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Abstract: Continuous measurement of heart rate variability (HRV) in the short and ultra-short-term
using wearable devices allows monitoring of physiological status and prevention of diseases. This
study aims to evaluate the agreement of HRV features between a commercial device (Bora Band,
Biosency) measuring photoplethysmography (PPG) and reference electrocardiography (ECG) and
to assess the validity of ultra-short-term HRV as a surrogate for short-term HRV features. PPG and
ECG recordings were acquired from 5 healthy subjects over 18 nights in total. HRV features include
time-domain, frequency-domain, nonlinear, and visibility graph features and are extracted from 5 min
30 s and 1 min 30 s duration PPG recordings. The extracted features are compared with reference
features of 5 min 30 s duration ECG recordings using repeated-measures correlation, Bland–Altman
plots with 95% limits of agreements, Cliff’s delta, and an equivalence test. Results showed agreement
between PPG recordings and ECG reference recordings for 37 out of 48 HRV features in short-term
durations. Sixteen of the forty-eight HRV features were valid and retained very strong correlations,
negligible to small bias, with statistical equivalence in the ultra-short recordings (1 min 30 s). The
current study concludes that the Bora Band provides valid and reliable measurement of HRV features
in short and ultra-short duration recordings.

Keywords: heart rate variability (HRV); ultra-short-term HRV analysis; wearable devices

1. Introduction

In recent years, especially during the COVID-19 pandemic, there has been a growing
trend toward remote online health monitoring using wearable devices. These devices are
easy to use, inexpensive, and capable of collecting non-invasive and continuous long-term
data, allowing for health status monitoring, diagnosis, and disease prevention [1]. Heart
rate (HR) and heart rate variability (HRV) are vitally important in e-health applications as
they reflect the activity of the cardiovascular autonomic nervous system, thus, the phys-
iological status of a patient [2,3]. They were found to have prognostic value in several
cardiovascular and pulmonary diseases [4–6]. One of the leading causes of morbidity and
mortality among pulmonary diseases is chronic obstructive pulmonary disease (COPD) [7].
It represents high health and economic burden, especially due to exacerbations [8]. Exacer-
bations are defined as worsening of the symptoms related to COPD and are often related to
cardiac autonomic system dysfunction, resulting in changes in HRV [5,6]. Non-invasive
and continuous monitoring of the HRV response in COPD patients is highly beneficial to
prevent severe exacerbations.

Two main techniques are often used for HR estimation: conventional Electrocardiogra-
phy (ECG) and photoplethysmography (PPG) [9]. Although the ECG signal has often been
used as a reference for HR estimation, the associated monitoring system is not practical
and comfortable for continuous monitoring, because it requires the attachment of multiple
electrodes to the patient’s chest [10]. In contrast, PPG is a popular, non-invasive technique
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that is widely applied to modern wearable devices because of its higher usability and lower
cost than ECG [10,11]. However, it is more sensitive to body movements and results in
noisy waveforms, which affect the HRV measurement. Indeed, the accuracy of PPG in
measuring HRV has been validated under controlled and rest conditions [12]; however, it
decreases as motion and exercise levels increase [13,14].

Long-term (≥24 h) and short-term (~5 min) HRV analyses have been widely studied
and physiologically justified [2]. With the development of new wearable device technolo-
gies and the emergence of scientific evidence on the potential benefits of continuous HR
monitoring, HR data collection has been simplified, and the demand for ultra-short-term
(<5 min) HRV analysis has increased [9]. Ultra-short-term HRV analysis is increasingly
proposed as a surrogate for short-term HRV analysis. Most studies that have assessed the
reliability and validity of ultra-short-term HRV have shown good agreements for time-
domain and frequency-domain features on different recordings’ durations [9,15]. Other
studies that included nonlinear HRV features showed an increase in error with decreas-
ing duration [9,16]. Further efforts are needed to evaluate the effect of the duration on
HRV analysis.

Wearable devices have provided almost real-time measurements and diagnostic tools
for acute and chronic health conditions [1,17]. This paper compares a new medical device
called the Bora Band to the reference ECG monitor. The Bora Band (Biosency, Cesson-
Sévigné, France) was developed for daily remote monitoring of patients with respiratory
insufficiency, with an aim to provide a predictive diagnosis of COPD exacerbations. The
nominal recording parameters of the Bora Band are a sampling rate of 25 Hz and recording
durations of 1 min 30 s every 10 min to allow continuous recording while preserving battery
life and storage. Before proposing predictive algorithms of exacerbations using HRV analy-
sis, it is imperative to test the validity of the HRV analysis from the acquired waveforms
with the actual nominal recording parameters on a healthy population. Therefore, in this
paper, we propose to evaluate the effect of sampling rate and duration on the estimation of
HRV features in the time, frequency, and nonlinear domains. We also report the effect of
the two parameters on a new set of features computed from visibility graphs, which appear
to have high diagnostic significance [18]. We evaluate sampling rates of 25 Hz (nominal)
and 200 Hz (up-sampled signals) and durations of 5 min 30 s (short-term) and 1 min 30 s
(ultra-short-term) for PPG recordings. Reference HRV features are calculated from ECG
recordings of 5 min 30 s duration.

The main contributions of this paper are the comparison between the new device—
Bora Band—and the reference ECG monitor in measuring HRV features and the validity of
the HRV features extracted from the Bora Band in ultra-short recordings.

2. Materials and Methods
2.1. Data Collection

Five healthy adults (3 males, 2 females, 30 ± 9 years old, BMI 21.2 ± 1.8 kg/m2)
voluntarily participated in this study. The participants were fully informed of the study’s
objectives and provided their consent. Data were collected between April and August 2021.
Since PPG signals are sensitive to motion artifacts, data collection was performed during
inactive hours. Each participant was instructed to wear an ECG monitoring system and the
Bora Band overnight from approximately 11 p.m. to 7 a.m. To compensate for the small
number of participants, the measurements were performed on 2 to 4 nights depending on
the participants, yielding a total of 18 nights of recordings.

The Bora Band is a connected bracelet worn on the wrist (Biosency, Cesson-Sévigné,
France) that integrates an accelerometer, a gyroscope, and a PPG sensor. It records the
PPG amplitude on three channels: green, red, and infrared. It has been set to record at a
sampling rate of 25 Hz for 5 min 30 s every 10 min during the wearing period. In addition
to the raw recordings, the Bora Band can measure the overall heart rate, oxygen saturation
level, respiratory rate, activity, and skin temperature of the participants. The ECG was
measured using the Actiwave Cardio monitor, recording on a single channel at a sampling
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rate of 256 Hz with an accelerometer recording at 32 Hz (CamNtech Ltd., Cambridge,
UK). The ECG was recorded continuously during the night and was considered the gold
standard for HRV computations. Since the ECG was recorded continuously and PPG was
recorded for 5 min 30 s every 10 min, each night, a long ECG recording and approximately
54 PPG recordings were obtained, yielding a total of 972 PPG recordings. The monitors
used and their placements are shown in Figure 1.
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Figure 1. Actiwave and Bora Band placements during acquisitions.

2.2. Data Processing

The processing algorithm is shown in Figure 2. It starts with evaluating the PPG signal
quality and eliminating poor-quality recordings, followed by aligning and trimming the
continuous ECG recording in accordance with the good-quality PPG recordings. Then,
the PPG and ECG data are filtered, and pulse peaks (P-peaks) and R-peaks are detected
to calculate pulse-to-pulse and beat-to-beat intervals, P-P intervals, and R-R intervals,
respectively. Then, features are extracted from P-P and R-R intervals as surrogates of HRV
features. Finally, we evaluate the agreements of HRV features between PPG and ECG at
two levels:

• Recording duration: two recording durations are tested—the default duration of 5 min
30 s and 1 min 30 s. The first 90 s of each recording was considered to obtain the
shorter recordings of 1 min 30 s.

• Sampling rate: As mentioned earlier, the nominal sampling rate for the Bora Band
is 25 Hz. However, the temporal resolution over this sampling rate is low com-
pared to ECG. Therefore, the PPG recordings are resampled to 200 Hz using the fast
Fourier transform.

2.2.1. Pre-Processing

We began the pre-processing step by identifying and eliminating poor-quality PPG
acquisitions based on quality metrics that were computed on 4 s blocks with 2 s overlap.
They consist of identifying whether the bracelet is worn, the acquisition is stable, a pulsatile
signal is detected, and no important movement is detected.

Then, a 4 s block is considered invalid if any of the above conditions are not met. A
PPG recording is considered too noisy and eliminated from the study if there are more
than 10% invalid 4 s blocks. Among the selected good-quality PPG recordings, only the
PPG amplitude of the green channel was used in the peaks detection algorithm as it is
more robust to the movement noise [14]. The green-channel PPG signal was filtered using
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a forward–backward second-order Butterworth bandpass filter with a frequency band of
(0.5, 4 Hz).
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Figure 2. Block diagram of the proposed approach.

The continuous ECG data were sliced into shorter duration recordings of 5 min 30 s
and aligned on the remaining PPG recordings by using their respective time stamps.
ECG recordings were filtered by a forward–backward second-order Butterworth bandpass
filter with a frequency band of (5, 30 Hz). Then, the second derivative of the Actiwave’s
accelerometer signal was computed, and ECG values corresponding to high accelerations
were replaced by zero.

2.2.2. R-Peak Detection from the ECG

Since PPG and ECG recordings are distinct, two peak detection algorithms were
implemented. R-peaks were detected from the ECG recordings using a modified version of
the “adaptive and time-efficient algorithm” proposed by Qin et al. [19]. The algorithm was
applied using a sliding window of 4 s with a 3 s overlap to account for amplitude changes
during the night. ECG data obtained from each window were normalized by dividing the
values by their maximum. Then, R-peaks were identified by searching for local maxima
and selecting “true” R-peaks based on adaptive amplitude and time interval thresholds.

2.2.3. P-Peak Detection from the PPG

The waveform of the PPG signal indicates the changes in pulsatile blood flow from
which the detection of signal peaks allows the calculation of peak-to-peak (P-P) intervals,
which translates to a measure of HR [10]. Pulse peaks were detected by searching for min-
ima and maxima whose relative difference exceeds a threshold based on the interquartile
range of the data, as proposed by Navarro et al. [20]. We included in the algorithm an
adaptive amplitude threshold and a backward search process to improve the algorithm and
account for changes in the amplitude of the PPG signal. The first step was to initialize the
algorithm on a 10 s window and a fixed threshold. The amplitude threshold was updated
according to the detected extrema in the initialization phase. Then, a search for maxima
and minima was performed in the signal based on the updated amplitude threshold. The
latter was updated at each detection of extrema. If no maximum was detected for more
than 5 s, the algorithm returned to the last detected maximum and divided the threshold
by two until extrema were detected.

2.2.4. R-R and P-P Intervals Computation

R-R and P-P intervals were calculated from the R-peaks detected from the ECG and
the P-peaks detected from PPG recordings, respectively. They were corrected for outliers
(intervals < 600 ms and intervals > 1500 ms) and ectopic beats using linear interpolation.
Periods of poor-quality PPG recordings were identified in the R-R and P-P intervals of
the ECGs and PPGs and removed. These periods are defined by four or more consecutive
invalid 4 s blocks. If three invalid 4 s blocks are separated by one valid block, the entire
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period is considered invalid. Figure 3 illustrates an example of P-P and R-R intervals
computation from PPG and ECG recordings in two cases: PPG recording with and without
poor-quality periods. In Figure 3A, the PPG recording does not present any invalid period,
the resulted P-P interval is completely maintained, and the RR-interval is corrected from
ectopic beat. On the other hand, there is an invalid period in the PPG recording, as shown
in Figure 3B (highlighted in grey). This period of poor-quality recordings results in a
misidentification of peaks and in erroneous P-P intervals. Thus, it is identified and the
corresponding R-R and P-P intervals are eliminated (dotted grey lines). For the sake of
simplicity, NN intervals will be used in the following to refer to both P-P and R-R corrected
intervals. It is worth noting that there is a temporal shift of 2–3 s between ECG and PPG
recordings coming from the delay between the internal clock of the two monitors. This
delay does not affect the computation of HRV features.
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Figure 3. Examples of PPG and ECG recordings with corresponding peaks detection and peak-to-
peak intervals. (A) Peaks detections from a good-quality PPG recording and an ECG recording.
(B) Peaks detections and poor-quality periods identification from a noisy PPG recording and an ECG
recording. Red cross markers represent the peaks detected. In the P-P and R-R intervals plots, the
grey dotted lines present the initial computed P-P and R-R intervals that were eliminated in the
correction phase, and the blue plain lines present the NN intervals after correction of outliers, ectopic
beats, and removal of poor-quality periods.

2.2.5. HRV Features Extraction

Time-domain features: These included statistical and geometric features, computed
using the Neurokit2 Python toolbox. Statistical features computed directly from NN inter-
vals were mean (MeanNN), median (MedianNN), standard deviation (SDNN), coefficient
of variation (CVNN), and interquartile range (IQRNN). Features computed from the dif-
ferences of the successive NN intervals were the root mean square (RMSSD), standard
deviation (SDSD), coefficient of variation (CVSD), and the proportion of successive NN in-
tervals differing by more than 20 ms and 50 ms to the total number of NN intervals (pNN20
and pNN50, respectively) [2]. Geometric and distribution-related features included HRV
triangular index (HTI), skewness, and kurtosis [21].
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Frequency-domain features: Since the NN intervals are unevenly sampled and may
have missing data due to removed poor-quality periods, the Lomb–Scargle method was
used to estimate the power spectral density [22]. Frequency-domain features included
low-frequency power (LF; (0.04, 0.15 Hz)), high-frequency power (HF; (0.15, 0.4 Hz)),
normalized low- and high-frequency powers (LFnu and HFnu, respectively), and the
LF/HF power ratio. The calculation of the power in the very-low-frequency band requires
a recording period of at least 5 min [21], which is applicable to short-duration recordings
but not to ultra-short duration recordings. Therefore, it was not calculated among the
frequency domain features. In addition, the frequency bands were adjusted according to
the respiratory frequency measured by the Bora Band, and new frequency-domain features
were computed over the adjusted bands [23]. The high-frequency band was centered on the
respiratory frequency (FR), as FR ± 0.05 Hz, and the low-frequency band was readjusted
to eliminate any overlap with the high-frequency band. Frequency-domain features were
computed using a custom Python code inspired by the Python pyHRV toolbox.

Nonlinear features: We computed the approximate entropy (ApEn), sample entropy
(SampEn), and the short-range fractal correlations from the detrended fluctuation analysis
(DFA-α1) [21]. From the Poincaré plot, SD1 and SD2 ellipse standard deviations, their ratio
(SD1/SD2), and the ellipse area (S) were computed, as well as the cardiac sympathetic index
(CSI) and cardiac vagal index (CVI), both extracted from SD1 and SD2 [24]. These features
were computed using the Neurokit2 Python toolbox. We computed the acceleration (AC)
and deceleration (DC) capacities of the heart rate [25], their total contributions (Ca, Cd), and
the total variances of their contributions (SDNNa, SDNNd) using a custom Python code
following the algorithm proposed by Piskorski et al. [26]. Moreover, visibility indices were
computed from the global visibility graph (VG) and the horizontal visibility graph (HVG)
using a MATLAB code and the MATLAB networks toolbox [27,28]. They included the
mean degree (MD-VG, MD-HVG) of the nodes, the clusters coefficient (C-VG, C-HVG), the
transitivity (Tr-VG, Tr-HVG), and the assortativity (r-VG, r-HVG) of the visibility graphs.

In the following, the HRV features extracted from the 5 min 30 s ECG recordings and
PPG recordings are defined as HRVE5 and HRVF

PX, respectively. E and P denote the ECG
and PPG recordings. X represents the duration of recordings; X = 1 if recordings of 1 min
30 s duration are considered, and X = 5 if recordings of 5 min 30 s duration are considered.
As previously noted, ECG recordings are analyzed for a duration of 5 min 30 s only and
considered as the reference for the comparisons. F is the sampling rate of the analyzed PPG
recordings of 25 Hz or 200 Hz.

2.3. Statistical Analysis

A Shapiro–Wilk test was performed to assess the normality of the data. As the data
were not normally distributed, the extracted features were transformed using the natu-
ral logarithmic (log) transformation when necessary to allow for parametric statistical
comparisons that assume normality. As previously mentioned, multiple recordings were
obtained for each night and for each participant, which increases the number of measure-
ments analyzed but increases the inter-subject variability. The agreement between HRVF

PX
and HRVE5 was evaluated using different techniques that were adapted to account for
repeated measures and within-subject variability. First, the correlation between HRVE5 and
HRVF

PX was tested by calculating a repeated-measures correlation coefficient with 95%
confidence intervals to consider the within-subject variability using the Pingouin Python
package [29,30]. The correlation was defined as poor if the coefficient was <0.3, fair (<0.6),
moderately strong (<0.7), strong (<0.9), and nearly perfect (>0.9).

Although correlation gives an indication of the strength of the relationship between
the two methods, it does not necessarily guarantee agreement [9]. Therefore, Bland–Altman
plots were constructed with mixed-effects limits of agreement (LoA) [31] to assess changes
in bias by modifying duration or frequency. Differences in log-transformed HRV features
(log(HRVF

PX) − log(HRVE5)) were considered. The Bland–Altman method with mixed-
effects LoA measures the mean bias (95% LoA) and the within-subject standard deviation
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with 95% confidence intervals. The Bland–Altman plots were constructed on RStudio using
the code provided by Parker et al. [31].

In addition, the non-parametric Cliff’s delta (δ) was used to test the agreement between
the two methods. It was computed using the cliffs-delta Python package. A value of
|δ| < 0.11 was considered negligible, |δ| < 0.28 a small effect, |δ| < 0.42 a moderate effect,
and |δ| > 0.42 a large effect [32].

Finally, a non-parametric two one-sided equivalence test (TOST) was performed to
test for equivalence, rather than differences, as in standard statistical tests [33]. Hence,
an equivalence region of ±10% from the mean of the HRVE5 features was considered.
Then, the null hypothesis of non-equivalence was tested separately on either side of the
equivalence region to check if the HRVF

PX features fell outside this region. The null hy-
pothesis was rejected if both one-sided tests were rejected, indicating statistical equivalence.
A p-value < 0.05 was considered significant. The TOST method was applied using the
TOSTER package on RStudio.

3. Results

ECG and PPG measurements were recorded for 18 nights. Recordings from two
nights were excluded from the study because the Actiwave’s accelerometer signal was not
recorded on one night and the Bora Band was set to record PPG data for durations of 1 min
30 s on the other night. From a total of 936 PPG recordings, 449 recordings with a duration
of 5 min 30 s and 429 recordings with a duration of 1 min 30 s were maintained after
an initial selection using the aforementioned quality metrics. These measurements were
filtered and processed to extract HRV features that were compared with those extracted
from ECG recordings of 5 min 30 s duration. The median and interquartile ranges of
HRVE5 and HRVF

PX features are provided in Table S1. Results of the statistical comparisons
between HRVE5 and HRVF

PX features and between HRVF
P5 and HRVF

P1 can be found in
Table S2. Bland–Altman plots for a selection of HRV features can be found in Figure S1.

3.1. Comparison between ECG and PPG Measurements

A first comparison was performed between the HRVE5 features and the features
from the Bora Band with the initial settings of 5 min 30 s duration and 25 Hz sampling
frequency. Table 1 presents the HRV features where agreement between PPG and ECG
recordings are validated with a correlation coefficient > 0.7 and Cliff’s delta < 0.28. All
time-domain features, except for the geometric ones, have high correlations and low Cliff’s
delta between PPG and ECG recordings. HRV25

P5 features extracted directly from NN
intervals are significantly equivalent to HRVE5 features (p-value < 0.05); however, those
computed from the successive differences of NN intervals (RMSSD, SDSD, CVSD) are not
statistically equivalent. All frequency-domain features have high correlations and low
Cliff’s delta. LF and LFnu in the standard and adjusted frequency bands and HFnu in the
adjusted frequency bands are statistically equivalent between ECG and PPG recordings.
For nonlinear features, only those shown in Table 1 have high correlations and low Cliff’s
delta, while all other extracted features have very low correlations between ECG and PPG
recordings. Although SD1, SD1/SD2, S, and CSI show good agreement between ECG and
PPG, they are not statistically equivalent. Among all the features of visibility graphs, only
C-VG shows acceptable agreement between ECG and PPG recordings.

3.2. Effect of the Duration of the Recordings

Figure 4 illustrates the change in mean bias and 95% LoA for LF (FR) and DFA-α1 as
the duration of PPG recordings decreases from 5 min 30 s to 1 min 30 s. Detailed results for
the HRV features can be found in Tables S1 and S2A. As the duration of PPG recordings
decreases, the absolute value of the mean bias and the 95% LoA increase for almost all the
extracted HRV features. In addition, correlation coefficients decrease, and fewer parameters
show statistical equivalence between ECG and PPG recordings. HRV25

P1 features that
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present a good agreement with HRVE5 are MeanNN, MedianNN, SDNN, pNN50, HF (FR),
LFnu (FR), SD2, S, CVI, SDNNa, and SDNNd, as shown in Table 2.

Table 1. Features showing good agreement between PPG 25 Hz (5 min 30 s) and ECG recordings.

Correlation Coefficient Cliff’s Delta (|δ|) Equivalence Test p-Value

Time-domain features
MeanNN, MedianNN, SDNN, CVNN, IQRNN, pNN50 >0.7 |δ| < 0.11 <0.05
RMSSD, SDSD, CVSD >0.7 0.11 < |δ| < 0.28 ≥0.05
Frequency-domain features
LF, LF (FR), LFnu, LFnu (FR), HFnu (FR), LF/HF (FR) >0.7 |δ| < 0.28 <0.05
HF, HF (FR), HFnu, LF/HF >0.7 |δ| < 0.28 ≥0.05
Nonlinear features
DFA-α1, SD2, CVI, SDNNa, SDNNd >0.7 |δ| < 0.28 <0.05
SD1, SD1/SD2, S, CSI >0.7 |δ| < 0.28 ≥0.05
Visibility graph features
C-VG >0.7 |δ| < 0.28 <0.05
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Table 2. Features showing good agreement between PPG 25 Hz (1 min 30 s) and ECG recordings.

Correlation Coefficient Cliff’s Delta (|δ|) Equivalence Test p-Value

Time-domain features
MeanNN, MedianNN, SDNN, pNN50 >0.7 |δ| < 0.11 <0.05
RMSSD, SDSD >0.7 0.11 < |δ| < 0.28 ≥0.05
Frequency-domain features
LFnu (FR) >0.7 |δ| < 0.28 <0.05
HF (FR) >0.7 |δ| < 0.28 ≥0.05
Nonlinear features
SD2, S, CVI, SDNNa, SDNNd >0.7 |δ| < 0.28 <0.05
SD1 >0.7 |δ| < 0.28 ≥0.05

It could be contested that the effect of duration is assessed by comparing two different
waveforms recorded at different sampling rates. To this end, we evaluated the agreement
between short- and ultra-short-term HRV features extracted from PPGs recorded at a
sampling rate of 25 Hz. Table 3 shows the HRV features for which the agreement between
the 5 min 30 s and 1 min 30 s PPG recordings is validated by a correlation coefficient > 0.7,
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Cliff’s delta < 0.28, and a validated equivalence test with a p-value < 0.05. The detailed
results of the statistical tests can be found in Table S2B.

Table 3. Features showing good agreement between 1 min 30 s and 5 min 30 s PPG recordings
at 25 Hz.

Agreements between HRV25
P1 and HRV25

P5

Time-domain features MeanNN, MedianNN, SDNN, RMSSD, SDSD, CVSD,
pNN20, pNN50

Frequency-domain features HF, HF (FR), LFnu (FR)
Nonlinear features SD1, SD2, SD1/SD2, S, CVI, SDNNa, SDNNd

3.3. Effect of the Sampling Rate

As previously mentioned, we evaluated the effect of upsampling the PPG waveforms
to 200 Hz over the default sampling rate of 25 Hz. Figure 5 shows the change in mean bias
and 95% LoA for MeanNN, RMSSD, LFnu, SD1, DFA-α1, and Tr-HVG as the sampling rate
of recordings increases for the two durations of 5 min 30 s and 1 min 30 s. As can be seen,
increasing the recording frequency decreases the absolute value of the mean bias and the
95% LoA for almost all the extracted HRV features and for both recording durations. This
can be explained by the increased temporal resolution of the waveforms (which is eight
times higher at 200 Hz than at 25 Hz) and, thus, of the detected NN intervals.
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Table 4 lists the HRV200
P5 and HRV200

P1 features, for which the agreement was val-
idated with the reference HRVE5 features. Most HRV features in the time domain show
good agreement between PPG and ECG for short and ultra-short recordings. However,
the agreements for HRV features in frequency-domain, nonlinear, and visibility graphs
are different depending on the recording durations. Those with good agreement between
HRV200

P1 and HRVE5 are: HF and LFnu in the adjusted frequency bands, SD1, SD2, S, and
CVI from Poincaré plots, and SDNNa and SDNNd from accelerations and decelerations.
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Table 4. HRV features showing good agreement between PPG and ECG recordings. All features have
strong correlation coefficients (>0.7), negligible Cliff’s delta (δ < 0.11), and statistical equivalence
(p-value < 0.05).

Features 5 min 30 s 1 min 30 s

Time-domain MeanNN, MedianNN, SDNN, CVNN, IQRNN,
RMSSD, SDSD, CVSD, pNN20, pNN50, kurtosis

MeanNN, MedianNN, SDNN, IQRNN,
RMSSD, SDSD, pNN20, pNN50

Frequency-domain LF, LF (FR), HF, HF (FR), LFnu, LFnu (FR), HFnu,
HFnu (FR), LF/HF, LF/HF (FR) HF (FR), LFnu (FR)

Nonlinear SampEn, DFA-α1, SD1, SD2, SD1/SD2, S, CSI, CVI,
AC, DC, SDNNa, SDNNd SD1, SD2, S, CVI, SDNNa, SDNNd

Visibility MD-VG, C-VG, Tr-VG, Tr-HVG -

4. Discussion

The objective of this study was to assess the validity of the Bora Band PPG recordings
for measuring short-term HRV compared with the reference ECG in healthy subjects. The
effects of increasing the sampling frequency and decreasing the recording duration (ultra-
short duration) were tested against standard 5 min 30 s ECG recordings. Additionally, the
validity of ultra-short-term HRV analysis was evaluated by comparing ultra-short and
short PPG recordings of the same sampling frequency.

The literature reviews identified studies that addressed the validity and reliability of
ultra-short-term HRV analysis compared with short-term recordings [9,15]. Most existing
studies have assessed agreement using correlation and/or statistical differences tests. If
performed alone, these tests are insufficient to draw conclusions about the reliability of
shorter-term recording because they do not control for measurement bias. Of the studies
identified, only three studies assessed measurement bias using Bland–Altman plots with
LoA followed by Cohen’s d statistic [9]. Since then, recent studies have followed the
recommendations of Shafer et al. and Pecchia et al. [9,15] to assess the reliability of ultra-
short HRV analysis [34–36]. To our knowledge, there are no studies that have evaluated
the reliability of ultra-short-term HRV features using equivalence tests; instead, they have
used standard statistical tests of difference. Applying these tests is inappropriate since
they are intended to detect differences, not equivalence; non-significant group differences
are not necessarily evidence of equivalence [9,37]. Therefore, in the current study, we
evaluated the agreement between HRV features extracted from PPG and ECG recordings
using the correlation coefficients, Cliff’s delta, and Bland–Altman plots, as recommended
in the literature [9,15], but also tested the equivalence between the two methods using
equivalence tests.

This study showed that the Bora Band is valid for measuring all short-term (5 min 30 s)
HRV features in the time and frequency domains and most nonlinear and visibility graphs
features. Upsampling the PPG recordings to 200 Hz provided adequate temporal resolution
with respect to the reference ECG recordings, resulting in better agreements with reference
HRV features. Consistent with the findings of Shaffer et al. [21], this paper showed that the
low sampling frequency influenced the validity of the HRV features. Indeed, time-domain
features extracted from successive differences of NN intervals, such as RMSSD, SDSD,
CVSD, and pNN20, showed lower correlation coefficients, higher Cliff’s delta, and non-
equivalence when extracted from PPGs recorded at 25 Hz rather than 200 Hz because these
features depend directly on the temporal resolution of the processed data. Similar trends
were observed for frequency-domain features, nonlinear features, and visibility graphs
features. In this study, the ECG was recorded at a sampling rate of 256 Hz, whereas the PPG
was recorded at a sampling rate of 25 Hz, which is 10 times lower than the sampling rate of
the ECG. The heart rate signal obtained from the PPG has a temporal resolution (40 ms) that
is 10 times less than that obtained from the ECG (4 ms), which induces a difference in the
HRV features extracted from the two recordings and affects the agreement and correlation.
In addition, the distinct nature of the two waveforms affects the calculation of HRV features
and, thus, the agreement. Based on these findings, the Bora Band might be set to record
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with a sampling frequency of 25 Hz; then, the PPG recordings could be upsampled to
200 Hz in the processing algorithm to increase the temporal resolution. This way, battery
life and storage would be preserved while ensuring agreement with ECG reference data.

The validity of the ultra-short-term HRV features was assessed by comparison with
the short-term HRV features computed first from the standard goal for HRV features
computation (ECG) and then from the same signal (PPG). The results showed concordance
between the two validity assessments. In general, research on assessing the validity of ultra-
short-term (<2 min) HRV features against short-term features using robust methodological
evidence and a large set of HRV features is limited. Due to their practical use, most studies
have considered only time-domain features or have added frequency-domain and some
nonlinear features. In the time-domain, the main features whose validity was evaluated
in ultra-short recordings were the MeanNN, SDNN, RMSSD, and pNN50 [34–36,38–40],
tested alone or in combination with other HRV features. In agreement with our results,
these studies found that the tested time-domain HRV features provided strong correlations
and high agreement with small bias whenever the latter was assessed.

However, we could not draw a common conclusion from studies that evaluated the
validity of ultra-short-term frequency-domain features of HRV [34,35,38,40]. As with our
study, the same frequency-domain features were evaluated in ultra-short length ECG
recordings using correlation and Bland–Altman plots with a 95% LoA, followed by a
Student’s t-test [40]. Only LF was valid in 1 min 30 s recordings, whereas HF, LFnu,
HFnu, and LF/HF were not valid in recordings shorter than 3 min. LFnu and HFnu
also required at least 3 min of recording to be valid with 5 min ECG recordings [34].
Conversely, Wehler et al. tested the validity of ultra-short LF and HF features from ECG
to find that both features were reliable and valid on 1 min 30 s recordings based on the
assessment of correlations, Cliff’s delta, and log-transformed Bland–Altman plots with
95% LoA [35]. Likewise, strong correlations were found for HF between 1 min and 5 min
ECG recordings [38]. In the latter study, LF and LF/HF were not assessed in the 1 min
recordings because of theoretical doubts about the loss of information for these features. It
is noteworthy that all these studies extracted frequency-domain features over the standard
frequency bands and used different methods to estimate the spectral density. According
to our results, the HF computed over the standard frequency band was valid only in the
1 min 30 s duration recordings when compared with the 5 min 30 s PPG recordings and not
with the 5 min 30 s ECG recordings. However, HF and LFnu, computed over the adjusted
frequency bands, provided a surrogate for the 5 min 30 s features computed from both PPG
and ECG recordings.

Agreement and validity studies of nonlinear HRV features included SD1 and SD2
from Poincaré plots, ApEn, SampEn, and DFA-α1 [38,40]. These two studies showed that
only SD1 and SD2 were valid on recordings ≤ 1 min 30 s. These findings were consistent
with those shown in the current study. In addition, in this study, we tested a broader set
of nonlinear features to find that most features computed from the Poincaré plots and
SDNNa and SDNNd of accelerations and decelerations were valid in ultra-short duration
recordings. Moreover, this is the first study that evaluated the features from visibility graphs
for PPG-ECG agreement and their validity in ultra-short duration recordings. Features
related to connectivity between nodes of global visibility graphs showed good agreements
between ECG and PPG for short-term recordings, but none of the features were valid in
ultra-short length recordings.

Despite the confidence in the results reported in this paper, this study has some
limitations. The results presented in this study were measured from a small number of
participants. As only five participants were available for the current study, our results
need to be validated on a larger database. Second, the reader should keep in mind that the
results are valid for a comparison with an ECG sampled at 256 Hz. It is worth recalling that
HRV is often studied with an ECG sampled at 1000 Hz and that a dedicated study should
have been carried out at this sampling rate.
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5. Clinical Interest

The analysis of HRV allows for the profiling of the variability and complexity of
the heart rhythm and the autonomic nervous system involved. HRV features were first
associated with health to predict fetal distress [41]. Then, many studies were conducted to
understand HRV and assess HRV analysis in the prevention of diseases or mortality [2,9,21].
As acute exacerbations of COPD are one of the main causes of morbidity and mortality
worldwide and result in high healthcare costs, they need to be detected and treated early.
COPD has been associated with functional alterations in sympathetic and parasympathetic
activities, which could be studied using HRV features [6]. Most studies that assessed
HRV analysis in COPD populations included stable COPD patients or exacerbated COPD
patients 24–48 h after treatment [5,6]. A limited number of studies have proposed longi-
tudinal designs for COPD patients based on monthly home visits to record physiological
signals [42]. These designs do not provide continuous monitoring of patient health status,
making early detection of exacerbations difficult.

As previously mentioned, the ultimate goal of the Bora Band is its implementation
in the continuous monitoring of COPD patients in their daily life to detect exacerbations
early, before their occurrences. In this way, patients with exacerbation symptoms could be
taken care of by clinicians to start the treatment and avoid hospital admission. Future work
would address the monitoring of the valid ultra-short-term HRV features in COPD patients
and the implementation of an algorithm for predicting exacerbations.

6. Conclusions

Overall, this study is the first to provide methodologically complete and robust evi-
dence for the evaluation of the agreement of HRV features between ECG and PPG record-
ings in short-term recordings and of the reliability of PPG in ultra-short-term recordings.
This allowed us to draw certain conclusions about the validity of HRV analysis extracted
from the Bora Band recordings over short and ultra-short durations. According to the
results, recording PPG at 25 Hz for durations of 5 min 30 s every 10 min would provide
the best agreement with ECG reference data if the PPG recordings were upsampled to
200 Hz in the processing algorithm. If there is a need to shorten the recording duration (to
spare battery power, for instance), one should be careful when extracting the HRV features
because not all of them were valid in the ultra-short recordings. To confirm these findings,
it would be interesting to consider a larger database with more participants included in
the experiment. Further work would be to evaluate HRV analysis for the prediction of
exacerbations in COPD patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22207995/s1, Table S1: Descriptive statistics of HRV features
obtained from ECG and PPG recordings; Table S2: Statistical comparisons between HRV features ex-
tracted from ECG recordings (5 min 30 s) and those extracted from PPG recordings; Figure S1: Original
Bland–Altman plots (parameters transformed with the log transformation) for a selection of HRV
features extracted from PPG recordings of 5 min 30 s and 1 min 30 s durations and 25 Hz and 200 Hz
sampling rates (HRVFPX) compared with the HRV features extracted from ECG recordings of 5 min
30 s duration (HRVE5).
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