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Abstract: For a small satellite, the processor onboard the attitude determination and control system
(ADCS) is required to monitor, communicate, and control all the sensors and actuators. In addition,
the processor is required to consistently communicate with the satellite bus. Consequently, the
processor is unable to ensure all the sensors and actuators will immediately respond to the data
acquisition request, which leads to asynchronous data problems. The extended Kalman filter (EKF) is
commonly used in the attitude determination process, but it assumes fully synchronous data. The
asynchronous data problem would greatly degrade the attitude determination accuracy by EKF. To
minimize the attitude estimation accuracy loss due to asynchronous data while ensuring a reasonable
computational complexity for small satellite applications, this paper proposes the simplex-back-
propagation Kalman filter (SBPKF). The proposed SBPKF incorporates the time delay, gyro instability,
and navigation error into both the measurement and covariance estimation during the Kalman update
process. The performance of SBPKF has been compared with EKF, modified adaptive EKF (MAEKF),
and moving–covariance Kalman filter (MC-KF). Simulation results show that the attitude estimation
error of SBPKF is at least 30% better than EKF and MC-KF. In addition, the SBPKF’s computational
complexity is 17% lower than MAEKF and 29% lower than MC-KF.

Keywords: attitude estimation; Kalman filter; out-of-sequence measurement; small satellite

1. Introduction

The development and manufacturing of the small satellite have been a focus in the
industry over the past decades. It is reported that approximately 350 small satellites with
a mass of less than 200 kg have been launched in 2021 [1]. The Satellite Technology And
Research Centre (STAR) at the National University of Singapore is currently developing
three satellites named Lumelite-1 to -3 for formation flying programs [2]. Each satellite has
a wet mass of 18 kg. The Lumelite satellites are planned to be launched in 2023.

The Lumelite satellite bus system primarily consists of the attitude determination
and control subsystem (ADCS), the onboard computer (OBC) system, the electrical power
system (EPS), and the communication interface module (CIM). Each of these subsystems
is required to continuously monitor its electrical status, communicate with the sensor or
actuator that connects to the subsystem, and communicate with OBC. For example, the
ADCS’s digital signal processor (DSP) is required to ensure a stable power supply to all
sensors, and have no over-current drawn by any actuator, while continuously requesting
data from the sensor and sending a command to the actuator at a fixed sampling interval.
Due to the reason that each sensor requires a certain processing time upon receiving
the request, and the DSP is processing other tasks concurrently the updated data from
each sensor and actuator would be received at different time instances, which results in
unsynchronized-sensor and actuator information.

Estimation algorithms, such as the extended Kalman filter (EKF) [3], Unscented
Kalman filter (UKF) [4,5], Cubature Kalman filter (CKF) [6] and particle filter [7], are
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commonly used in the attitude determination process. In [8,9], the constraint condition of
the quaternion is incorporated into the Kalman gain matrix computation. In [10], a fixed
EKF gain method was introduced to lower the nanosatellite’s computational cost. In this
case, the KF directly selects the respective gain matrix based on the attitude control mode
of the satellite. On the other hand, [11] introduces the square root-based UKF (SRUKF)
algorithm with fault detection and identification (FDI) capabilities. The FDI detects and
isolates any outlier measurement to ensure the stable performance of the SRUKF algorithm.
In addition, [12] introduces the dual vector discrete-time complementary filter (DV-DTCF)
where each sensor has its corresponding estimated state vector. Each estimated state vector
is updated with respect to its sensor reading; then, all the estimated states are fused in the z-
domain via a given transfer function. While numerous estimation algorithms are available
in the literature, the sensor data is often assumed to be fully synchronized without delay.

The unsynchronized sensor information, also known as the out-of-sequence measure-
ment (OOSM), would degrade the estimation accuracy. As such, various algorithms have
been developed to minimize the accuracy loss. The OOSM problem and associated Kalman
filter-based solution were discussed in [13]. Subsequently, [14] presented the algorithm for
OOSM-based multi-sensor multi-target application. In [15], the time measurement errors,
due to the signal’s traveling time between transmitter and receiver, as well as processing
time, have been taken into account when deriving the measurement model for the EKF
process. The OOSM-based UKF was implemented in [16] while the PF algorithm was
implemented in [17]. Both OOSM-based UKF and PF algorithms are capable of achieving
higher estimation accuracy, but these algorithms generally have higher computational
costs [18,19]. The weighted measurement fusion method was introduced in [20], with the
scalar weight computed based on the distance between the transmitter and receiver. While
these algorithms have been developed for unsynchronized sensor data applications, they
are primarily developed for target tracking (or positioning) and not for satellite attitude
determination applications.

The predictor–observer method was introduced in [21] for attitude estimation with
delayed measurements. Its results show that it is capable of converging the attitude estima-
tion error while the EKF experiences error divergence due to the existence of a large sensor
delay. The modified adaptive EKF (MAEKF) was proposed in [22] by fusing the N-step of
delay measurements and state transition matrices. The MAEKF has much higher estima-
tion accuracy than the re-iterated EKF. However, the methods in [21,22] require additional
memory to store N-step delayed measurements. In [23], the moving–covariance Kalman
filter (MC-KF), which uses an additional smoothing process to improve the estimation
accuracy due to unsynchronized sensor data, has been proposed. It demonstrated the
feasibility of orientation estimation, but it is only applied in a two-dimensional position
with a one-dimensional angle estimation scenario.

This paper proposed the simplex-back-propagation Kalman filter (SBPKF) to improve
the accuracy loss of EKF due to unsynchronized sensor data. The SBPKF utilizes the power
series of an exponential matrix to provide a simplification of delayed measurement vector
estimation. In addition, the sun vector and magnetometer measurement covariances are
formulated with the consideration of additional measurement error due to gyro noise,
gyro bias in-stability, and global positioning system (GPS) error. Furthermore, this paper
presents the derivation of MC-KF for quaternion and gyro bias estimation. The estimation
accuracy of the proposed SBPKF has been benchmarked with EKF, MAEKF [22], and MC-
KF in terms of the sensor delay period. The computational complexity of SBPKF, EKF,
MAEKF, and MC-KF has also been compared in terms of the total number of multiplications
per iteration process.

The paper is organized as follows. Section 2 discusses the ADCS DSP task process.
Section 3 presents the standard EKF derivation, and Section 4 presents the MC-KF algorithm.
The proposed SBPKF is presented in Section 5. Section 6 presents the simulation and results.
Finally, Section 7 concludes the paper.
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2. Tasks of Attitude Determination and Control System

Figure 1 illustrates the input and output (I/O) of ADCS between sensors, actua-
tors, satellite bus systems, memory, payload, and DSP. Three Universal Asynchronous
Receiver/Transmitter (UART) interfaces are used for the communication between DSP
and magnetometer, communication between DSP and GPS receiver, and ADCS debugging
purposes. The GPS receiver also directly provides a 1 pulse-per-second (1PPS) signal to
DSP via a dedicated interface. The DSP communicates with the satellite bus system via
a Controller Area Network (CAN) interface. The additional CAN interface is used for
propulsion system communication purposes. The DSP controls the magnetic torquer via
pulse-width modulation (PWM) interface, while it receives the coarse sun sensor data via
an analog-to-digital converter (ADC) I/O. Lastly, the DSP communicates with a fine sun
sensor and reaction wheel via RS-485 and RS-232 interfaces, respectively.
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Figure 1. Input and output of attitude determination and control system’s digital signal processor.

The I/O diagram in Figure 1 indicates that the DSP is required to perform various
tasks to ensure the stability of the satellite. Furthermore, Table 1 indicates the sampling
period of each task that must be handled by the DSP. During the early phase of firmware
development and testing, it had been noticed that the sensor data acquisition process
requires at least 55 milliseconds to 75 milliseconds (represented by tS,r and tB,r in Figure 2)
per cycle. As shown in Figure 2, both the sun sensor and magnetometer require a certain
time to respond to the request sent by DSP (tS,r and tB,r, respectively) when the sensor
task is initiated. For the ideal scenario, tS,r and tB,r shall be less than 5 milliseconds. It is
noted that the test process only involves both ADC tasks and sensor tasks. It is expected
that the sensor data acquisition process requires much longer time in the full firmware
implementation.

Table 1. ADCS DSP task.

Sampling Period Task

100 ms ADC Task

200 ms Sensor Task

250 ms AD task

500 ms Housekeeping Task

1000 ms AC task
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In Figure 2, the attitude determination (AD) task and sensor task are performed at
different frequencies. In addition to the delay in the sensor data acquisition process, the
asynchronization issue between sensor data and the AD task (or δtS by sun sensor and δtB
by magnetometer, respectively) would degrade the overall attitude determination accuracy.
Thus, an algorithm to minimize the accuracy degradation due to the sensor data synchro-
nization issue is required. As previously mentioned, the sun sensor or magnetometer
measurement will only be considered as a delayed measurement if either δtS or δtB. is more
than five milliseconds. The five milliseconds is the expected response time of the sensor
under the ideal operation scenario.

3. Extended Kalman Filter

The small satellite is typically equipped with sun sensors, magnetic torquers, and
microelectromechanical systems (MEMS) based inertial measurement unit (IMU). The
MEMS IMU device includes both gyroscope and magnetometer sensors. The output of the
MEMS IMU gyroscope is given by [24]

ω̃k =ωk +β+ ηg + ηβ (1)

where overhead notation of “̃.” denotes measurement, ω̃k denotes the measured three-axis
body rate, ωk denotes the truth three-axis body rate, ηg denotes the output noise of the
gyroscope, β denotes the truth gyroscope bias, and ηβ denotes the gyroscope bias due to
the angular random walk and bias instability.

The general EKF process consists of gain matrix computation, estimated state and
covariance update, and estimated state and covariance propagation. For EKF-based attitude
determination, the objective is to estimate both the satellite’s attitude (or quaternion) and
gyroscope bias. Thus, the estimated state vector is x̂k =

[
ρ̂T

k β̂T
]
. The ρk is the vector

component of the quaternion vector, q, such that [25]

^
qk =

[
ρ̂T

k q̂4,k

]
(2)

where the overhead notation of “.̂” denotes the estimated vue, and q̂4,k is the scalar of the

quaternion vector with q̂4,k =
√

1− ρ̂T
k ρ̂k.
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Given a pair of measurement vectors from sensors, and their corresponding estimated

measurement vector, both
^
qk and β̂ are updated via the following process [25]

^
q
+

k =
^
q
−
k + 0.5Ξ

(
^
q
−
k

)
δρ̂

β̂+ = β̂− + δβ̂

(3)

where Ξ(qk) is defined in [25] and[
δρ̂T

k δβ̂T
]
= K

(
ỹ− ^

yk

)
(4)

In (4), y ≡
[
yT

S yT
B
]T, where the subscript “S” denotes the sun vector and subscript

“B” denotes the earth’s magnetic field vector. In addition, the superscript “−” denotes
pre-update, superscript “+” denotes post update, and K denotes the Kalman filter gain
matrix [26]

K = P−k HT
k

(
HkP−k HT

k + Rk

)−1
(5)

where Rk denotes measurement noise covariance and Hk denotes the Jacobian matrix of
measurement vectors. Moreover, the mth sensor component of the estimated measurement
vector in (4) can be expressed as [25]

^
ym = A

(
^
q
−
k

)
^
em (6)

where A
(

^
q
−
k

)
denotes the estimated attitude matrix at time tk, and

^
em (a unit vector) is

the estimated mth sensor’s measurement in the earth center inertia (ECI) reference frame.

It is noted that the derivation of
^
eS associated to

^
yS is detailed in [27], and

^
eB is provided in

Appendix A and (31). In addition, Hk in (5) is given as [26]

Hk =

[
∂

^
yS/∂ρ ∂

^
yS/∂β

∂
^
yB/∂ρ ∂

^
yB/∂β

]
(7)

For standard EKF, ∂
^
yS/∂ρ, ∂

^
yB/∂ρ, ∂

^
yS/∂β and ∂

^
yB/∂β are defined as [28]

∂
^
yS/∂ρ =

[
^
yS×

]
∂

^
yB/∂ρ =

[
^
yB×

]
∂

^
yS/∂β = ∂

^
yB/∂β = 03×3

(8)

Here, [a×] is the cross-product matrix [25]. By assuming that there is no cross-
correlation between the sun vector and the earth magnetic field vector, Rk can be written as

Rk =

[
RS,k 0

0 RB,k

]
(9)

where RS,k is the covariance associated with the sun sensor, and RB,k is the covariance
associated with the magnetometer.
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In general, the measurement vector, b̃m output by the mth sensor in the satellite body
reference frame always contains an error, with the standard deviation of νm:

b̃m = bm + νm (10)

where bm denotes the truth measurement reading of the mth sensor. Furthermore, b̃m
maybe not necessarily a unit vector (e.g., Earth’s magnetic field vector). Therefore, ỹm
represents the normalized vector of b̃m such that ỹm = b̃m/‖b̃m‖, where ‖.‖ denotes the
vector’s magnitude. Then, the general expression of Rm,k in (9) with the consideration of
vector normalization is given as [29]:

Rm,k =
¯
Rm,k +

1
2

trace
(

¯
Rm,k

)
b̃mb̃

T
m

‖b̃m‖
2 (11)

¯
Rm,k =

−
[
b̃m×

]2

‖ b̃m ‖3
E
{

vmvT
m

}−
[
b̃m×

]2

‖ b̃m ‖3


T

(12)

with E{.} denotes expected value, trace
(
Rm,k

)
denotes the summation of diagonal elements

of
¯
Rm,k. In addition, the state error covariance update is given as [26]

P+
k = (I−KHk)P

−
k (13)

Using the following definition,
^
ωk = ω̃k − β̂, the nonlinear quaternion propagation

model is given as [30]
.
q =

1
2

¯
Ω

(
^
ωk

)
^
q
−
k (14)

where
¯
Ω

(
^
ωk

)
is defined in [30]. Due to the nature of quaternion multiplication, the

integration of (14) is often highly complex. Instead, the quaternion propagation can be
simplified using the Nx-step summation model [31]:

^
q
−
k+1 ≈

(
I4×4 +

Nx

∑
n=1

1
n!

¯
Ω

n

(ω̃k)(∆tk)
n

)
^
q
+

k (15)

The state error covariance propagation model is given by [26]

.
P = FkP+

k + P+
k FT

k + Q (16)

where [25]

Fk =

[
−
[
ω̃k − β̂×

]
−I3×3

0 0

]
Q = E

{
ηgη

T
g

}
+ E

{
ηβη

T
β

} (17)

The standard EKF shows that the state vector update process in (3) to (5), and the
Jacobian matrix in (8) do not consider the unsynchronized sensor data problem. On
the other hand, the proposed SBPKF and MC-KF include the sensor data delay and its
associated sensitivity matrix and error covariance in the measurement model estimation.
The MC-KF algorithm is presented in the next Section.

4. Moving Covariance Kalman Filter

The presented MC-KF in this section is based on [23,32]. It has a similar estimation
process as DV-DTCF in [12] but a different state vector fusion approach. Let us define the



Sensors 2022, 22, 7970 7 of 16

following time instance, tm = tk − δtm, where subscript “m” is a general representation of
either sun sensor,“S” or magnetometer “B”. First, given the sun sensor and magnetometer

data arrive at different time instances, there are two sets of state correction vector, ∆
^
xm,tm

∆
^
xm,tm = Km

(
ỹm −

^
ym,tm

)
=
[
δρ̂T

m,tm δβ̂T
m,tm

]
(18)

where Km is the Kalman filter gain matrix that is derived with respect to the sensitivity
matrix of each sensor:

Km = P−k HT
m,tm

(
Hm,tmP−k HT

m,tm + Rm,k

)−1
(19)

where Rm,k is defined in (11).

From (18), two sets of updated state vectors,
^
x
+

m, tm (or
^
x
+

S, tS
and

^
x
+

B, tB
) and two sets

of state error covariances, P+
m, tm

(or P+
S, tS

and P+
B, tB

) will be obtained by using a similar

formulation in (3) and (13). Next, both
^
x
+

S, tS
, P+

S, tS
and

^
x
+

B, tB
, P+

B, tB
pairs are required to be

synchronized and smoothed. First, let’s define the following time instance, tu based on the
following sensor delay information

tu ≡


tk δtS ≤ 5 ms and δtB ≤ 5 ms

tk − δtS δtS ≥ δtB
tk − δtB δtB ≥ δtS

(20)

As presented in Figure 3, the delay of 5 ms is assumed to be the minimum time
required by a sensor to instantly reply to the sensor data request by ADCS DSP. Then, the
^
xP, tp and PP, tp pair that has a lesser delay with respect to tk, are propagated to tu

^
x
+

P, tp →
^
x
−
P, tu (21)

P+
P, tp
→ P−P, tu

(22)
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For generalization purposes, the sensor data with a higher delay is labeled as wth

sensor. Based on [23], we define the following matrices, PP/W and PP−W

PP−W = P−P,tu
(KWHW)T + P+

W, tu
(KP,tuHP,tu)

T + 5E− 4× diag
(

P−P,tu
+ P+

W, tu

)
(23)

PP/W = P−P,tu
(KWHW −KP,tuHP,tu)

T (24)

where Km,tu and Hm,tu are Kalman filter gain and sensitivity (derivation see (7), (8), (33)
and (34)) matrices at tu. To ensure the positive definite of PP−W matrix, we have

P∗P−W = PP−W + 5E− 4× diag
(

P−P,tu
+ P+

W, tu

)
(25)

In (25), “diag(A)” denotes the matrix only contains the diagonal elements of matrix A.
The purpose is to ensure the matrix P∗P−W is invertible. Then, the smoothed state vector is
given as

^
x
+

tu =
^
x
−
P,tu + PP/W

(
P∗P−W

)−1
δxtu (26)

where

δxtu =
^
x
+

W,tu −
^
x
−
P,tu (27)

The quaternion update corresponding to (26) is given in (3). On the other hand, the
quaternion subtraction to compute δxtu is given as follows:

^
q
+

W,tu
− ^

q
−
P,tu
≡
[

Ψ
(

^
qW,tu

)
^
qW,tu

+
][
−ρ−P
q−P,4

]
(28)

with Ψ(q) is defined in [25]. Finally, the covariance is smoothed as follows

P+
tu
= P−P,tu

− PP/W
(
P∗P−W

)−1PP/W (29)

Lastly, both state vectors,
^
x
+

tu and covariance, P+
tu

, are propagated to the next time step,
^
x
−
k+1 and P−k+1 via (15) and (16).

5. Simplex-Back-Propagation Kalman Filter

The proposed SBPKF uses the similar Kalman filter process as EKF, but with different
measurement and covariance models. The SBPKF has taken the delay between sensor data
acquisition time and Kalman sampling time, δtm (or known as δtS and δtB in Figure 2). As
such, the delayed measurement vector for both the sun sensor and magnetometer in (6) is
rewritten as:

ym,tk−δtm
=

(
I3×3 +

Ny

∑
n=1

(−1)n

n!

([
ω̃k − β̂×

]
δtm

)n
)

A
(

^
q
−
k

)
^
em (30)

It is noted that the Earth’s magnetic field vector in the ECI reference frame, eB is
computed based on the satellite position and velocity at tk − δtB

eB = AECI
NEDB

(
rtk−δtB , vtk−δtB

)
(31)

where AECI
NED denotes the transformation matrix of NED to ECI reference frame, and

B =
[
Bθ Bφ Br

]T denotes the Earth’s magnetic field vector with each component rep-
resenting North, East, and Down direction, respectively. For simplicity, the derivation of
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AECI
NED will not be shown in this paper, but the associated algorithm and Matlab code are

available in [33]. In addition, rtk−δtB and vtk−δtB can be approximated as

rtk−δtB = rtk− + δtBvtk −
µrtk δt2

B
2‖rtk‖

3

vtk−δtB = vtk− −
µrtk δtB

2‖rtk‖
3

(32)

From (30), the measurement vector is in terms of both quaternion and gyro bias. There-

fore, both ∂
^
yS/∂β and ∂

^
yB/∂β are no longer zero matrices. Instead, with the additional

summation terms, (8) becomes

∂
^
ym/∂ρ =

(
I3×3 +

Ny

∑
n=1

(−1)n

n!

([
ω̃k − β̂×

]
δtm

)n
)[

^
ym×

]
(33)

∂
^
ym
∂β

= −
[

^
ym×

]
δtm +

δt2
m

2

([
ω̃k − β̂×

][^
ym×

]
+

[[
ω̃k − β̂×

]^
ym×

])
(34)

The general expression of Rm,k remains the same as in (11). However, (31) indicates
the satellite positioning error contributes to the Earth’s magnetic field modeling error. In

addition, both ηg and ηβ contribute additional errors in (30). Therefore, both
¯
RS,k and

¯
RB,k,

which were originally formulated in (12) have been modified to become:

¯
RS,k =

−[b̃S×]
2

‖b̃S‖3

(
E
{
νSν

T
S
}
+

^
RS,δtS

)(
−[b̃S×]

2

‖b̃S‖3

)T

¯
RB,k =

−[b̃B×]
2

‖b̃B‖3

(
E
{
νBν

T
B
}
+

^
RB,δtB + σB

(
rtk−δtB

) )(−[b̃B×]
2

‖b̃B‖3

)T
(35)

where

^
Rm,δtm = ΛmQΛT

m +
δt4

m
4

trace(Q)

(
^
ym

^
y

T

mQ + Q
^
ym

^
y

T

m + trace(Q)
^
ym

^
y

T

m

)
(36)

Λm ≡
[

^
ym×

]
δtm −

δt2
m

2

[
ω̃k − β̂×

][^
ym×

]
− δt2

m
2

[[
ω̃k − β̂×

]^
ym×

]
(37)

It is noted that the term σB
(
rtk−δtB

)
denotes additional error covariance due to the

satellite position error:

σB
(
rtk−δtB

)
= AECI

NED
∂B

∂hLLA

∂hLLA

∂rECEF
E
{
ηrη

T
r

}(
AECI

NED
∂B

∂hLLA

∂hLLA

∂rECEF

)T
(38)

In (38), ∂B/∂hLLA denotes the partial derivative of B
(
rtk−δtB , vtk−δtB

)
in (31) with

respect to longitude, φ, latitude, θ and radius, r (or hLLA =
[
θ φ r

]T). In addition,
∂hLLA/∂rECEF denotes the partial derivative of conversion from position in the Earth-
centered-Earth-fix (ECEF) reference frame to longitude, latitude, and radius. The formula-
tion for ∂B/∂hLLA is available in Appendix A, and the formulation for conversion of ECEF
position to longitude, latitude, and radius is detailed in [34].

The overall process flow for SBPKF (and MC-KF/MAEKF) is presented in Figure 3.
When the satellite exits from the eclipse, the first pair of sun and Earth magnetic field
vectors will be input into the quaternion estimation (QUEST) algorithm [35] to provide
an initial quaternion vector, with the assumption of fully synchronized measurement
vectors. The quaternion output from QUEST also guarantees the stability of EKF and
SBPKF algorithms as the EKF-based algorithm is often susceptible to initial condition
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error [36]. As discussed in Section II, the respective measurement will only be considered
as a delayed measurement for the filtering process if δtm > 5 ms. Thus, if both δtS and δtB
are less than a given threshold (i.e 5 ms), standard EKF will be conducted. Otherwise, the
delayed measurement vector in (30) will be computed. Once the measurement covariances
are computed using (11), (35) to (37), the SBPKF updates the estimated states and state
error covariance using the (3) and (13).

6. Simulation and Results

Monte Carlo simulations have been conducted to compare the quaternion and gyro
bias estimation accuracy for the proposed SBPKF, EKF, MAEKF in [22], and MC-KF, with
respect to sensor delay. The Monte Carlo simulation environment is illustrated in Figure 4.
Three ADCS tasks are considered in the simulation, which are the sensor task, AD task, and
AC task. The sensor task is simulated at a sampling rate of 200 ms, with selected sensor
delays. The sensor delay to be range from 65 ms to 145 ms, with its standard deviation
given in Table 2. The AC task simulates the truth quaternion vector that is corresponding to
the satellite pointing profile in Figure 5. The AD task comprises the attitude determination
algorithm, such as SBPKF, EKF, MAEKF, and MC-KF. During the eclipse period (or without
sunlight), the satellite attitude control enters the momentum hold condition. The default
attitude control of the satellite during the sunlight condition is the sun-pointing mode. The
satellite performs nadir pointing when the angle between the nadir axis and sun vector in
the satellite body frame is within the sun sensor’s half-cone field-of-view (or 60 degrees).
In Figure 5, the satellite begins to perform nadir pointing 15 min after entering the sunlight
condition, for approximately 35 min.
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Table 2. Simulation Configuration.

Parameter Value Parameter Value

Semimajor axis 6963.145 km Sun sensor noise, νS 0.1 deg

Eccentricity 0.0001 Magnetometer noise, νB 45 nT

Inclination 10 deg Gyro noise, ηg 0.135 deg

Nx 3 Gyro bias, β ±0.2 deg/s

EKF sampling rate 4 Hz In-run bias stability, ηβ 4.8456 mdeg/hr

Sensor sampling rate 5 Hz Position Error, ηr 15 m

Sensor Delay Standard Deviation 5 ms
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For each Monte Carlo simulation, the performance of SBPKF, EKF, MAEKF, and MC-
KF are evaluated for one sunlight period (or approximately 60 min). The satellite orbital
parameters are provided in Table 2. It is noted that the right ascension of ascending node,
the argument of perigee, and the initial true anomaly are randomly generated in each
Monte Carlo simulation.

The sensors and gyro noises, GPS accuracy, sensor, and EKF sampling rate are listed in
Table 2. The sun sensor, GPS, gyro, and magnetometer noises are based on the commercial
off-the-shelf product, with the consideration of noise density and sensitivity. In addition,
the configuration of MAEKF is based on details provided in [22].

6.1. Accuracy Comparison

Figure 6 compares the quaternion and gyro bias estimation error between the SBPKF,
EKF, MAEKF, and MC-KF with respect to the estimation results without the sensor delay
scenario. The average quaternion error magnitude and gyro bias error magnitude for
the zero sensor delay scenario is 0.145 degrees and 2.8 millidegrees, respectively. The

quaternion error ratio,
=
q, and gyro bias error ratio,

=
β, in Figure 6 are given by:

=
q =

∑Md
k ‖ sin−1 ∆qk,d‖

∑M0
k ‖sin−1 ∆qk, 0‖

M0

Md
× 100% (39)

=
β =

∑Md
k ‖∆βk,d‖

∑M0
k ‖∆βk,0‖

M0

Md
× 100% (40)
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where Md is the total number of samples for the delayed sensor scenario, M0 is the total
number of samples for no sensor delay scenario, ∆qk is the quaternion error, and ∆βk is
gyro bias error at kth sample with subscript “d” representing delayed sensor, scenario, and
the subscript “0” representing no sensor delay scenario, respectively.
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(a) Magnitude of quaternion error, and (b) Magnitude of gyro bias error.

Figure 6a shows that the SBPKF has the lowest quaternion error magnitude, followed
by MAEKF. The SBPKF’s quaternion estimation error ratio is approximately 189% (or
0.274 degrees) when compared to the no-sensor-delay scenario. The MAEKF quaternion
error ratio is approximately 200% (or 0.29 degrees). Figure 6a also shows that without
the simplex-back-propagation method, the quaternion estimation error ratio of EKF is
increased to 220–250% (or 0.319 to 0.363 degrees), and the quaternion estimation error ratio
of MC-KF is increased to 250–300% (or 0.363 to 0.435 degrees).

Figure 6b shows that the EKF has the lowest gyro bias error magnitude. However,
the gyro bias error magnitude difference between EKF and the SBPKF can be considered
negligible as both are in the range of millidegrees (or approximately three millidegrees).
On the other hand, the MAEKF gyro bias error is three times higher than the SBPKF, even
though it has a similar quaternion estimation error as the SBPKF. The additional error
that occurs in MAEKF could be due to the reason that the MAEKF assumes all sensor
data received at the same time instance. However, in practice, each sensor has a different
time delay.

Although the MC-KF is designed to compensate for the error due to data delay,
the introduction of unknown gyro bias as the initial condition has greatly degraded the
performance of the MC-KF. From Figure 6b, the results show that the MC-KF has a large
gyro bias error ratio as compared to the SBPKF and EKF. The MC-KF’s gyro bias error is
approximately five times higher than the scenario without data delay. The MC-KF uses

one measurement vector to update each
^
xS, tS and

^
xB, tB (see (18) and (26)). However, the

attitude determination process requires at least a pair of measurement vectors to effectively
estimate the quaternion vector. Furthermore, the additional covariance update process in
(29) causes the state error covariance to be underestimated in MC-KF. The study in [37] has
shown that an additional covariance update process within an iteration without a proper
smoothing procedure could degrade the estimation accuracy. Therefore, the results in
Figure 6 show that MC-KF would require a more complex derivation and implementation
to ensure a stable estimation performance.
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On the other hand, the proposed SBPKF considers the time delay of sensor data,
δtm when estimating the measurement vector in (30). In addition, (35) to (38) consider
the additional propagation error due to the measurement model used in (30). Thus, the
underestimation of error covariance is avoided, and the estimation accuracy is improved.

Overall, the results in Figure 6 provide the ADCS performance guideline during the
system design review stage. The expected quaternion estimation error increment from
Figure 6 allows the evaluation if an additional sensor, such as a star tracker is required
to meet the system design requirement. STAR centre is presently developing a 50 kg
microsatellite with a star tracker for high-precision pointing applications. The applicability
of SBPKF will be verified on the engineering model. Subsequently, its in-orbit attitude
determination accuracy performance will be benchmarked with the quaternion computed
by the star tracker.

6.2. Computational Cost

Table 3 compares the number of multiplications required by EKF, SBPKF, MAEKF, and
MC-KF at each iteration. The number of multiplication required for matrix multiplication
and an inverse matrix is based on the method in [20]. The MAEKF’s multiplication number
is the average multiplication number per sampling step within one second. This is due to
the reason that the number of available measurement pairs for MAEKF varies between 1
and 2 at each sampling step.

Table 3. Comparison of number of multiplications.

Algorithm Number of Multiplications

EKF 4104

Proposed 6774

MAEKF 8066

MC-KF 9406

For the SBPKF, MAEKF, and MC-KF, we assume the scenario where δt > 5 ms. Table 3
shows that the number of multiplications required by MC-KF and MAEKF is approximately
two times higher than EKF. The number of multiplication required by SBPKF is 17% lesser
than MAEKF and 29% lesser than MC-KF, respectively. Although the SBPKF requires 65%
more multiplication compared to EKF, the quaternion estimation error is improved by 30 to
45% with a similar gyro bias estimation error. Thus, the SBPKF achieves a higher attitude
estimation accuracy at an expense of higher computational complexity.

7. Conclusions

This paper presented the simplex-back-propagation Kalman filter (SBPKF) for delayed
sensor data-based quaternion and gyro bias estimation. The estimated measurements are
formulated with the consideration of sensor data’s time delay to improve the quaternion
estimation accuracy. In addition, the noise covariance matrices are derived with the
presence of navigation error, gyro bias, and gyro noises to prevent underestimating the
estimation error. The detailed implementation of the moving–covariance Kalman filter
(MC-KF) for quaternion estimation has been presented. Monte Carlo simulations have
been conducted to compare the accuracy and computational complexity of the proposed
SPBKF, extended Kalman filter (EKF), modified adaptive EKF (MAEKF), and MC-KF. The
results show that the SBPKF average estimated quaternion error is at least 30% lower than
both EKF and MC-KF. Although the MAEKF quaternion estimation error is slightly higher
than the SBPKF, its gyroscope bias estimation error is three times higher than SBPKF. In
addition, the SPBKF computational complexity is 17% better than MAEKF and 29% better
than MC-KF.
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For future work, the SPBKF will be evaluated using the engineering model of a 50 kg
microsatellite. The impact of the digital signal processor’s 8-bit floating point on the overall
SPBKF accuracy performance will also be investigated.
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Appendix A

This appendix provides an overview of the derivation of the Earth’s magnetic field
and its associate partial derivative. From Appendix H in [38], the North–East–Down
components of the Earth’s magnetic field vector (or Bθ , Bφ and Br) are given as

Bθ = −
k
∑

n=1

( a
r
)n+2 n

∑
m=0

(gn,m cos mφ + hn,m sin mφ)
∂Pn,m(θc)

∂θc

Bφ = − 1
sin θc

k
∑

n=1

( a
r
)n+2 n

∑
m=0

m(−gn,m sin mφ + hn,m cos mφ)Pn,m(θc)

Br = −
k
∑

n=1

( a
r
)n+2

(n + 1)
n
∑

m=0
(gn,m cos mφ + hn,m sin mφ)Pn,m(θc)

(A1)

Here, θc is the geocentric co-latitude such that

θc = 90− θ (A2)

where θ is the geodetic latitude.
The partial derivate of each component in B, with respect to the North–East–Down

direction (or known as θ, φ, and r, respectively) are given as

∂Bθ
∂θ =

k
∑

n=1

( a
r
)n+2 n

∑
m=0

(gn,m cos mφ + hn,m sin mφ)
∂2Pn,m(θc)

∂θ2
c

∂Bφ

∂θ = 1
sin θc

k
∑

n=1

( a
r
)n+2 n

∑
m=0

m(−gn,m sin mφ + hn,m cos mφ)
∂Pn,m(θc)

∂θc

+ cos θc
sin2 θc

k
∑

n=1

( a
r
)n+2 n

∑
m=0

m(−gn,m sin mφ + hn,m cos mφ)Pn,m(θc)

∂Br
∂φ = −

k
∑

n=1

( a
r
)n+2

(n + 1)
n
∑

m=0
m(−gn,m sin mφ + hn,m cos mφ)Pn,m(θc)

(A3)
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∂Br
∂θ =

k
∑

n=1

( a
r
)n+2

(n + 1)
n
∑

m=0
(gn,m cos mφ + hn,m sin mφ)

∂Pn,m(θc)
∂θc

∂Bθ
∂φ = −

k
∑

n=1

( a
r
)n+2 n

∑
m=0

m(−gn,m sin mφ + hn,m cos mφ)
∂Pn,m(θc)

∂θc

∂Bφ

∂φ = − 1
sin θc

k
∑

n=1

( a
r
)n+2 n

∑
m=0
−m2(gn,m cos mφ + hn,m sin mφ)Pn,m(θc)

(A4)

∂Bθ
∂r = (n + 2)

k
∑

n=1

an+2

rn+3

n
∑

m=0
(gn,m cos mφ + hn,m sin mφ)

∂Pn,m(θc)
∂θc

∂Bφ

∂r = (n+2)
sin θc

k
∑

n=1

an+2

rn+3

n
∑

m=0
m(−gn,m sin mφ + hn,m cos mφ)Pn,m(θc)

∂Br
∂r = (n + 2)

k
∑

n=1

an+2

rn+3 (n + 1)
n
∑

m=0
(gn,m cos mφ + hn,m sin mφ)Pn,m(θc)

(A5)

It is noted that based on (A2), the partial derivate of the Earth’s magnetic field
with respect to geodetic latitude θ in (A3) to (A5) has been simplified based on the
following definition

∂B
∂θ
≡ ∂B

∂θc

∂θc

∂θ
= − ∂B

∂θc
(A6)

In addition, from Appendix H in [38], the Gauss function Pn,m(θc) are given as below:

P0,0(θc) = 1 (A7)

Pn,n(θc) = sin θcPn−1,n−1(θc) (A8)

Pn,m(θc) = cos θcPn−1,m(θc)− Kn,m
P Pn−2,m(θc) (A9)

Kn,m
P ≡

{
(n−1)2−m2

(2n−1)(2n−3) if n > 1
0 if n = 1

(A10)

The first and second order partial derivative with respect to θc can be obtained via
(A7) to (A9).
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