The color transfer method was proposed by Welsh et al. [5]. This work selected color
pictures similar to grayscale pictures as reference pictures, and transferred the colors of
reference pictures to pixel points with similar grayscale values in grayscale pictures. Based
on this, Irony et al. [6] cut high-resolution reference pictures and transferred the color of the
reference pictures based on texture features. To solve the problem that reference pictures
are not easily accessible, Liu et al. [7] searched the internet for color pictures similar to
grayscale pictures. Wang et al. [8] searched for the color pictures with the highest similarity
as reference pictures through the semantics of grayscale pictures. The color transfer method
reduces some manual operations, but the colorization effect depends on the reference
picture and the selection of the color transfer method.

2.2. Deep Learning-Based Colorization Algorithms

Deep learning-based colorization algorithms enable end-to-end automatic colorization.
According to the loss function of colorization, they are divided into two types: regression
loss function and classification loss function.

2.2.1. Regression Loss Function

The vast majority of colorization algorithms [9–21] use regression loss functions.
Cheng et al. [9] extracted image features using a CNN and combined bilateral filtering to
enhance colorization. Larsson et al. [10] used a very deep convolutional network (VGG) to
obtain the semantics of an image and guided colorization based on the hue and chroma
histogram of each pixel point. Iizuka et al. [11] constructed a two-channel CNN to ex-
tract global and local features of the image separately, to fuse the two features, and to
add scene classification labels to improve the colorization effect. Nazeri et al. [12] con-
structed conditional generative adversarial networks (cGANs) to build colorization net-
works. Patricia et al. [15] constructed a two-channel ChromaGAN to output the category
distribution and the generated color images, and introduced category distribution of the
images to enhance the colorization effect. Su et al. [19] cropped the objects in the image,
constructed a multichannel CNN to color each object of the crop and the overall image,
and fused multiple color images according to the weights to improve the colorization
effect. Wu et al. [20] used GANs to generate color images associated with grayscale images
to guide the colorization of grayscale images. Jin et al. [21] constructed a three-channel
HistoryNet that contained image category, semantics, and colorization, using categorical
and semantic information to guide colorization. These algorithms achieved the desired
colorization results. However, due to the uncertainty and diversity of image colorization,
regression loss functions assigned each object’s color to the sum of all its possible colors.
This eventually resulted in brown and unsaturated colorization effect.

2.2.2. Classification Loss Function

Only Zhang et al. [22] used classification loss function of colorization. In order to
use classification loss function, this work constructed 313 color categories according to
the pixel a and b values. To calculate the color category of each pixel point in a color
image, Zhang et al. calculated the geometric distance between each pixel point a and b
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value and its 32 closest color categories a and b values. Next, the color category probability
distribution of each pixel was obtained by Gaussian weighting, and the color category
with the highest probability was selected. Finally, to make the colorization vivid, this work
balanced the weights using the color category probability distribution of the ImageNet
training set. The color categories and balance weights were formulated as follows:

Zh,w,q = e−d2/2σ2
/

31

∑
i=0

e−d2
i /2σ2

(1)

ω(Zh,w) = wq∗ , where q∗ = argma
q
xZh,w,q (2)

w ∝ ((1− λ) p̃ +
λ

Q
)
−1

(3)

E[w] = ∑
q

p̃qwq = 1 (4)

where d is the geometric distance between pixel point a and b values and its 32 closest color
categories a and b values; h and w are the positions of the pixel; q is the color category of the
pixel; σ is the Gaussian kernel with Gaussian weighting, which is taken as 0.5 here; p̃ is the
color category distribution of all pixels in the ImageNet training set images; Q represents
the number of color categories used, which is 313 in this study; λ represents the weight of
mixing the average distribution of each color category and the color category distribution
of the ImageNet training set of 1.28 million images, and 0.5 was tested to be the most
effective. However, this method lead to long training time and training difficulties for the
colorization network due to the large amount of computation. Moreover, although this
work generated vibrant and vivid color images, it resulted in severe color overflow because
the colorization network of this work did not fuse global features and local features of the
input image.

3. Method
3.1. Overview

Given a grayscale image xl ∈ R1∗h∗w as input, the purpose of colorization is to
predict the remaining a and b channels xab ∈ R2∗h∗w in the Lab channel and turn the
single channel xl into a three-channel color image xlab ∈ R3∗h∗w; l, a and b represent the
brightness of the Lab color space, and range from red to green and from yellow to blue,
respectively. In this work, we design an end-to-end colorization network based on U-Net.
As shown in Figure 2, our colorization network consists of three parts: an encoder, a
classification subnetwork, and a decoder. Our colorization network outputs the picture
category probability distribution and color category probability distribution. The color
category probability distribution becomes xab after the color recovery (CRC) module xab

concentrates xl to obtain the colorful image xlab.
As shown in Figure 2, the encoder consists of six layers of convolutional blocks. When

input Min ∈ Rn∗c∗h∗w passes through the convolution block, the obtained detailed features
Mout ∈ Rn∗2c∗h/2∗w/2 are saved and passed to the next layer of the convolution block. After
six layers of convolutional blocks feature extracting, the encoder generates global features
xg ∈ R2048∗h/32∗w/32 of input grayscale images xl ∈ R1∗h∗w. The classification subnetwork
consists of a convolution module and an average pooling layer. The classification subnet-
work resolves the global features xg ∈ R2048∗h/32∗w/32 generated by the encoder into the
picture category probability distribution Ŷ ∈ Rn∗1000∗1∗1. The decoder consists of three
layers of convolutional blocks. Before input Min ∈ Rn∗c∗h∗w passes through the convolu-
tional block, it is concatenated with the same size features of the AFF module output. The
decoder resolves the global features xg ∈ R2048∗h/32∗w/32 generated by the encoder into
color class probability distributions Ẑ ∈ Rn∗313∗h/4∗w/4 of the grayscale image xl .
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Figure 2. Network structure. Our colorization network consists of an encoder (left), a classification
subnetwork (bottom right), a decoder (right), three AFF modules and a CRC module.

3.2. Calculating Color Categories and Balance Weights

In order to reduce the computation of color categories and balance weights, we propose
a category conversion module and a category balance module. These two modules obtain
the color categories and balance the weights of real colorful images for training.

3.2.1. Category Conversion Module

As shown in Figure 3, given the pixel (blue dot) with a and b values (3,−3), Zhang et al. [22]
calculated the Euclidean distances d between the blue dot and the 32 nearest color cate-
gories (red and yellow dots) to the blue dot. Next, they obtained the probability distribution
of each color category by Gaussian weighting using Equation (1). Finally, they selected
the color category with the highest probability 120 using Equation (2). Equation (1) de-
creases monotonically with d, so the color category of the pixel (a, b) is the color category
q, corresponding to the center point (a0, b0) of the small square where the pixel point
is located.

Therefore, in order to obtain the color category of pixel (a, b), we calculated the (a0, b0)
value of the center point of the 10 × 10 square where the pixel (a, b) was located. Next,
we converted (a0, b0) to the corresponding color category q. As shown in Figure 3, given
the pixel (3,−3), we calculated the values (0, 0) for the center point (red dot) of the small
square where this pixel was located and determine the color category 120 for (3,−3) by the
color category 120 corresponding to (0, 0).
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Figure 3. Part of the color category distribution. The lower half values of the small squares are their
corresponding color categories q. For the pixel (blue dot) (3,−3), the same color category 120 is
obtained for the method of Zhang et al. and our method.

To calculate the color categories Z ∈ Rn∗h∗w corresponding to the ground truth a
and b channels xab ∈ Rn∗2∗h∗w, we used the above method to construct the color category
matrix M indexing the color category Z through Z = M

(
xab
)

, where n is the batch size

for one training and h and w are the pixel locations. The color category matrix M ∈ R420 is
formulated as follows:

M[22 ∗ (a0/10 + 9) + (b0/10 + 11)] = q(a0, b0) (5)

M[k] = −1, where k is the element without a index value (6)

where [] is an integer symbol, q(a0, b0) is the color class q corresponding to (a0, b0).
The category conversion module calculates a0 and b0 values of real, colorful pictures a

and b channels xab ∈ Rn∗2∗h∗w and indexes the corresponding color categories Z ∈ Rn∗h∗w

by color category matrix. The color categories Z ∈ Rn∗h∗w are formulated as follows:

xab =
[

xab/10 + 0.5
]

(7)

Z = M
((

xab[:, 0, :, :] + 9
)
∗ 22 +

(
xab[:, 1, :, :] + 11

))
(8)

3.2.2. Category Balance Module

In real colorful pictures, since the backgrounds such as sky, grass, ocean, and walls
occupy a large number of pixels, most of the pixels are color categories with low values of a
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and b. To encourage diversity in colorization, we construct the balance weight matrix ω,
which is formulated as follows:

w = ((1− λ) p̃ + λ/Q)−1 (9)

ω =
w−1

∑
q

p̃qwq−1 (10)

where Q represents the number of color categories used, here is 313; λ represents the weight
of mixing the average distribution of each color category and the color category distribution
of the ImageNet training set of 1.28 million images, and 0.5 was set. The category balance
module obtains the corresponding balance weight ω(Zh,w) based on the color category Zh,w.
Finally, the category conversion module and the category balance module are formulated
as follows:

Z, ω(Zh,w) = H
(

xab
)

(11)

3.3. Residual Block

In order to solve the problem of training difficulties brought by the deeper layers of
the colorization network, we construct the residual block based on the idea of ResNet [25].
As shown in Figure 4, our residual block consists of one 1 × 1 convolution kernel on the
top and two 3 × 3 convolution kernels on the bottom. The upper convolution kernel only
transforms the number of input channel to the output, and the lower convolution kernels
transform the number of input channel and extract the features. The summation of upper
and lower features optimizes the forward path of the colorization network and makes the
network easier to train. Therefore, our residual block can effectively solve the problem of
network degradation brought by the deeper layers of the network.

Figure 4. The structure of the residual block in the green part of Figure 2. Our residual block consists
of one 1 × 1 convolution kernel and two 3 × 3 convolution kernels.

3.4. Asymmetric Feature Fusion Module

In most U-Net-based algorithms, the decoder only concatenates features of the same
scale as the encoder. However, the top-down downsampling structure of the encoder
causes only the high scale features to act on the low scale features, so the high scale features
concatenated by the decoder are not affected by the low scale features, resulting in the
degradation of the colorization effect.
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Inspired by multi-input multioutput U-Net (MIMO-UNet) [24] and dense connections
between intra-scale features [26], we introduce the AFF module, as shown in Figure 5.

Figure 5. Asymmetric feature fusion module structure. The AFF module consists of resized modules,
a 1 × 1 convolution kernel, and a 3 × 3 convolution kernel.

The AFF module concatenates the features of all scales of the encoder (En1 − En5),
outputs the multiscale fused features with the convolution kernel, and finally concatenates
the features of the corresponding scales with the decoder. Three AFFs (AFF1, AFF2, AFF3)
are formulated as follows:

AFFout
1 = AFF1(Subs4(En1), Subs2(En2), En3, Ups2(En4), Ups4(En5)) (12)

AFFout
2 = AFF2(Subs8(En1), Subs4(En2), Subs2(En3), En4, Ups2(En5)) (13)

AFFout
3 = AFF3(Subs16(En1), Subs8(En2), Subs4(En3), Subs2(En4), En5) (14)

where AFFout
n denotes the output of the nth layer, Enn denotes the output of the nth

convolutional block of the encoder, Subsk denotes downsampling by a factor of k, and Upsk
denotes upsampling by a factor of k.

3.5. Color Recovery Module

We construct the inverse color category matrix M−1 indexing the values of a and b
through x0 = M−1(q), where q is the color category of pixel and M−1 is the inverse of the
color category matrix M. The index of M−1 is the color category q, corresponding to (a0, b0)
of q.

The color recovery module divides the color class distribution Ẑ ∈ R313∗h/4∗w/4 by the
annealing parameter and selects the color category with the highest probability. Next, we
use M−1 to index the (a, b) value x0 ∈ R2∗h/4∗w/4. Finally, we upsample x0 by a factor of
4 to obtain xab ∈ R2∗h∗w. The color recovery module is formulated as follows:

q∗ = argmax
q

(
Ẑh,w,q/T

)
(15)
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x0 = M−1(q∗) (16)

xab = Ups4(x0) (17)

T is the annealing parameter, which is taken as 0.38 here. Upsk denotes the upsampling
amplification k times.

3.6. Colorization with Classification

Although the classification loss function can generate vibrant colors, the colorization
inaccuracy caused by not obtaining the global environment of the input grayscale image
is always present. To solve this problem, we construct a classification subnetwork and
facilitate the optimization by also training for picture category losses jointly with color cate-
gory losses. The classification subnetwork resolves the global features xg ∈ R2048∗h/32∗w/32

acquired by the encoder into the picture category probability distribution Ŷ ∈ Rn∗1000∗1∗1

for grayscale images. We use 1000 category labels m ∈ [0, 999] delineated by the ImageNet
dataset, which cover all objects in the natural and human world. The classification sub-
network makes the global features of the encoder output more comprehensive through
the picture category loss function, thus, enabling the decoder to resolve more accurate
color categories. The classification network uses the cross-entropy loss function and is
formulated as follows:

Lcls
(
Y, Ŷ

)
= ∑

h,w
∑
m

Yh,w,m log
(
Ŷh,w,m

)
(18)

where Yh,w,m ∈ Rn∗1∗1 is the category label of the real image. The decoder outputs the
color category probability distribution Ẑ ∈ Rn∗313∗h/4∗w/4 of the grayscale image. The
colorization network uses the cross-entropy loss function and is formulated as follows:

Lcol
(
Z, Ẑ

)
= ∑

h,w
ω(Zh,w)∑

q
Zh,w,q log

(
Ẑh,w,q

)
(19)

where Z, ω(Zh,w) is the color category and balance weight of the real image, which can be
obtained by the category conversion module and the category balance module. The total
loss function is formulated as follows:

L = λcol Lcol + λclsLcls (20)

where λcol and λcls are hyperparameters controlling the picture category loss and color
category loss.

4. Experiments
4.1. Experimental Details

To verify the effectiveness of our proposed colorization algorithm, we built the col-
orization network in the pytorch framework and trained it with two NVIDIA GeForce RTX
3090 graphics cards. In this experiment, approximately 1.28 million images containing
1000 image categories from the ImageNet training set were used to train the coloriza-
tion network, and 50,000 images of the ImageNet validation set were used to test the
colorization effect.

We initialized our colorization network with the Xavier normal function and trained
the colorization network with the SGD optimizer. The initial learning rate, momentum
parameter, and weight decay were set to 10−3, 0.9, and 10−4, respectively. The learning rate
decays gradually with training, and λcol and λcls are set to 1 and 0.003, respectively. Batch
size is set to 64 and the input image size is fixed to 224 × 224. Our colorization network
is trained for 10 epochs and the training time for each epoch is approximately 16 h. The
learning rate change is formulated as follows:

lrIter = lr ∗ α1 + lr ∗ α2/100 (21)



Sensors 2022, 22, 8010 10 of 16

α1 = EpochIter/(EpochNum ∗ EpochLength) (22)

α2 = (1− α1)
lrPow (23)

where EpochNum is the number of training epochs; EpochLength is the total number of
training epochs; EpochIter is the current number of training; lrPow is the exponential
parameter, here is 0.9; lrIter is the current learning rate; and lr is the initial learning rate.

4.2. Calculating Time Experiments

To verify the accuracy of calculating the color categories and balance weights of
color images proposed in this paper, we randomly selected 200 images from each image
category of the ImageNet training set of 1000 image categories (1,281,167 images in total)
and calculated the color categories and corresponding balance weights of the images
using Zhang et al.’s method [22] and our method for 200,000 images, respectively. For
approximately 43.9 billion pixels of 200,000 images, the color categories and corresponding
balance weights calculated by the two methods are exactly the same. However, as shown
in Table 1, the method of Zhang et al. takes approximately 3 days of computation in our
computer, while our method takes less than 2 h of computation.

Table 1. Calculation time for color categories and balance weights. The values show that our method
is faster to compute.

Methods 43.9 Billion Pixels 3.2 Million Pixels

Zhang et al. [22] 3 days 18.86 s

Ours 2 h 0.4 s

The batch size of our colorization network is 64, and therefore, training a batch requires
computing the color categories and corresponding balance weights for 64 images with a
resolution of 224 × 224. As shown in Table 1, computing the color categories and balance
weights for approximately 3.2 million pixels on our computer takes about 18.86 s for
Zhang et al.’s method, while our method takes only approximately 0.4 s.

4.3. Quantitative Analysis

In order to quantitatively evaluate the colorization effect of our colorization network,
we use the SSIM and the PSNR as the evaluation indexes for quantitative analysis.

The SSIM evaluates the similarity between a color picture generated by the colorization
network and a real picture in terms of brightness, contrast, and structure. The SSIM can
sensitively perceive the local structural differences between the two pictures. The SSIM
takes values from 0 to 1, and a larger SSIM value means that the two images are more
similar. SSIM is formulated as follows:

l(x, y) =
(
2µxµy + C1

)
/
(

µx
2 + µy

2 + C1

)
(24)

c(x, y) =
(
2σxσy + C2

)
/
(

σx
2 + σy

2 + C2

)
(25)

s(x, y) =
(
σxy + C3

)
/
(
σxσy + C3

)
(26)

SSIM(x, y) = l(x, y)α ∗ c(x, y)β ∗ s(x, y)γ (27)

where µx and µy denote the mean of image x and y, respectively; σx and σy denote the
variance of image x and y, respectively; σxy denotes the covariance of image x and y;
C1, C2, C3 are constants; and α, β, γ denote the importance of each module.
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The PSNR is an objective measure of image quality evaluation before and after image
compression. The larger the value of PSNR, the less distorted the image. The PSNR of a
real image x with resolution m × n and a generated image y is calculated as follows:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[x(i, j)− y(i, j)]2 (28)

PSNR = 10 ∗ log10

(
MAX2

x/MSE
)

(29)

where MAX2
x indicates the maximum possible pixel value of the image.

We tested our algorithm on 50,000 images from the ImageNet validation set against
the algorithms of Larsson et al. [10], Iizuka et al. [11], Zhang et al. [22], Deoldify [18], and
Su et al. [19]. Table 2 shows the comparison of our experimental results with the SSIM and
the PSNR of the above algorithms. It can be clearly seen that our colorization network has
higher SSIM and PSNR values, which means the colorization effect of our network is better.

Table 2. Quantitative analysis of colorization effect. As compared with the PSNR and SSIM values of
other colorization algorithms, the colorization effect of our network is better.

Method PSNR↑ SSIM↑
Iizuka et al. [11] 23.6362 0.9173

Larsson et al. [10] 25.1067 0.9266
Deoldify [18] 23.5372 0.9144

Zhang et al. [22] 21.7910 0.8915
Su et al. [19] 25.7440 0.9202

Ours 25.8803 0.9368

4.4. Qualitative Analysis

In order to verify the effectiveness of our colorization algorithm, in this paper, we
compare our colorization algorithm with those of Larsson et al. [10], Iizuka et al. [11],
Zhang et al. [22], Deoldify [18], and Su et al. [19]. We use 50,000 images from the ImageNet
validation set for testing and adjust the resolution of the generated images to 256 × 256.
The experimental results are shown in Figure 6, where our algorithm generates more vivid
and more saturated colorful images.

As shown in Figure 6, our algorithm generates more vivid and saturated color images
as compared with Larsson et al., Iizuka et al., Deoldify, and Su et al. Regarding the color of
the small tomatoes in the first column of images, as compered with our bright red color,
the other algorithms generate less saturated colors, showing a dark red or unnatural pink.
In contrast to our vivid saturated purple flower, the other algorithms generate dull colors,
rendering gray and mauve. In addition, as compared with Zhang et al., our algorithm
effectively prevents color overflow and oversaturation. Regarding the hand in the fourth
column, the fingertips of Zhang et al.’s algorithm overflow a very obvious green color and
the mushroom is oversaturated with red, while our algorithm generates a more natural and
vivid color for the hand and mushroom. Furthermore, our generated images successfully
maintain the integrity and coherence of the color of the same object. Regarding the color of
the third column of leaves, our algorithm effectively guarantees a bright green, while the
algorithms of Zhang et al. and Su et al. appear unnatural red.

4.5. Ablation Experiments

We designed ablation experiments to demonstrate that adding a classification subnet-
work and AFF module to the colorization network can effectively improve the colorization
effect. We used the U-Net with the classification subnetwork and AFF module removed as
the baseline network and trained it on the ImageNet 50,000 validation set. From Table 3, we
can see that the PSNR and SSIM values are higher after adding the classification subnetwork
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and AFF module, which indicates that the classification subnetwork and AFF module can
significantly improve the colorization effect of the colorization network.

Figure 6. Visualization comparison of our colorization algorithm and other colorization algorithms.
Our colorization network generates more vivid and saturated colorful images.

Table 3. Ablation experiments. The PSNR and SSIM values show that the classification subnetwork
and the AFF module play a positive role in the colorization effect of the network.

Method PSNR↑ SSIM↑
U-Net 23.1783 0.8921

U-Net + Classifier 24.1615 0.9119
U-Net + AFF 24.7595 0.9260

Ours 25.8803 0.9368
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In total, we performed three sets of ablation experiments: U-Net plus the classification
subnetwork, U-Net plus the AFF module, and our colorization network. As can be seen
in Table 2 as well as Figure 7, the classification subnetwork and the AFF module play a
positive role in colorization.

Figure 7. Ablation experiments. The classification subnetwork can help the colorization network
to color more accurately. The AFF module can improve the color overflow phenomenon and can
enhance the colorization effect.

As shown in Figure 7, the colorful images generated by U-Net have the problems of
color overflow and low saturation. As for the cabbage in the first row, the color of the
U-Net-generated picture leaves is gray-green, which is not bright enough and the color
distribution is not uniform. After adding the classification subnetwork, the color of the
leaves is a more vivid tender green, which indicates that the classification subnetwork
can help the colorization network to color more accurately, but an obvious color overflow
appears in the lower middle. After adding the AFF module, there is no obvious color
overflow and the color of the leaves is a bright tender green, indicating that the AFF
module can improve the color overflow phenomenon and enhance the colorization effect.
The U-Net plus AFF module improves the color overflow phenomenon, but the color of
the vegetable leaves is light. In the second row of images, the U-Net generated hand and
mushroom are light in color and the tip of thumb shows color overflow. After adding the
classification subnetwork, the color of hand and mushroom are more vivid, but the tip of
thumb still have green color overflow. After adding the AFF module, there is no obvious
color overflow, and the hands and mushrooms are healthy flesh color and bright red,
respectively. It can be seen that the sorting subnetwork and AFF module can significantly
improve the colorization effect.

4.6. User Study

To better evaluate the colorization effect of our algorithm, we conducted a user study
to evaluate the results of the U-Net base network, the results of our colorization network,
and the ground truth validation images. The study was completed by 20 participants
with normal or corrected-to-normal and without color blindness. We randomly selected
100 images of different categories in the test set, for a total of 300 images. All images were
displayed at a resolution of 256 × 256 pixels. Each participant was shown 300 pictures and
asked to respond “Does this picture look natural?” to each picture within 1 s. Figure 8 and
Table 4 show the results of the experiment. The U-Net performed poorly, with only 72.9%
of the images considered to be natural. Our colorization network had 92.9% of the images
considered to be natural, which was very close to the ground truth’s 95.8%. This is a good
indication that our algorithm can generate more natural and saturated colors.
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Figure 8. Boxplots of the naturalness of the images evaluated by different users. The 92.9% of our
colorization network is closer to the 95.8% of ground truth than the 72.9% of the base U-Net. This
indicates that our algorithm generates more natural color pictures.

Table 4. Naturalness of user study. The values show that our network generates more vivid color
pictures as compared with the base U-Net.

Approach Naturalness (Median)

U-Net 72.9%
Ours 92.9%
GT 95.8%

4.7. Limitation

Although our algorithm achieves better colorization results, our colorization algorithm
does not determine the color category of each pixel of the input image. As shown in
Figure 2, our network outputs a color category resolution of 56 × 56 instead of the input
image 224 × 224, after which we obtain a color image of the corresponding resolution by
upsampling 4 times. In order to obtain more accurate color categories and colorization
effects, we adjust the resolution of the output color categories to the resolution of the input
image 224 × 224 and train using the same dataset and training method.

The generated color images are shown in Figure 9. The pixel-level network generates
color images where a certain single color (blue, green) fills the whole image and uneven
blocks of color appear. This is probably caused by two reasons. First, our classification of
color categories is not accurate enough. Second, when the network becomes a pixel-level
network, our network does not effectively capture the local features of the input image. In
the future, we may solve this problem by dividing finer color categories or using generative
adversarial networks.
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Figure 9. Colorization effect of pixel-level network. A single color (blue, green) fills the whole picture,
and the last picture appears as an uneven block of color.

5. Conclusions

In this paper, we propose a new method to compute color categories and balance
weights of color images. Furthermore, we propose a U-Net-based colorization network
incorporating a classification subnetwork and an AFF module. The category conversion
module and the category balance module significantly reduce the training time. The
classification subnetwork can significantly improve the colorization accuracy and saturation.
The AFF module can significantly prevent color overflow and improve the colorization
effect. Quantitative experiments show that our colorization network has higher PSNR and
SSIM values of 25.8803 and 0.9368. Qualitative experiments show that the colorization
effect of our colorization network is higher than that of existing algorithms. In addition,
our improved method of calculating color categories and balance weights for color images
should also attract more scholars to use color categories for colorization.

Author Contributions: Conceptualization, Z.W., Y.Y., D.L., Y.W. and M.L.; methodology, Z.W., D.L.
and Y.W.; software, Z.W. and M.L.; validation, Z.W., Y.Y. and Y.W.; formal analysis, Z.W., Y.Y. and
D.L.; investigation, Z.W., Y.Y. and Y.W.; resources, Z.W., Y.Y. and D.L.; data curation, Z.W., Y.Y. and
D.L.; writing—original draft preparation, Z.W., Y.Y., D.L. and Y.W.; writing—review and editing,
Z.W., Y.Y. and D.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2022, 22, 8010 16 of 16

References
1. Levin, A.; Lischinski, D.; Weiss, Y. Colorization using optimization. ACM Trans. Graph. 2004, 23, 689–694. [CrossRef]
2. Yatziv, L.; Sapiro, G. Fast image and video colorization using chrominance blending. IEEE Trans. Image Process. 2006, 15, 1120–1129.

[CrossRef]
3. Qu, Y.; Wong, T.-T.; Heng, P.-A. Manga Colorization. ACM Trans. Graph. 2006, 25, 1214–1220. [CrossRef]
4. Luan, Q.; Wen, F.; Cohen-Or, D.; Liang, L.; Xu, Y.-Q.; Shum, H.-Y. Natural Image Colorization. In Proceedings of the 18th

Eurographics Conference on Rendering Techniques, Grenoble, France, 25 June 2007; pp. 309–320.
5. Welsh, T.; Ashikhmin, M.; Mueller, K. Transferring color to greyscale images. ACM Trans. Graph. 2002, 21, 277–280. [CrossRef]
6. Irony, R.; Cohen-Or, D.; Lischinski, D. Colorization by Example. In Proceedings of the Eurographics Symposium on Rendering

(2005), Konstanz, Germany, 29 June–1 July 2005; Bala, K., Dutre, P., Eds.; The Eurographics Association: Vienna, Austria, 2005.
7. Liu, X.; Wan, L.; Qu, Y.; Wong, T.-T.; Lin, S.; Leung, C.-S.; Heng, P.-A. Intrinsic Colorization. In Proceedings of the ACM

SIGGRAPH Asia 2008, New York, NY, USA, 1 December 2008.
8. Wang, X.; Jia, J.; Liao, H.; Cai, L. Affective Image Colorization. J. Comput. Sci. Technol. 2012, 27, 1119–1128. [CrossRef]
9. Cheng, Z.; Yang, Q.; Sheng, B. Deep Colorization. In Proceedings of the 2015 IEEE International Conference on Computer Vision

(ICCV), Santiago, Chile, 7–13 December 2015; pp. 415–423.
10. Larsson, G.; Maire, M.; Shakhnarovich, G. Learning Representations for Automatic Colorization. In Lecture Notes in Computer

Science; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham, Switzerland, 2016; Volume 9908. [CrossRef]
11. Iizuka, S.; Simo-Serra, E.; Ishikawa, H. Let there be color!: Joint end-to-end learning of global and local image priors for automatic

image colorization with simultaneous classification. ACM Trans. Graph. 2016, 35, 1–11. [CrossRef]
12. Nazeri, K.; Ng, E.; Ebrahimi, M. Image Colorization Using Generative Adversarial Networks. In International Conference on

Articulated Motion and Deformable Objects; Springer: Berlin/Heidelberg, Germany, 2018; Volume 10945, pp. 85–94. [CrossRef]
13. Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134.
14. Cao, Y.; Zhou, Z.; Zhang, W.; Yu, Y. Unsupervised Diverse Colorization via Generative Adversarial Networks. In Joint European

Conference on Machine Learning and Knowledge Discovery in Databases; Springer: Berlin/Heidelberg, Germany, 2017; pp. 151–166.
[CrossRef]

15. Vitoria, P.; Raad, L.; Ballester, C. ChromaGAN: Adversarial Picture Colorization with Semantic Class Distribution. In Proceedings
of the 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass Village, CO, USA, 1–5 March 2020;
IEEE: New York, NY, USA, 2020; pp. 2434–2443.

16. Zhang, R.; Zhu, J.-Y.; Isola, P.; Geng, X.; Lin, A.S.; Yu, T.; Efros, A.A. Real-time user-guided image colorization with learned deep
priors. ACM Trans. Graph. 2017, 36, 1–11. [CrossRef]

17. Zhao, J.; Han, J.; Shao, L.; Snoek, C.G.M. Pixelated Semantic Colorization. Int. J. Comput. Vis. 2019, 128, 818–834. [CrossRef]
18. Antic, J. Jantic/Deoldify: A Deep Learning Based Project for Colorizing and Restoring Old Images (and Video!). Available online:

https://github.com/jantic (accessed on 16 October 2019).
19. Su, J.-W.; Chu, H.-K.; Huang, J.-B. Instance-Aware Image Colorization. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 7965–7974. [CrossRef]
20. Wu, Y.; Wang, X.; Li, Y.; Zhang, H.; Zhao, X.; Shan, Y. Towards Vivid and Diverse Image Colorization with Generative Color

Prior. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021;
pp. 14377–14386. [CrossRef]

21. Jin, X.; Li, Z.; Liu, K.; Zou, D.; Li, X.; Zhu, X.; Zhou, Z.; Sun, Q.; Liu, Q. Focusing on Persons: Colorizing Old Images Learning
from Modern Historical Movies. In Proceedings of the 29th ACM International Conference on Multimedia, Virtual Event,
20–24 October 2021; pp. 1176–1184.

22. Zhang, R.; Isola, P.; Efros, A.A. Colorful Image Colorization. In European Conference on Computer Vision; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 649–666.

23. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image
Computing and Computer-Assisted Intervention 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International
Publishing: Cham, Switzerland, 2015; pp. 234–241. [CrossRef]

24. Cho, S.-J.; Ji, S.-W.; Hong, J.-P.; Jung, S.-W.; Ko, S.-J. Rethinking Coarse-to-Fine Approach in Single Image Deblurring. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021;
pp. 4621–4630. [CrossRef]

25. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

26. Kim, S.-W.; Kook, H.-K.; Sun, J.-Y.; Kang, M.-C.; Ko, S.-J. Parallel Feature Pyramid Network for Object Detection. In Computer
Vision–ECCV 2018; Lecture Notes in Computer Science; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer
International Publishing: New York, NY, USA, 2018; Volume 11209, pp. 239–256. ISBN 978-3-030-01227-4.

http://doi.org/10.1145/1015706.1015780
http://doi.org/10.1109/TIP.2005.864231
http://doi.org/10.1145/1141911.1142017
http://doi.org/10.1145/566654.566576
http://doi.org/10.1007/s11390-012-1290-4
http://doi.org/10.1007/978-3-319-46493-0_35
http://doi.org/10.1145/2897824.2925974
http://doi.org/10.1007/978-3-319-94544-6_9
http://doi.org/10.1007/978-3-319-71249-9_10
http://doi.org/10.1145/3072959.3073703
http://doi.org/10.1007/s11263-019-01271-4
https://github.com/jantic
http://doi.org/10.1109/cvpr42600.2020.00799
http://doi.org/10.1109/iccv48922.2021.01411
http://doi.org/10.1007/978-3-319-24574-4_28
http://doi.org/10.1109/iccv48922.2021.00460
http://doi.org/10.1109/CVPR.2016.90

	Introduction 
	Related Work 
	Traditional Colorization Method 
	Color Expansion 
	Color Transfer 

	Deep Learning-Based Colorization Algorithms 
	Regression Loss Function 
	Classification Loss Function 


	Method 
	Overview 
	Calculating Color Categories and Balance Weights 
	Category Conversion Module 
	Category Balance Module 

	Residual Block 
	Asymmetric Feature Fusion Module 
	Color Recovery Module 
	Colorization with Classification 

	Experiments 
	Experimental Details 
	Calculating Time Experiments 
	Quantitative Analysis 
	Qualitative Analysis 
	Ablation Experiments 
	User Study 
	Limitation 

	Conclusions 
	References

