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Abstract: Robot assembly tasks can fail due to unpredictable errors and can only continue with the
manual intervention of a human operator. Recently, we proposed an exception strategy learning
framework based on statistical learning and context determination, which can successfully resolve
such situations. This paper deals with context determination from multimodal data, which is the key
component of our framework. We propose a novel approach to generate unified low-dimensional
context descriptions based on image and force-torque data. For this purpose, we combine a state-of-
the-art neural network model for image segmentation and contact point estimation using force-torque
measurements. An ensemble of decision trees is used to combine features from the two modalities.
To validate the proposed approach, we have collected datasets of deliberately induced insertion
failures both for the classic peg-in-hole insertion task and for an industrially relevant task of car
starter assembly. We demonstrate that the proposed approach generates reliable low-dimensional
descriptors, suitable as queries necessary in statistical learning.

Keywords: sensor fusion; predictive clustering trees; autonomous exception handling; autonomous
assembly; peg-in-hole

1. Introduction

Assembly tasks, such as inserting parts into fixtures, are among the most common
industrial applications [1]. Robot assembly typically requires a good understanding of
the procedure and knowledge about part properties and geometry [2]. Therefore, most of
the deployed robotic systems used today are carefully programmed [3]. As such, they are
limited to performing a specific assembly task in structured environments without external
disturbances. Nevertheless, they can fail due to various errors that cannot be foreseen in
advance. Possible causes include deviations in the geometry of the workpiece, imprecise
grasping, etc. In such cases, it is necessary for the operator to manually eliminate the cause
of the error, reset the system, and restart the task [4]. Current robotic systems do not learn
from such situations. If a similar situation repeats, human intervention is needed again. To
ensure robust execution of robot assembly tasks, it is increasingly important to handle such
exception scenarios autonomously, possibly by incorporating previous experience.

The first step toward building such an autonomous system is to determine the reason
for the failure. For example, a robot may fail to assemble two parts, but it is unclear whether
it has failed because the parts do not match or because of an ineffective manipulation
strategy [5]. Understanding or at least classifying the reason for the failure is, therefore,
crucial for the successful design of a corresponding exception policy.

Recently, we have proposed a framework for the learning of exception strategies [6],
which is based on determining the context of the failure. The extracted context is associated
with different robot policies needed to resolve the cause of the error. In the event of an error,
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the system stops, and the robot switches to gravity compensation mode. Using incremental
kinesthetic guidance [7], the operator performs a sequence of movements to allow the
continuation of regular operation. First, the robot builds a database of corrective actions
and associates them with the detected error contexts. Then, using statistical methods, it
computes an appropriate action by generalizing the corrective actions associated with
different error contexts. In this way, the robot becomes increasingly able to resolve errors
on its own and eventually does not require human intervention to resolve assembly failures
anymore (see Figure 1).
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Figure 1. Simplified exception handling workflow [6]. This paper is about context determination,
which is an essential requirement of the workflow.

Modern robotic systems are equipped with a wide variety of sensors that can be
used to detect a possible failure. On the other hand, context determination can be seen
as inferring the circumstances that have resulted in the given outcome. The first step in
the exception strategy learning framework is, therefore, context determination, which can
be seen as inferring a minimal representation of the circumstances that have resulted in
the given outcome. As raw sensor data are usually high-dimensional, they cannot be
directly used with statistical learning methods that allow us to relate the observed state
(context) to the previous states and generate an appropriate robot action to resume regular
operation. Moreover, for reliable context determination, it is often necessary to combine
complementary information from different sensor modalities. This process is known as
data fusion and can lead to improved accuracy of the model compared to a model based on
any of the individual data sources alone [8]. Ensemble learning methods have proven to
be appropriate for addressing multimodal classification and regression problems in many
domains [9].

We propose to train models that generate low-dimensional context descriptions based
on multimodal sensor data from vision systems and force-torque sensors. In this sense,
context determination can be defined as determining of the type of circumstances from
multimodal data. We use an intermediate-fusion approach, where we first extract modality-
specific features, as shown in Figure 2. We rely on a state-of-the-art neural network model
for image segmentation to extract features from images, whereas we use contact point
estimation to extract data from the measured forces and torques. To generate a low-
dimensional context description of the circumstances that resulted in the given outcome
from the extracted features, we use ensembles of predictive clustering trees (PCTs) [10],
which are well suited for handling hierarchical multi-label classification (HMLC) tasks.
With the proposed hierarchical approach, the training of the context estimation model
can be divided into multiple phases, allowing for an incremental approach. The time-
consuming training of the image segmentation model only needs to be performed once,
whereas fast training of the high-level ensemble model can be performed each time a new
class needs to be added.
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Figure 2. Context determination pipeline. Features are processed for each modality separately
(Sections 3.4–3.6) and later merged by using ensembles of predictive clustering trees (Section 3.7).
References: [10–12].

The evaluation of the proposed approach comprised two scenarios. Peg-in-hole as-
sembly is chosen as the first use case because it reflects the typical complexity of industrial
assembly tasks [13]. We show that it is possible to apply the method to other tasks by
performing an evaluation of a car starter assembly task. The approach can also be ap-
plied to further situations. Apart from identifying error classes, the only process-specific
step is selecting the image segments of interest and training the instance segmentation
model accordingly.

The main highlights of our context determination approach are:

• with the use of multimodal data we get an improved predictive performance of ensembles;
• it is easy to add new classes (this is necessary as we discover new failure cases

incrementally as they arise);
• the approach generalizes well to new cases (we can make useful predictions based on

a model trained on a limited amount of data).

The paper is organized into six sections. Section 2 reviews current strategies to handle
exceptions in robot assembly and the usage of tactile and vision sensor data in robotics. The
details of our approach are presented in Section 3. In Section 4, the predictive performances
of different variations of the developed model for context determination are evaluated.
Section 5 discusses the results as well as future plans. We conclude with a brief summary
of the paper in Section 6.

2. Related Work

Fault-tolerant robotic systems that are able to detect and autonomously deal with sys-
tem failures have been the subject of research for many years [14]. While some researchers
are concerned with fault tolerance in medical, space, nuclear, and other hazardous applica-
tions, our research focuses on industrial processes, where we can ensure operator presence,
at least in the learning phase. In such environments, strategies based on various heuristic
movement patterns (random search, spiral search, dithering, vibrating, etc.) are often used
to deal with unexpected situations [15,16].

Laursen et al. [17] proposed a system that can automatically recover from certain types
of errors by performing the task in reverse order until the system returns to a state from
which the execution can resume. Error recovery can also be performed collaboratively so
that the robot recognizes when it is unable to proceed and asks for human intervention to
complete the task [18]. Recently, it was proposed to use ergodic exploration to increase the
insertion task success rate based on information gathered from human demonstrations [19].
Another method exploits variability in human demonstrations to consider task uncertainties
and does not rely on external sensors [2].

On the other hand, another line of research highlights the importance of sensorimotor
interaction for future learning methods in robotics [20]. During the assembly task execution,
monitoring the exerted forces and torques is necessary to prevent damaging the parts or
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robot [6]. These data can be used to avoid large impact forces exploiting compliance
and on-line adaptation [21], to speed up the process in the subsequent repetitions [22], to
determine contact points and learn contact policies [11], and to predict [23] or classify [24]
robot execution failures.

Various previous works have studied the idea to calculate contact points based on
force-torque measurements [11,25–27]. In our previous work [6], we used force-torque
measurements to calculate trajectory refinements that enable successful insertion despite
the grasping error. Force-torque data carry enough information to generate an appropriate
refinement, given that we already know the nature of the problem (orientation vs. position
grasping error). However, in general, sufficient information cannot be obtained from force-
torque data only. For example, the policies for correcting unsuccessful assembly attempts
often depend on which part of the peg is in contact with the environment [28]. Thus
additional sensors are required. Using a force-torque sensor only is also problematic due to
sensor noise. Many applications in process automation, therefore, rely on vision systems to
extract the necessary information. While vision can be quite sensitive to calibration errors
and typically requires a well-designed workcell to ensure optimal lighting conditions and
avoid occlusions, it is fast and can be used for the global detection of multiple features [29].

The advantage of combining visual and contact information has been investigated
in multiple works in robotics over a longer period of time. This research includes dimen-
sion inspection [30], object recognition [31], and localization [29]. In the context of robot
assembly, visual and tactile sensing has been used to continuously track assembly parts
using multimodal fusion based on particle filters [32] and Bayesian state estimation [13].
We share the principal idea of combining data from visual and force-based sensing. We
want to further develop these concepts towards structured representations of the task
context in order to develop an integrated solution for the automatic handling of failures in
assembly processes.

Multimodal fusion combines information from a set of different types of sensors.
Detection and classification problems can be addressed more efficiently by exploiting
complementary information from different sensors [8]. Different methods for data fusion
from multimodal sources exist. Generally, we can distinguish three levels of data fusion:
early fusion, where the raw data are combined ahead of feature extraction and the result
is obtained directly; intermediate fusion, where modality-specific features are extracted
and joined before obtaining the result; and late fusion, where the modality-wise results
are combined [33,34]. It may seem that combining multimodal data at the raw data level
should yield the best results, as there would be no loss of information. However, due to the
unknown inter-dependencies in raw data, fusion at a higher level of abstraction may be a
more helpful approach in practice [35].

Ensemble learning is a general approach in machine learning that seeks better pre-
dictive performance by combining the predictions from multiple models [9]. Ensemble
learning methods have proven to be an appropriate tool to address multimodal fusion,
achieving comparable results or even outperforming other state-of-the-art methods in many
other domains [36,37]. The idea of ensemble learning is to employ multiple models and
combine their predictions. This is often more accurate than having a complex individual
model to decide about a given problem. Data from heterogeneous sources, such as dif-
ferent modalities [38], can easily be combined. In this paper, we consider an ensemble
of predictive clustering trees (PCTs) [10] to perform hierarchical multi-label classification
(HMLC). PCTs are a generalization of ordinary decision trees and have been successfully
used for a number of modeling tasks in different domains, i.e., to predict several types of
structured outputs, including nominal/real value tuples, class hierarchies, and short time
series [39,40]. A detailed description of PCTs for HMLC is given by Vens et al. [41].

3. Materials and Methods

In this section, we first describe the robotic workcell used to collect the data de-
scribed in Section 3.1. The assembly tasks to perform the evaluation are presented in
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Sections 3.2 and 3.3. Next, we present our contact determination method in detail. The ap-
proach consists of three main parts. First, force-torque sensor measurements are processed
using a method for contact point estimation described in Section 3.4. Data from the vision
modality are passed through a neural-network model performing instance segmentation
(Section 3.5), and features are extracted from the instance masks using standard computer
vision methods (Section 3.6). Finally, the features from both modalities are combined using
an ensemble of predictive clustering trees, as described in Section 3.7.

3.1. Experimental Environment

In our research, we focused on robotic assembly and considered two tasks—square
peg insertion using the Cranfield benchmark [42] and the industrially relevant car starter
assembly [43]. To perform both tasks and collect data for the context determination model,
we rely on a modular workcell design that enables easy mounting of task-specific equip-
ment, e.g., robots, sensors, and auxiliary devices [44] and a ROS-based software architecture
that allows for easy integration of new components [45].

The workcell consists of two modules and a control workstation. The first module
supports a seven-degree-of-freedom collaborative robot, Franka Emika Panda. The other
module is equipped with sensors and cameras to support the specific assembly process,
as shown in Figure 3. An Intel RealSense D435i RGB-D camera is used to supervise the
insertion visually. To control the light conditions, we utilize an adaptive lighting setup
based on Aputure Amaran F1 LED panels. Besides images, we can also capture forces and
torques. To measure the forces exerted in the peg-in-hole task, we utilize an ATI Delta
force-torque sensor mounted under the Cranfield benchmark plate. To measure the forces
exerted in the copper ring insertion task, we utilize a wrist-mounted ATI Nano25 sensor.
Additional peripheral devices, visible in Figure 3b, are used to assist different aspects of
the human–robot collaboration, which is not the subject of this paper.

(a) (b)

Figure 3. Experimental setup for testing exception strategy learning using multimodal data. (a) Setup
for the Cranfield benchmark. (b) Setup for the copper ring insertion task.

To perform the assigned tasks, we applied a passivity-based impedance controller
for manipulators with flexible joints [46]. We assume that the controller parameters were
carefully tuned to ensure stable and compliant operation in unstructured environments,
where we can expect deviations in task parameters.

3.2. Peg-in-Hole Insertion Task

The peg-in-hole (PiH) task is an abstraction of the most typical task in assembly
processes, accounting for approximately 40% of the total assembly tasks [47]. Over time,
many different approaches and control strategies to address this problem have emerged.
Nowadays, the efficiency of the applications is enhanced by integrating machine vision
and other sensor technology accompanied by artificial intelligence approaches. As such, it
is a commonly accepted benchmark in assembly research.

To generate a dataset for comparing different methods for failure context determina-
tion, we repeatedly executed the task of square peg insertion using the Cranfield benchmark.
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It requires the insertion of a square peg into the corresponding hole of the base plate. The
main challenge is the transition of the peg from free space into a highly constrained target
hole. Relatively tight tolerances combined with imprecise positioning can prevent the
successful completion of the insertion process.

Different factors influence the outcome of the PiH task. For instance, both imprecise
grasping and wrong target position can lead to insertion failure, as shown in Figure 4.

(a) (b) (c) (d)

Figure 4. Different outcomes of the PiH task. (a) Successful insertion with correct parameters.
(b) Insertion failure due to grasping error. (c) Insertion failure due to a positional error in the
x-direction. (d) Insertion failure due to a positional error in the y-direction.

In order to collect a database of different insertion outcomes, we deliberately set
different positional offsets in either the x or the y-direction from −10 to 10 mm in 1 mm
steps. In this way, we generated 40 cases that resulted in insertion failure and 1 that led
to successful insertion. Due to the offset, the robot fails to insert the peg and stops the
execution when it exceeds a force threshold, set to 10 N in the z-direction. The insertion is
successful when there is no positional offset in either direction.

In total 180 data entries were recorded. The robot attempted to insert the peg into the
plate three times for each failure case. Additionally, 60 successful attempts were recorded.
Robot pose, force and torque measurements, and RGB images of the outcome were captured
when the insertion was complete or stopped (force threshold exceeded).

Note that the data can be organized hierarchically into three categories (no error,
positional error in x direction, and positional error in y direction). The latter two categories
can be further split in half depending on the direction of the error (x/+, x/−, y/+, y/−).
Finally, we can split based on the magnitude of the error (e.g., x/+/2, meaning that we
have a 2 mm error in the x+ direction).

3.3. The Task of Inserting Copper Sliding Rings into Metal Pallets

The car starter assembly process includes inserting copper sliding rings into metal
pallets, as shown in Figure 5. This can be categorized as a multiple peg-in-hole problem, as
it is necessary to insert the bottom of the copper ring and both upper part lugs correctly.
The insertion process is challenging due to the deformability of the sliding rings. This task
has been taken from a real production process where it is performed manually. Previous
automation attempts have failed due to the low success rate that was achieved. To ensure
robust insertion, we proposed to use the exception strategy framework [43].

Figure 5. Left: Insertion of the ring into a modeling fixture. Center: Incorrect insertion. Right:
Correct insertion.
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We have collected a database of twelve copper ring insertions, which includes both
successful insertions and deliberately induced insertion failures. The failures were caused
by the displacement of the target position for insertion in the x and y directions:

• no displacement, leading to successful insertion;
• positional displacement in the x direction, with ∆px between 1 and 3 mm in 1 mm steps;
• positional displacement in the y direction with ∆py between 1 and 3 mm in 1 mm

steps, both leading to unsuccessful insertion.

Additionally, we recorded insertion attempts with deformed parts, which also led to
an unsuccessful insertion. For each of the cases, we recorded at least four insertion attempts.
The process was repeated for all four slot positions in the molding cast. Each entry consists
of a snapshot of the outcome of the insertion task (cropped RGB image) and the time series
of force F = (Fx, Fy, Fz) and torque T = (Tx, Ty, Tz) measurements. Similarly to the PiH
dataset, the gathered data can be organized hierarchically.

3.4. Force-Torque Data Extraction: Contact Vector Estimation

In our previous work [6], we have considered only errors due to the offset in the grasp-
ing angle and have shown that force-torque data can be used to determine a suitable context
descriptor using principal component analysis (PCA), which correlated most strongly with
the grasping error. Such a dimensionality reduction is beneficial because the generation
of an appropriate refinement trajectory based on statistical learning is sensitive to the
dimension of the feature space. Another possible approach to reduce the dimensionality of
force-torque measurements is to determine contact points [48].

The point of contact between two parts can be estimated based on the relationship
between force F, torque T, and lever r by using the following formulation [11]

r(α) =
F× T
‖F‖2 + α

F
‖F‖ , (1)

where α is a suitably chosen constant so that the vector r touches the environment as
illustrated in Figure 6a. The measured forces and torques must be expressed in the robot
end-effector coordinate system.

However, the contact point estimation cannot always distinguish between the differ-
ent types of errors, as illustrated in Figure 6b. Thus, forces and torques, as well as the
positional data, cannot uniquely determine the context. In order to resolve this ambiguity,
we introduce another modality, as discussed in the remainder of this paper.

Nevertheless, Equation (1) provides a suitable representation that can distinguish
between different conditions of the same outcome type. A graphical example of contact
vector estimation for both experiments is shown in Figure 7.

Our preliminary results have shown that the inclusion of raw force-torque data as
features decreases the performance of the final model. Thus the feature vector for the FT
modality was chosen to include only the contact point vector estimate. For each example
k ∈ E , the feature vector is calculated as:

fk
FT = (rx, ry, rz), (2)

where rx, ry, rz are components of the vector r(α).

(a) (b)

Figure 6. A scheme depicting contact point estimation (a) and another example where the grasped
part comes into contact with the environment at the same point (b). The robot and the gripper are
represented by the dark gray shape, whereas the grasped part and the environment are shown in
blue and black, respectively. The contact vector estimate is shown with a green arrow.
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(a) Correctly inserted peg

(b) Not fully inserted peg (c) Correctly inserted ring (d) Wrongly inserted ring

Figure 7. Contact vector estimation in four examples of the considered assembly tasks. A schematic
model of the Cranfield base plate and the casting mold is shown in (a–d), respectively. The green line
shows the contact vector, whereas the pink plus symbol shows the robot’s tool center point (TCP) at
the time of contact and the black cross shows the target reference position.

3.5. Vision Data Extraction: Instance Segmentation with YOLACT

We applied deep neural networks (DNN) to perform feature extraction from image
data. They provide good flexibility because pre-trained NN models and frameworks can
be re-trained by using a custom dataset for a specific use case, in contrast to the classic
computer vision (CV) algorithms, which tend to be more domain specific [49]. Compared
to the traditional computer vision methods (e.g., edge detection), they often require less
manual fine-tuning.

Various convolutional neural networks (CNNs) have proven to be suitable for analyz-
ing image data. An essential issue with a custom network that directly extracts features is
that retraining is needed when a new error class is added or the camera position is changed.
For these reasons, we rely on models that are designed to be less prone to changes in object
position in the picture. This has been extensively studied in object detection and instance
segmentation models. Instance segmentation is an enhanced type of object detection that
generates a segmentation map for each detected instance of an object in addition to the
bounding boxes.

In order to meet the above-listed requirements, we used the state-of-the-art instance
segmentation model YOLACT [12]. YOLACT builds upon the basic principles of Reti-
naNet [50] with the Feature Pyramid Network [51] and ResNet-101 [52] as a convolutional
backbone architecture for feature extraction. It utilizes a fully convolutional network to
directly predict a set of prototype masks on the entire image. Lastly, a fully connected
layer assembles the final masks as linear combinations of the prototype masks, followed
by bounding box cropping. Compared to most of the previous instance segmentation
approaches, such as Mask R-CNN [53], which are inherently sequential (the first image
is scanned for regions with object candidates, then each of them is processed separately),
YOLACT is a one-stage algorithm that skips this intermediate localization step. This allows
for nearly real-time performance. By using shallower computational backbones, such as
ResNet-50, even faster performance can be achieved at a minimal accuracy cost when
compared to ResNet-101 [12].

The (re)training of YOLACT requires labeled images and ground truth image masks.
We have used an open-source graphical image annotation tool, Labelme, to annotate
images in our datasets (https://github.com/wkentaro/labelme, accessed on 13 October
2022). For the PiH dataset, we manually annotated 30 images for each position using
four different light settings. We manually annotated 10 images for each position using
two different light settings for the copper ring insertion dataset. We split the annotated
datasets into training and validation partitions, with 80% and 20% of the data, respectively.
Finally, the annotations had to be transformed into a format compatible with the YOLACT

https://github.com/wkentaro/labelme
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training script (COCO). For this purpose, we prepared an open-source tool—labelme2coco
(https://github.com/smihael/labelme2cocosplit, accessed on 13 October 2022).

In the proposed pipeline, we configured YOLACT to use a computationally lighter
ResNet-50 as the backbone. This enabled us to use original-resolution images while re-
taining high training and inference speed. We trained two models for each of the above-
presented datasets. During training, the algorithm used a batch size of 8, weight decay
of 0.0005, and image size of 1280 × 720 pixels (PiH dataset) or 221 × 381 pixels (copper
ring insertion dataset). The initial learning rate was set to 0.001. The model was trained
for 40,000 iterations, and the decay rate of 0.1 was applied once each 10,000 iterations. The
training took 8 h on a GeForce GTX 1060 GPU for the PiH dataset and 6 h for the copper
ring insertion dataset.

Once the models were trained, we deployed them to a workstation in the robotic
workcell. The integration was done using a modified yolact_ros package (https://github.
com/smihael/yolact_ros, accessed on 13 October 2022), which also allows using the learned
model for inference without a GPU, thus lowering the computational requirements.

The results are shown in Figure 8. The PiH model is trained to distinguish between
the peg and the base plate, whereas the copper ring insertion model is able to distinguish
the following segments: gripper, mold, screws, ring base, wings, and ears (lugs).

(a) Correctly inserted peg

(b) Not fully inserted peg (c) Correctly inserted ring (d) Not fully inserted

Figure 8. Bounding boxes and masks obtained by YOLACT using snapshots of the outcome of
both tasks as input. For the PiH task (a,b), the base plate and peg are detected, regardless of the
position/occlusion of the latter. In the copper ring insertion task (c,d), the gripper, mold, screws,
ring base, wings, and ears are detected. Notice that ears are only detected when the part is not
fully inserted.

Note that the PiH model can be equally used for any of the two insertion slots in the
PiH task. Likewise, the copper rings model can be used for any of the four slots in the
copper ring insertion task. Since the model is position invariant, meaning that the model is
able to correctly mark the area of different image parts regardless of where in the image
they appear, we can apply it for the analysis of new error cases.

3.6. Extracting a Fixed-Size Feature Vector from Instance Segmentation Results

Using the trained YOLACT segmentation models, we obtain bounding boxes and
image masks for all images in the PiH and copper ring insertion datasets. The information
obtained from instance segmentation needs to be further processed to be used in further
steps of the pipeline, as shown in Figure 9. We extract fixed-size feature vectors, as
ensembles of predictive clustering trees do not operate over image masks.

https://github.com/smihael/labelme2cocosplit
https://github.com/smihael/yolact_ros
https://github.com/smihael/yolact_ros
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Figure 9. Image features extraction pipeline. The RGB snapshot of a situation is processed by a
YOLACT model to obtain masks of different parts of interest. The obtained masks are then processed
to obtain a low-dimensional fixed-size feature vector.

An image is represented as a w × h × 3 matrix of pixels I(x, y, c) ∈ {0, 1, . . . , 255},
representing the RGB color channels. The image can contain multiple instances of different
objects. For each segmented object instance s, we obtain its type, the bounding box, and the
mask. The bounding box Bs is given as a pair of pixel coordinates of two diagonal corners
{(x1, y1), (x2, y2)}. The bounding box can be represented by the centroid cs, width ws, and
height hs of the rectangle

cs = [cs,x, cs,y]
> =

[
x1 + x2

2
,

y1 + y2

2

]>
, (3)

ws = x2 − x1, (4)

hs = y2 − y1. (5)

The pixels belonging to the specific object instance s are represented with masks. Each
mask is a w× h binary matrix Ms ∈ Bw×h, which tells whether a pixel is part of the mask
or not. Using PCA, we determine the first principal component for each instance’s mask
es,1 = (x, y). This result can be used to calculate the orientation of the part in the image
plane (visualized in Figure 10)

ϕs = arctan
(
−y
x

)
− π

2
. (6)

(a) (b) (c) (d) (e)

Figure 10. The extracted peg mask for different executions of the copper ring insertion task. Red and
green lines show the principal directions and determine the mask’s orientation. (a) ∆px = −10 mm;
(b) ∆px = −5 mm; (c) ∆px = 0 mm; (d) ∆px = 5 mm; (e) ∆px = 10 mm.
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Additionally, we calculate the pixel area of each instance mask as a total number of all
true elements in the instance matrix

as =
w

∑
x=0

h

∑
y=0

ms(x, y). (7)

In both experiments, we define a set of object of interests Sint (see Figure 8). For the
peg-in-hole insertion task, it consists of the peg only, while for the copper ring insertion task,
Sinst contains the gripper, ring, wings, and ear. Note that additional features, e.g., screws on
the molding cast or the base of the Cranfield benchmark, can be used as calibration features.
In our case, this was not needed as the datasets were recorded with a fixed camera position.

From the set of examples with no visible errors E0, we calculate the average segment
mask Ms for each object instance s of interest from Sint. The average mask is calculated as
the element-wise mean of the mask matrices:

Ms =
1
|E0| ∑

k∈E′
Mk

s ∈ Rw×h
+ . (8)

For other examples, we compute the difference between theirs masks and the average
mask of examples with no error M̃k

s,diff = Mk
s −Ms, and take only its positive elements to

define binary matrix Mk
s,diff,

mk
s,diff(x, y) =

{
1, m̃k

s,diff(x, y) > 0
0, otherwise

. (9)

An example is shown in Figure 11. For each of the obtained difference segments, we
then calculate its center cs,diff = [cs,diff,x, cs,diff,y]

> and pixel area As,diff using
Equations (3) and (7), respectively.

(a) Average no error (b) dy = −2 mm (c) Difference (d) Binary difference

Figure 11. From left to right: (a) average segmentation mask for the successful copper ring insertion
attempts, (b) segmentation mask for a failed insertion attempt (positional error in the y-direction),
(c) difference of the segmentation masks, and (d) positive part of the difference.

In this way, we obtain an image feature vector for each example k ∈ E and object of
interest s ∈ Sint:

fk
s =

[
ck >

s , wk
s , hk

s , φk
s , ak

s , ck >
s,diff, ak

s,diff

]>
. (10)

3.7. Combining Image Features and Force-Torque Measurements Using Ensembles of Predictive
Clustering Trees

We formulate the determination of the outcome of the insertion task as a hierarchical
multi-label classification (HMLC) problem. Given the extracted image features and the
estimate of the contact point, the type of outcome should be predicted. For the different
types of outcomes, a hierarchy of class labels defines the direction and magnitude of the
underlying error, as described below.
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We applied ensembles of predictive clustering trees (PCTs) [10] for this task. PCTs are
a generalization of ordinary decision trees [41]. Generally, in a decision tree, an input is
entered at the top and as it traverses down the tree, the data gets bucketed into smaller and
smaller sets until the final prediction can be determined. The PCT framework, however,
views the decision tree as a hierarchy of clusters: the top node corresponds to the cluster
containing all of the data, which is recursively partitioned into smaller clusters so that
per-cluster variance is minimized [39]. In this way, cluster homogeneity is maximized, and
consequently, the predictive performance of the tree is improved.

PCT ensembles consist of multiple trees. In an ensemble, the predictions of classi-
fiers are combined to get the final prediction. For an ensemble to have better predictive
performance than its individual members, the base predictive models must be accurate
and diverse [9]. The diversity between trees in the PCT framework is obtained by using
multiple replicas of the training set and by changing the feature set during learning, as in
the random forest method [54].

In our setting, each example k from the set of examples E consists of all extracted
features fk and the corresponding label vector lk. The feature vectors are obtained by
concatenating per-modality features:

fk =
[
fk

FT
>

, fk
1
>

, fk
2
>

, . . . , fk
|S|
>]>

, (11)

with fk
FT and fk

s , s = 1, . . . , |S|, defined as in Sections 3.4 and 3.6, respectively. To define the
corresponding label vector, we first observe that in HLMC, each example can have multiple
labels. Classes are organized in a hierarchical structure, i.e., an example belonging to a
class also belongs to all of its superclasses. The resulting ordered set of classes is used to
define a binary label vector lk ∈ BL. The components of lk are equal to 1 if the example is
labeled with the corresponding class and 0 otherwise. L denotes the number of all classes
in the hierarchy.

For the PiH task, the set of labels at the first hierarchical level consists of “no error”,
and “x” and “y” for the error in one of the two directions. At the second level, we have
“x+” and “x−” as subclasses of “x”, and “y+” and “y−” as subclasses of “y”. Likewise, we
have “x + 1”, “x − 1”, “y + 1”, “y − 1”, “x + 2”, . . . , “y − 10” at the third hierarchical level.
For the copper ring insertion task, the set of labels at the first hierarchical level consists
of: “no error”, “bad part”, and “x” and “y” for the error in one of the two directions.
Similarly, as in the PiH task, the sub-classes at the second and third levels are representing
various magnitudes of error (ranging from−10 to 10 mm in 1 mm steps) in both considered
directions (x and y).

In summary, to train the ensemble of predictive trees, we collect the dataset E

E = {fk, lk}K
k=1. (12)

After training we can use the resulting ensemble of predictive trees to predict the
labels l given the extracted feature vector f.

We trained multiple ensembles for two different tasks. See Section 4 for more details.
We used PCT ensembles, i.e., random forests of PCTs, as implemented in the CLUS system
(CLUS is available for download at http://source.ijs.si/ktclus/clus-public, accessed on
13 October 2022) for this purpose. Each ensemble consisted of 50 trees. As a heuristic to
evaluate the splits in decision trees, we used the variance reduction [39]. The variance for
the set of examples E is defined as the average squared distance between each example’s
label vector lk and the set’s mean label vector l̂, i.e.,

Var(E) = 1
|E |∑k∈E d(lk, l̂)2 (13)

http://source.ijs.si/ktclus/clus-public
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The distance measure used in the above formula is the weighted Euclidean distance:

d(l1, l2) =
√

∑L
i=1 w(ci)(l1,i − l2,i)2, (14)

where the class’s weight w(ci) depends on its depth within the hierarchy. The similarities
at higher levels in the hierarchy are considered more important than the similarities at
lower levels. Therefore, the class weights w(ci) decrease with the depth of the class in the
hierarchy. w(ci) is typically set as wd

0, where d is the depth of the label in the hierarchy: w0
was set to 0.75 in our experiments. The number of randomly selected features at each node
was set to b

√
Lc+ 1, where L is the total number of features.

To combine the predictions of all classifiers in the ensemble and obtain the final
prediction, their average is taken.

4. Results

In this section, we evaluate the performance of our proposed approach along two
dimensions: its generalizability to handle unseen data and the effect of including/excluding
features from separate modalities. Finally, the setup was experimentally verified in the
robotic workcell.

4.1. Generalizability of Classification

In order to verify how well the approach can generalize to unseen data, we train a
model on a subset where we do not include any examples of a particular outcome case.
Since the database for the copper ring insertion task is not sufficiently fine-grained, this
aspect was evaluated only for the peg-in-hole task. We excluded all cases where the
positional error in any direction equals 5 mm and observed if the model could correctly
predict the direction of error for the excluded examples. The results are shown in Figure 12.
The model correctly predicted the direction of error for all the excluded examples, both
at the first and the second level of hierarchy. As the predictions at the third hierarchical
level describe the magnitude of error, they can also be evaluated using root mean square
error (RMSE). At the third hierarchical level, it assigned all the excluded examples to the
closest lower error class that was presented in training for the x direction (RMSEx = 1 mm),
whereas for the y direction it did so for 4 of the 6 examples (resulting in RMSEy = 1.91 mm).
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Figure 12. Confusion matrices for classification at different levels of the hierarchy. (a) First level of
hierarchy (x or y displacement). (b) Second level (negative or positive displacement). (c) Third level
(magnitude of x displacement); (d) Third level (magnitude of y displacement).

4.2. Single Modality versus Multimodal Models for Classification

We assessed the effectiveness of including/excluding features from the individual
modalities by training multiple PCTs on different subsets of features for both tasks:

• only features based on the image data (see Section 3.6);
• only features based on the force-torque sensor data (see Section 3.4);
• features from both modalities.

Models were trained using 80% of the data and tested on the remaining 20% of
the data.
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The results for the PiH task are given in Figure 13. We found out that the model
performed best when all features were included, indicating that the features from both
modalities are complementary and improve the model’s performance. The overall classi-
fication accuracy was calculated for the multi-class classification problem by taking the
sum of the true positives and true negatives for each label, divided by the total number
of predictions made. The accuracy was then averaged by support (the number of true
instances for each label). For the model that uses all features, the overall classification
accuracy at the first hierarchical level was 0.98. At the second level, the accuracy was 1.0.
For the third level, the overall classification accuracy was 0.68. For error classes in the x
and y directions, the classification accuracy was 0.55 and 0.5, respectively. For the model
that only uses features from the vision modality, the overall classification accuracy at the
first two hierarchical levels stayed the same, indicating that vision features can distinguish
well between different types of outcomes. The overall classification accuracy at the third
level was 0.68, and 0.5 and 0.55 for the x and y directions, respectively. When evaluating
the model that only uses features from the FT modality, the overall classification accuracy
at the first level dropped to 0.92, at the second to 0.95, and at the third to 0.61, whereas it
was 0.5 and 0.35 for the x and y directions, respectively.

The results for the copper ring insertion task are given in Figure 14. Similar to before,
we found that the model performed best when all features were included. For the model
that uses all features, the overall classification accuracy at the first two hierarchical levels
was 0.88. For the third level, the overall classification accuracy was 0.81. For error classes
in x direction, the classification accuracy is 0.67, and 0.9 for y direction. For the model that
only uses features from the vision modality, the overall classification accuracy at the first
two hierarchical levels dropped slightly to 0.85. The overall classification accuracy at the
third level was 0.62, and 0.5 and 0.6 for the x and y directions, respectively. The drop was
even more pronounced when evaluating the model that only uses features from the FT
modality. The overall classification accuracy at the first level was 0.81 and at the second
and third it was 0.77, whereas it was 0.58 and 0.9 for the x and y directions, respectively.
When comparing the results of the vision- and FT-features-only models, it is evident that
while the earlier achieved a higher overall accuracy, the latter achieved higher accuracy
when distinguishing among different magnitudes of error in the y direction.

4.3. Verification of Error Context Determination for the Generation of Exception Strategies

The proposed framework was experimentally verified on both the PiH and the copper
ring insertion task. The initial PiH policy was carefully programmed and executed in the
workcell with the same setup as described in Section 3.2. In order to cause an exception,
the target position was displaced by 6 mm. The proposed approach correctly estimated
the error context to “x/-/6”. Since the exception strategy for this case has not yet been
programmed, the robot stopped and prompted the operator. Using kinesthetic guidance,
the operator guided the robot back along the policy to an appropriate point, where it is
possible to resume the operation. The operator then demonstrated the correction, which
resolved the problem. When we displaced the target position by 6 mm again, which
resulted in a similar outcome, the robot again classified it as “x/-/6”. As the exception
strategy is now known, the robot could resolve the situation using the demonstrated
exception strategy. In a similar manner, the operator demonstrated policies for the case
where the target was displaced by 4 mm in a positive x direction. When we displaced the
target position by 5 mm, the robot correctly classified the context to be “x/-”, whereas the
magnitude was not determined precisely (4 mm) as we used the model that did not include
error contexts of this magnitude in the training set. Nevertheless, by combining the policies
demonstrated for the other two cases in the “x/-” category and using locally weighted
regression, as proposed in [6,43], the robot was able to perform the insertion successfully.
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Figure 13. Confusion matrices for the PiH use case.
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Figure 14. Confusion matrices for the copper ring insertion task.

When inserting a sliding ring into the casting mold, there are two major types of errors.
The first type is when the base of the ring is not properly seated into the model (see Figure 5
middle). This type of error mainly arises due to imprecise grasping or due to errors in
the target position. The second type of error occurs when the sliding ring is deformed.
Both types of error can be reliably determined by using the proposed approach. We first
displaced the target position by 2 mm in the negative y direction so that the insertion
failed. As the exception strategy for this case has not yet been programmed, the operator
demonstrated how to resume the operation and resolve the issue using iterative kinesthetic
guidance [7]. When the target was displaced by the same offset again, the robot was able to
resolve the problem. We also started the insertion procedure with a deformed part. It was
correctly determined, and the robot placed it into the bin for deformed parts. An example
video of both experiments can be found in the Supplementary Materials.
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Note that the application of the exception strategy learning framework does not affect
the cycle time in successful attempts. Once the model is deployed, the time to obtain
context estimation is negligible. In unsuccessful attempts, where an alternate policy needs
to be demonstrated or executed, the cycle time is, however, prolonged. However, since
these situations are less frequent, this has very little effect on the average cycle time of an
automated line.

5. Discussion

The results of our study indicate that the application of multimodal features leads to
an improved classification accuracy of the ensemble models employed for classification.
This implies that the features are complementary and taken together provide greater
discrimination power than the features stemming from a single modality. Prediction
errors that arose when applying vision-only-based models, showed the limitations of
two-dimensional image data, thus depth information should be considered in the future.

It is important to note that, to a large extent, the models were able to correctly assign
error types to examples with a magnitude of error not included in the training data. This is
a critical finding as it indicates that the computed models are robust and can be used in
real-world applications, also in less-structured non-industrial environments, where error
types can not be predicted in advance. To evaluate this aspect, we excluded all examples
with a certain magnitude of error from the training set. The results show that the models
still perform well, indicating that they are not overfitting the training data.

Based on the observation that features obtained from different modalities contributed
to improving the classification results at different levels, a more explicit hierarchical pipeline
could be considered in the future, exploiting the robot as an agent that can interact with the
environment. Data from different modalities would contribute towards the final prediction
at different stages of the process, consisting of, e.g.,

(1) the type of error (due to positional displacement, part geometry, imprecise grasping),
determined based on image data;

(2) the magnitude of error, based on force-torque or depth data.

The context determination does not have to occur instantaneously but can include
exploring the environment as part of the pipeline. We could first use the vision data
to determine the direction in which the robot should move in order to reduce the error
(left/right). The robot can then move in this direction until it detects a new state (one
of the force-torque components changes or a compliant robot stops moving as it hits an
obstacle—see [55]). In the newly found state, the robot again estimates the direction in
which it needs to continue or stop.

In the future, we intend to expand the proposed approach by considering other
possible error types (e.g., arising from erroneous orientation when grasping) and their
combinations (displacements in multiple degrees of freedom at the same time), as well as
properly handling continuous data (regression at the lower hierarchical level instead of
classification). We believe that the presented framework is not only applicable to learning
error context but could also be extended to cognitive systems that will be able to respond
autonomously to changes in the environment. To achieve these goals, the improved
versions of our approach should consider additional modalities and alternative features
extraction methods.

6. Conclusions

In this work, we have proposed a novel method for context determination based on
multimodal features that can be used for learning exception strategies in various assem-
bly tasks.

Our approach was validated on two tasks, the classic peg-in-hole, and the copper
ring insertion. To evaluate its effectiveness, we deliberately induced different types of
errors, which led to failed task executions. Using the proposed approach, the error type
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was correctly obtained in all cases, allowing for correction of the task execution parameters
and finally leading to successful task performance.

The study results indicate that the features used in the ensemble models are com-
plementary and that the multimodal setup achieves the highest classification accuracy.
Moreover, the model can correctly assign error types to examples with an unknown
error magnitude.

In the current implementation, the context was calculated based on the measurement
of forces and torques and RGB sensor data. The introduction of further sensor modalities
(such as depth data) could lead to a further increase in classification accuracy.
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7. Simonič, M.; Petrič, T.; Ude, A.; Nemec, B. Analysis of Methods for Incremental Policy Refinement by Kinesthetic Guidance. J.
Intell. Robot. Syst. 2021, 102, 5. [CrossRef]

8. Roheda, S.; Krim, H.; Riggan, B.S. Robust multi-modal sensor fusion: An adversarial approach. IEEE Sens. J. 2020, 21, 1885–1896.
[CrossRef]

9. Polikar, R. Ensemble learning. In Ensemble Machine Learning; Springer: Berlin/Heidelberg, Germany, 2012.
10. Kocev, D.; Vens, C.; Struyf, J.; Džeroski, S. Tree ensembles for predicting structured outputs. Pattern Recognit. 2013, 46, 817–833.

[CrossRef]
11. Nemec, B.; Yasuda, K.; Mullennix, N.; Likar, N.; Ude, A. Learning by demonstration and adaptation of finishing operations using

virtual mechanism approach. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Brisbane,
Australia, 21–25 May 2018; pp. 7219–7225.

https://www.mdpi.com/article/10.3390/s22207962/s1
https://www.mdpi.com/article/10.3390/s22207962/s1
https://doi.org/10.5281/zenodo.7221443
https://doi.org/10.5281/zenodo.7221443
https://doi.org/10.5281/zenodo.7221387
http://doi.org/10.1016/j.robot.2020.103711
http://dx.doi.org/10.1016/j.rcim.2020.101979
http://dx.doi.org/10.3390/robotics7020017
http://dx.doi.org/10.1007/s10846-021-01328-y
http://dx.doi.org/10.1109/JSEN.2020.3018698
http://dx.doi.org/10.1016/j.patcog.2012.09.023


Sensors 2022, 22, 7962 19 of 20

12. Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. YOLACT: Real-Time Instance Segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 9156–9165.

13. Nottensteiner, K.; Sachtler, A.; Albu-Schäffer, A. Towards Autonomous Robotic Assembly: Using Combined Visual and Tactile
Sensing for Adaptive Task Execution. J. Intell. Robot. Syst. 2021, 101, 49. [CrossRef]

14. Visinsky, M.; Cavallaro, J.; Walker, I. Robotic fault detection and fault tolerance: A survey. Reliab. Eng. Syst. Saf. 1994, 46, 139–158.
[CrossRef]

15. Abu-Dakka, F.; Nemec, B.; Kramberger, A.; Buch, A.; Krüger, N.; Ude, A. Solving peg-in-hole tasks by human demonstration and
exception strategies. Ind. Robot. Int. J. 2014, 41, 575–584. [CrossRef]

16. Marvel, J.A.; Bostelman, R.; Falco, J. Multi-Robot Assembly Strategies and Metrics. ACM Comput. Surv. 2018, 51, 1–32. [CrossRef]
[PubMed]

17. Laursen, J.S.; Schultz, U.P.; Ellekilde, L.P. Automatic error recovery in robot assembly operations using reverse execution.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany,
28 September–3 October 2015; pp. 1785–1792.

18. Nicolescu, M.N.; Mataric, M.J. Learning and interacting in human-robot domains. IEEE Trans. Syst. Man Cybern. Part A 2001,
31, 419–430. [CrossRef]

19. Shetty, S.; Silverio, J.; Calinon, S. Ergodic Exploration Using Tensor Train: Applications in Insertion Tasks. IEEE Trans. Robot.
2021, 38, 906–921. [CrossRef]

20. Sigaud, O.; Droniou, A. Towards deep developmental learning. IEEE Trans. Cogn. Dev. Syst. 2016, 8, 99–114. [CrossRef]
21. Nemec, B.; Abu-Dakka, F.J.; Ridge, B.; Ude, A.; Jørgensen, J.A.; Savarimuthu, T.R.; Jouffroy, J.; Petersen, H.G.; Krüger, N. Transfer

of assembly operations to new workpiece poses by adaptation to the desired force profile. In Proceedings of the 2013 16th
International Conference on Advanced Robotics (ICAR), Montevideo, Uruguay, 25–29 November 2013.

22. Vuga, R.; Nemec, B.; Ude, A. Speed adaptation for self-improvement of skills learned from user demonstrations. Robotica 2016,
34, 2806–2822. [CrossRef]
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55. Simonič, M.; Žlajpah, L.; Ude, A.; Nemec, B. Autonomous Learning of Assembly Tasks from the Corresponding Disassembly

Tasks. In Proceedings of the IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids), Toronto, ON, Canada,
15–17 October 2019; pp. 230–236.

http://dx.doi.org/10.1007/s10994-008-5077-3
http://dx.doi.org/10.1109/SII52469.2022.9708896
http://dx.doi.org/10.1016/j.rcim.2019.101894
http://dx.doi.org/10.1109/TASE.2020.3032075
http://dx.doi.org/10.1023/A:1010933404324

	Introduction
	Related Work
	Materials and Methods
	Experimental Environment
	Peg-in-Hole Insertion Task
	The Task of Inserting Copper Sliding Rings into Metal Pallets
	Force-Torque Data Extraction: Contact Vector Estimation
	Vision Data Extraction: Instance Segmentation with YOLACT
	Extracting a Fixed-Size Feature Vector from Instance Segmentation Results
	Combining Image Features and Force-Torque Measurements Using Ensembles of Predictive Clustering Trees

	Results
	Generalizability of Classification
	Single Modality versus Multimodal Models for Classification
	Verification of Error Context Determination for the Generation of Exception Strategies

	Discussion
	Conclusions
	References

