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Abstract: Satellite IoT networks (S-IoT-N), which have been a hot issue regarding the next generation
of communication, are quite important for the coming era of digital twins and the metaverse because
of their performance in sensing and monitoring anywhere, anytime, and anyway, in more dimensions.
However, this will cause communication links to face greater traffic loads. Satellite internet networks
(SIN) are considered the most possible evolution road, possessing characteristics of many satellites,
such as low earth orbit (LEO), the Ku/Ka frequency, and a high data rate. Existing research on
load balancing schemes for satellite networks cannot solve the problems of low efficiency under
conditions of extremely non-uniform distribution of users (DoU) and dynamic density variances.
Therefore, this paper proposes a novel load balancing scheme of adjacent beams for S-IoT-N based on
the modeling of spatial–temporal DoU and advanced GA. In our scheme, the PDF of the DoU in the
direction of movement of the SSP’s trajectory was modeled first, which provided a multi-directional
constraint for the non-uniform distribution of users in S-IoT-N. Fully considering the prior periodicity
of satellite movement and the similarity of DoU in different areas, we proposed an adaptive inheritance
iteration to optimize the crossover factor and mutation factor for GA for the first time. Based on the
proposed improved GA, we obtained the optimal scheme of load balancing under the conditions of
the adaptation from the local balancing scheme to global balancing, and a selection of Ser-Beams to
access. Finally, the simulations show that the proposed method can improve the average throughput
by 3% under specific conditions and improve processing efficiency by 30% on average.

Keywords: load balancing; satellite network; Internet of Things; genetic algorithm; beam hopping

1. Introduction

Sensing and monitoring anywhere, anytime, and anyway in more dimensions are
quite important for the coming era of digital twins and the metaverse [1]. The internet of
things (IoT) is a network that provides the methods and infrastructures needed to achieve
states sensing of object and relative information aggregation. The essential tendency of IoT
in the future is global coverage and remote controlling with a higher data rate and access
amount. Therefore, the IoT on the ground combined with the satellite network would be
the most potent approach to greatly enlarging the scenarios of the IoT [2]. With the recent
rapid developments in satellite networks, satellite IoT networks (S-IoT-N) have been a topic
of general interest in the monitoring of mining, ocean shipping, and power transmission.
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The key bottleneck of the above urgent application is the enhancement of the satellite
network. One of the scenarios of the sixth generation (6G) is the space–air–ground inte-
grated network (SAGIN). The Third Generation Partnership Project (3GPP) have proposed
non-terrestrial networks (NTN) projects to promote the enhancement of satellite networks
since 2019 [3]. Satellite internet networks (SIN) are regarded as the most possible evolu-
tion road, possessing characteristics of many satellites, low earth orbit (LEO), the Ku/Ka
frequency, and a high data rate [4].

More advanced potential technologies are introduced in SIN evolution. There are
some important tendencies:

(a) Satellite beams (Sat-Beam) steering in a permanent position: SIN satellites have
multi-Sat-Beams, which move at high speed relative to the earth. The footprint of Sat-Beams
(F-Sat-Beam) are planned by constellation [5]. During the service of the observed satellite,
its Sat-Beams steer in a permanent position.

(b) Intra-serving beam (Ser-Beam)-hopping (Ser-BH): For the exploitation of a satellite-
based phased array antenna (PAA), the F-SB can be further divided into different small
footprints of serving beams (F-Ser-Beam) [6]. They can serve users at different places and
in different periods through Ser-BH, which achieves occasion division multiplexing.

(c) More dimensions of radio resource (RR): The introduction of combining the fifth
generation (5G) new radio (NR) technologies, orthogonal frequency division multiplexing
access (OFDM), and non-orthogonal multiple access (NOMA) would be exploited by SIN.
Using the coverage of Sat-Beams, the users can be served by the multiplex with time,
frequency, power, space, and occasion divisions [7].

Meanwhile, the requests of users are not distributed uniformly in the space domain,
which causes the density of each F-Ser-Beam to be quite different. In the scope of Sat-Beams,
particularly the Ser-Beams at the edge, it is hard for users to choose the long-suitable Ser-
Beams for load balancing. As the granularity of RR increases, the above problem becomes
more serious. The relatively shifting position between the position of Sub-Satellite Point
(SSP) and the user also makes this worse.

Figure 1 shows the problems of load balancing for Ser-BH in SIN. As Figure 1 shows, the
first problem is how to improve the local scheme for load balancing of adjacent Ser-Beams
to adapt to global scenarios. For large degradation of signal fading, the load balancing
between adjacent Ser-Beams around the edge of Sat-Beams should be paid more attention
to. However, there are thousands of possible scenarios for adjacent Ser-Beams with different
DoU. The optimal scheme is not only to solve the problem in the case of local load balancing,
but also different local scenarios around the world. The second problem is which Ser-Beams
the users should be accessing to under the DoU of spatiotemporal non-uniform. The SSPs
of an observed satellite are not permanent and not in the center of F-Ser-Beams, which are
different from other satellites and have different times. The trajectories of SSPs are also
different in the Ser-Beams serving during (SD). That means the probability density of power
(PDP) of the satellite signal at the same position on the ground would vary with time, and
the corresponding capacity of each Ser-Beam would also change.

Existing research on load balancing schemes for satellite networks focuses on Sat-
Beam scenarios without intra-Ser-BH, and users with unified uniform distribution in the
time and space domains [8–15]. Optimization of satellite network routes is the prevailing
design for achieving load balancing in this research. However, the DoU are spatio-temporal
non-uniform; none of the research can solve the problems of global load balancing based
on local balancing schemes and the selection of access to Ser-Beams under changeable DoU.
Considering the DoU have a serious relationship with geography, the users of S-IoT-N can
be divided into different grids on the surface of the earth. After combining the grids with
global population distributions, we can obtain multi-grids with different DoU densities. We
can operate the load balancing according to the density variances of users under different
movement directions from one grid to another grid. Though the densities of grids are
different around the world, all scenarios can be taken as a limited set for density variances
of users. Then, the basic load balancing schemes become the original reference for global



Sensors 2022, 22, 7930 3 of 20

schemes and different times, which can be taken as the gene of the genetic algorithm (GA).
After modeling and improving the mutation and crossover of the gene, it can effectively
solve the problem of the adaptation from a local balancing scheme to global balancing and
the selection of Ser-Beams to access.
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Finally, this paper proposes a novel load balancing scheme of adjacent beams for
S-IoT-N based on the modeling of spatial–temporal DoU and advanced GA [16–19]. The
main contributions of this paper are summarized as follows:

• In contrast to existing research on load balancing under DoU of uniform, we are
the first to improve these schemes by modeling the density variances of users under
different moving directions. This can solve load balancing problems under spatio–
temporal non-uniform DoU;

• Fully considering the prior periodicity of satellite movement and the similarity of
DoU in different areas, we propose the adaptive inheritance iteration to optimize the
crossover factor and mutation factor for GA for the first time. This can enhance the
efficiency and convergence speed of GA for S-IoT-N scenarios;

• The Ser-BH scenario is totally new to SIN. We propose a load balancing scheme based
on non-uniform spatial–temporal DoU and advanced GA, which can achieve better
performance of total throughput for adjacent Ser-beams.

The rest of this paper is organized as follows: In Section 2, the relative works are intro-
duced. In Section 3, the system model and problem formulation are described. Section 4 is
devoted to the load balancing scheme of adjacent beams for S-IoT-N based on the modeling
of spatial–temporal DoU and advanced GA. The simulations and analysis are discussed in
Section 5. The summaries are provided in Section 6.

2. Related Works

Several works on satellite load balancing have been published in recent years. Their
current include load balancing based on the distribution of users, load balancing based on
satellite ephemeris topology, and load balancing based on Quality of Service (QoS).

The schemes of load balancing based on DoU dictate that the users decide which
satellites to access by analyzing the density of equipment distributions [20–23]. W. Liu etc.
proposed a routing algorithm based on segment routing for traffic return of LEO satellite
networks [20]. They dynamically divide the surface of the earth into light and heavy load
zones according to the relative position between gateways and the reverse slot. They then
use a pre-balanced shortest path algorithm in the light load zone and use the minimum
weight path defined by congestion index as the routing rule in the heavy load zone. J.
Camino etc. proposed a method for optimizing the layout of satellite beams by applying
mixed-integer linear programming (MILP) [21]. They designed two different sizes of spot
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beams to cover the area under non-uniform DoU. In their schemes, low user density areas
would be covered with large-size beams, and high user density areas would be covered
with small-size beams. MILP was exploited to optimize load balancing to achieve well-
distributed traffic among the different beams. Syed Maaz Shahid et al. proposed a load
balancing algorithm for a multi-RAT (radio access technology) network including an NTN
and a TN [22]. They first offloaded the appropriate edge UEs of an overloaded cell to
underutilized neighboring cells in TN. If there were any overloaded cells after the first step,
they offloaded the delay-tolerant data flows of UEs to a satellite link.

The load balancing schemes based on satellite topology dictate that the users decide
which satellites to access by analyzing which planned satellites would be on the services.
P. Liu etc. proposed a load balancing routing scheme by hybrid-traffic-detour [24]. They
calculated and designed the shortest path and a long-distance traffic detour path to forward
packets and determine which path to use for forwarding to against link congestion [25].
The scheme tried to avoid a situation in which the routing path between a node and its
neighbors were directed toward the same destination node. It chose the next hop based on
satellite ephemeris prediction and traffic distribution, which increased the effect of load
balancing. C. Dong et al. proposed a load balancing routing algorithm based on extended
link states [26]. They keep all the satellite nodes informed of the link congestion state
through an active state discovery and automatic congestion state release mechanism. All
satellite nodes update the route table according to the link congestion state to achieve a
balanced distribution of traffic load.

Load balancing schemes based on QoS dictate that the users decide which satellites to
access by analyzing the average QoS of the satellite network. H. Cao et al. proposed a load
balancing algorithm under the satellite network with hopping beams [27]. They divided
the beams into heavy load beam (HLB) and light load beam (LLB) groups and offloaded
the user terminals that had the highest packet loss rate in the HLB to an adjacent LLB. Then
they offloaded the remaining user terminals that had the highest packet loss rate in the
HLB to a non-adjacent LLB with hopping beams.

After reviewing the existing works on the load balancing of satellites, most research
institutes were concerned with treating satellite networks as a pure transmission network.
Their schemes mainly selected a suitable route to achieve efficient traffic offloading. Usually,
they focused on the scenarios of the Sat-Beams without intra-Ser-BH, and the users with
unified uniform distribution in the time and space domains. However, the DoU are spatio–
temporal non-uniform, and none of this research has solved the problem of global load
balancing based on a local balancing scheme and the selection of access to Ser-Beams under
changeable DoU. On the other hand, artificial intelligence (AI) has been widely introduced
to solve random communications issues.

3. System Model and Problem Formulations
3.1. Network Architecture

As is shown in Figure 2, the network architecture of S-IoT-N can be divided into
space segments and ground segments. In the space segment, there are multi-satellites
S =

{
s11, s12, s13, . . . , sij, . . . , smn

}
, which are composed of a satellite constellation in orbit

of height; h. sij denotes a satellite, where i and j are the i-th satellite in j-th orbit in
the constellation. Next, the number of satellites is expressed as m ∗ n. There are intra-
links lsia ja→sib jb

between one satellite sia ja and another satellite sib jb . The satellites provide
users with communication coverage on the ground, which exploits the PAA to achieve
dynamic beam-hopping. The coverage areas are further planned and configured according
to the satellite constellation and the surface terrain of the earth. These consist of sets of
F-Sat-Beams B = {B1, B2, B3, . . . , BN}, where Bi corresponds to the coverage area. All F-
Sat-Beams cover the globe; the sum of coverages is ∑N

0 Se(Bi). In the system using Ser-BH,
the coverage of F-Sat-Beam Bi is a virtual boundary for the serving satellite on the ground.
There are several Ser-Beams bij in each F-Sat-Beam Bi. F-Ser-beams correspond to the
actual position of the physical beams serving users. The number of F-Ser-Beams in each
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F-Sat-Beam can be different. The sum of the coverage area of F-Ser-Beam ∑M
0 Se

(
bij
)

should
be larger than that of the F-Sat-Beams. For example, the OneWeb constellation is a near-
polar-orbit satellite constellation comprising 720 satellites in 18 circular orbital planes at an
altitude of 1200 km [15,16]. The satellite can be set as S =

{
s11, s12, s13, . . . , sij, . . . , s(40)(18)

}
.

Each satellite has about 6 adjacent satellites and 16 identical, non-steerable, highly-elliptical
F-Ser-Beams. The F-Ser-Beams in each F-Sat-Beam Bi can be set as bij , j = 1 · · · 16. If the
users in the coverage area are served, the situation is assumed as bij(on); otherwise, the
situation is bij(off). In the ground segment, there are several earth stations (ES) and users
(U). The ESs are the nodes that receive or transmit information to or from the satellites,
whose functions are similar to the functions of a base station (BS). The users are the IoT
terminals, the number of them in the world is assumed as N. The users are distributed in
spatio–temporal non-uniform by geography. We will further demonstrate the user model
and distributions in the next chapter.
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3.2. User Model and Distribution

The DoU are analyzed in two scopes: the global scope, and the local scope. In the
global scope, the user distributions are relatively permanent and follow global population
distributions. This can provide useful prior knowledge. The densities of users vary greatly
between each F-Ser-Beam. In the local scope, since the coverage of F-Sat-Beams is much
larger than those of cells of mobile communication networks, there are very weak mutual
influences between non-adjacent Ser-Beams in S-IoT-N. Therefore, the handovers between
adjacent Ser-Beams based on received signal-power are not considered in our scenarios.
We are concerned with the problem of which Ser-Beams the users should access for load
balancing. The solutions were further improved to adapt to different density variances
around the world. Next, we proposed to model the density variances of users under
different moving directions, which is shown in Figure 3.

First, we built a two-dimensional satellite to ground grid map (SGGM). In an SGGM,
a plane projection Su of the surface of the earth is generated. Su can be divided into a× b
grids according to the configured satellite constellation, where a is the number of grids in
the latitudinal direction, and b is the number of grids in the longitudinal direction. It can
be deduced as:

a =

[
a0 ×

Ns0

Ns1
× Ho1

Ho0

]
(1)

b =

[
b0 ×

Ns0

Ns1
× Ho1

Ho0

]
(2)
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where a0 and b0 are the number of grids in the directions of latitude and longitude in
the case of the referenced satellite constellation, respectively. Ns0 and Ho0 are the satellite
number and the orbital altitude of the referenced satellite constellation. Ns1 and Ho1 are the
satellite number and orbit height of the observed satellite constellation. The observed grid
G(a,b) is associated with an actual latitude and longitude, which is

(
x(Ga1,Gb1)

, y(Ga1,Gb1)

)
,(

x(Ga2,Gb2)
, y(Ga2,Gb2)

)
,
(

x(Ga1,Gb2)
, y(Ga1,Gb2)

)
, and

(
x(Ga2,Gb1)

, y(Ga2,Gb1)

)
.
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Second, the probability density functions (PDF) of DoU p0(x, y) of each grid were
obtained by combining the SGGM and global IoT device distribution. The value of PDF
is shown in the second part of Figure 3. If the number G(a,b) of observed satellite grids is
greater than the number G(a0,b0) of referenced satellite grids, that is, a1 > a0, p1(x, y) can
be exploited directly. If the number G(a,b) of observed satellite grids is less than the number
G(a0,b0) of referenced satellite grids, that is, a0 > a1, the densities p1(x, y) can be gained by
obtaining the average of the densities p0(x, y) of the surrounding grids. Next, the new PDF
of DoU pg

(
G(a,b)

)
with different specifications of the SGGM was obtained.

Third, the PDF of DoU densities pg

(
G(a,b)

)
were further normalized. We designed

6 levels of normalized densities for pg

(
G(a,b)

)
, which are {Q1, Q2, Q3, Q4, Q5, Q6}; Q1 :

pg

(
G(a,b)

)
∈ [0 : 0.02],Q2 : pg

(
G(a,b)

)
∈ [0.02 : 0.06], Q3 : pg

(
G(a,b)

)
∈ [0.06 : 0.1], Q4 :

pg

(
G(a,b)

)
∈ [0.1 : 0.2], Q5 : pg

(
G(a,b)

)
∈ [0.2 : 0.5], and Q6 : pg

(
G(a,b)

)
∈ [0.5 : 1].

Finally, the PDF variances with moving SSPs were obtained. Under the observation
of SSP movement directions, the differences ∆pg(x, y) in PDF during a Sat-Beam serving
period Td from one grid to another grid are expressed as

∆pg

(
G(a,b)

)
= pg

(
G(ai ,bi)

)
− pg

(
G(ai+vdTd

,bi+i∗vdTd
)

)
. (3)

3.3. Problems Formulations

In Equation (3), the PDF variances of different grids changing around the SGGM can
be described by ∆pg(x, y) to provide a foundation for solving the problems of global load
balancing adaption. Here, the problems should be further analyzed in depth. In actual
S-IoT-N scenarios, users are not distributed uniformly in different grids, especially for non-
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centered SSPs. As shown in Figure 4, two adjacent F-Sat-Beams B1 and B2 were observed.
B1 can be further divided into several F-Ser-Beams {b11, b12, . . . , b1n}; B2 can be further
divided into several F-Ser-Beams {b21, b22, . . . , b2n}. The Ser-Beams bedge(B1, B2) around
the edge of B1 and B2 are of most concern. The serving periods Tn of different satellites in
the satellite constellation serving on the same F-sat-Beam are different, which have different
start-serving-times ts and over-serving-times to. Figure 4 shows the trajectories of the SSPs
in F-Ser-Beams B1 and B2 at the periods of T1 and T2, which are set as l11@B1&T1 and
l21@B2&T1. Next, in the period T1, the center-point of b1e ∈ bedge(B1, B2) is closer to the
SSP trajectory l21 of B2 than SSP trajectory l11 of B1. In the period T2, the center-point of b1e
is closer to the SSP trajectory l12 of B1 than the SSP trajectory l22 of B2. Considering that the
distances between the center-points of Ser-Beams and satellites are similar, the SSPs in the
two Ser-Beams are similar too. Therefore, the problem of load balancing lies in determining
which satellite’s Ser-Beams users should access, and not the access threshold. Following
this problem, it can be analyzed that the constraints of optimal load balancing relate to
the density variances of DoU with the SSP movement, the number of users with different
services, and the differences in DoU of adjacent F-Ser-Beams.
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During a specific serving period Ti, Sat-Beam Bi was observed in the analysis. The max-
imum capacity of a satellite was assumed as Tramax(Bi), the total bandwidths as BWi, and
the DoU density as pg(Bi , Ti , t), t ∈ [Ti−1 , Ti]. The Ser-Beams of Bi are
bBi = {bi1, bi2, . . . , bin}, the area of each Ser-Beam is s, and the corresponding PDF
of DoU is pg(bik), k = 1 · · · n. The average arrival probability of services requests is
µi(t) , t ∈ [Ti−1 , Ti]. The average service traffic is ϕi. The service traffic of Ser-Beams is,

Tra(bik) =
x

S
pg(bik)× µi(t)× ϕi . (4)

The adjacent Sat-Beam of Bi is Bj. The adjacent Ser-Beams are bm ∈ bedge
(

Bi, Bj
)
. The

judgment coefficient function λ(bm, ∗) is defined as

λ(bm, Bi) =

{
1, users in beam bm access to satellite Bi

0, users in beam bm not access to satellite Bi
(5)

Next, the traffic of the Sat-Beam is,

Tra(Bi) = ∑
bik∈bBi

Tra(bik) + ∑
bm∈bedge(Bi ,Bj)

λ(bm, Bi)× Tra(bm)− ∑
bik∈bBi

∩bedge(Bi ,Bj)

Tra(bik) (6)

We can also obtain the traffic of Sat-Beam Bj with Tra
(

Bj
)
.

Finally, the problem of load balancing for adjacent Ser-Beams of S-IoT-N can be
formulated as:

• Objectives:

Objective 1: achieve the maximum throughput of adjacent Sat-Beams:

MAX
[
Tra(Bi) + ∑ Tra

(
Bj
)]

(7)
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Objective 2: achieve the minimum waiting time for users of adjacent Sat-Beams:

MIN[average(Tra(bik)/BWi)] (8)

• Conditions:

Condition 1: The PDF variances of DoU in the direction of SSPs moving in a Sat-Beam
Bi and serving time Ti are observed.

∆pg(Bi , Ti , t) =
∂pg(Bi, Ti, t)

∂t
, t ∈ [Ti−1 , Ti] (9)

Conditions 2: The PDF variances of DoU in the direction of SSPs moving between
two adjacent Sat-Beams in one serving time Ti are observed. The DoU of two adjacent
F-Sat-Beams is different.

∆pg
(

Bi , Bj , Ti , t
)
=

∂pg(Bi , Ti , t)
∂t

−
∂pg
(

Bj , Ti , t
)

∂t
, t ∈ [Ti−1 , Ti] (10)

The probability of judgment coefficient function can be varied with density variances,
which are,

ln
P(λ(bmλBi) = 1)
P
(
λ
(
bmλBj

)
= 1

) =
ε

∆pg
(

Bi , Bj , Ti , t
) (11)

where ∆pg
(

Bi , Bj , Ti , t
)
> 0, indicating that the density variances of Bi increase more than

those of Bj. Thus, the probability of accessing Bi decreases, achieving load balancing.
Condition 3: The density variances of DoU in the direction of SSPs moving between two

adjacent Sat-Beams in two serving times Ti are observed. The trajectories of SSPs are different.

• Constraints:

Constraint 1: The total traffic of users newly accessing the adjacent Sat-Beams is less
than the traffic capacity of the Sat-Beams:

Tra(Bi) ≤ Tramax(Bi) (12)

Tra
(

Bj
)
≤ Tramax

(
Bj
)

(13)

4. Load Balancing Scheme Based on the Modeling of Spatial–Temporal DoU and
Advanced Genetic Algorithms
4.1. The Modeling of the Solution Using the Original GA

In Section 3, the constraints of the problems of load balancing were proposed. A
local optimal solution must be achieved to solve the problems of most other cases of load
balancing around the world. At the same time, the local optimal solution should be further
improved to adapt to the density variances of DoU in the spatial–temporal domain. In
addition, the periodic movement of satellites can provide solution optimization with more
efficient prior information. Based on the above considerations, the optimal solution was
modeled by GA. The overall design of the original GA is shown in Table 1.

The specific modeling is described as follows:

• Step 1: Modelling of Fitness Function:

The fundamental purpose of load balancing for S-IoT-N is to improve the performance
of the throughput and QoS. In serving period Ti, the throughput of all Sat-Beams Bj should
be maximized, and the average waiting time of all users should be minimized. The fitness
function is defined as

f itness =
k1 ∗ Tratotal

k2 ∗ T_delayave
(14)

where Tratotal and T_delayave are the global throughput of S-IoT-N and the average waiting
time of all users.
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Table 1. The solution modeling of load balancing by GA.

Genetic Algorithm Mode Modeling of Satellite User Load Balancing Based on Genetic Algorithms

Fitness Function The throughput of adjacent Sat-Beam Bi, Bj in the satellite service period Ti
and average waiting time for users of adjacent Sat-Beam Bi, Bj.

Fitness Rules The fitness increases with the increase of throughput and decreases with
the increase of the average waiting time for users.

Single Optimal Solution
The load balancing scheme Aij of the local k Ser-Beams bij when the user

density is p
(

bij

)
and the serving satellite is Sij.

Solution Encoding Natural number encoding.

Solution Code Aij = {a1 , a2 , a3 , · · · ak}, am (1 ≤ m ≤ k) denotes the access scheme of the
m-th F-Sat-Beams.

Factors Influencing the Solution
The densities variances ∆pg

(
bij , Ti

)
of DoU in the direction of SSPs

moving in a Ser-Beam bij and serving time Ti, differences with that of

adjacent Ser-Beams ∆pg

(
bij , bi+∆i j+∆j , Ti

)
.

Selected Set of Solutions
n load balancing schemes A1

ij , A2
ij , A3

ij , · · · , An
ij of local k Ser-Beams bij

when the user density is p
(

bij

)
and the serving satellite is Sij

A Set of Solutions Selected According to Fitness The N schemes with the highest fitness among the existing load balancing
schemes A1

ij , A2
ij , A3

ij , · · · , AN
ij

The Process of Coding Crossover
Select two load balancing schemes Ax

ij , Ay
ij with similar fitness according to

the crossover probability. Randomly select the points for crossover and
exchange the elements of the corresponding points of the two solutions.

The Process of Coding Mutation

Select a load balancing scheme Ax
ij based on mutation probability. The

mutation points are randomly selected, and the elements of the
corresponding points of Ax

ij are changed according to the selection
probability in the value set.

• Step 2: Modelling of the Solution:

As is shown in Figure 5, we assume that in the observed area, there are k Sat-Beams
Bij, and the corresponding PDF of DoU is p

(
Bij
)
. A solution Aij to the problem of load

balancing, which achieves the optimization objective, is set as a single optimal solution
output by GA. Aij are encoded in the form of natural numbers, which is a matrix composed
of k natural numbers, and am denotes the m-th access scheme of the m-th Ser-Beam. Under
the possible values of each solution am, the influence factors are the density variances of
the user ∆pg

(
Bij, Ti

)
of the serving satellite and the difference in the density of adjacent

satellite users ∆pg
(

Bij , Bi+∆i j+∆j , Ti
)

within the period Ti instead of traditional random
influence for the schemes to which Sat-Beams have access to. This can achieve a certain
optimization direction in a specific scenario.

Under the above optimization direction, we have the solutions A1
ij , A2

ij , A3
ij , · · · , An

ij,
which are the initial populations of GA optimization. The offspring individuals generated
by the crossover mutation in each generation and the parent individuals form a new group
and N individuals A1

ij , A2
ij , A3

ij , · · · , AN
ij are selected using the tournament method to

form the next generation populations. The new populations participate in the evolution of
the next generation.

• Step 3: Modelling the Genetic Cross:

According to the individual pairing principle of matching each other, two individuals
with similar fitness, Ax

ij and Ay
ij, are selected. We judge whether the crossover occurs

according to the crossover probability Pacr. A floating-point number is randomly generated
in the interval [0, 1] as the judgment factor α. If α ≤ Pacr, performs the crossover operation,



Sensors 2022, 22, 7930 10 of 20

randomly select l consecutive elements (l < k) in the individual Ax
ij, and exchange them

with the elements in the same position in Ay
ij to generate two offspring individuals. The

probability of genetic crossover is defined as follows:

Pacr =

{
Pacr(1), f itness ≤ f itnessave

Pacr(0)× f itnessmax− f itness
f itnessmax− f itnessave

, else
(15)

where f itness is the fitness of individuals with higher fitness in an individual Ax
ij and Ay

ij,
f itnessave is the average fitness of the contemporary population, f itnessmax is the fitness of the
best individual in the contemporary population, and Pacr(1) and Pacr(0) are probability constants.
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• Step4: Modelling Genetic Mutation:

For every individual, judge whether there is a genetic mutation according to the
mutation probability Pmut. A floating-point number is randomly generated in the interval
[0, 1] as the judgment factor β. If β ≤ Pmut, the mutation operation is performed, and
the mutation point is randomly selected in the individual Ax

ij. Next, the elements of the
corresponding point of Ax

ij are changed according to the selection probability in the value
set to generate a child individual. The probability of genetic mutation is defined as follows:

Pmut = Pmut(0)×
tmax − t

tmax
, (16)

where tmax is the maximum evolution generation of the genetic algorithm, t is the current
evolution generation, and Pmut(0) is a probability constant.

4.2. GA Optimization by Improving the Genetic Crossover and Mutation Based on Controllable
Adaptation to the Scenario

Since the load balancing of S-IoT-N is continuous, we should fully consider the prior
periodicity of satellite movements and the similarity of DoU in a different area. This can
provide efficient prior information and adjust the GA according to the differences in load
balancing performance between the current period and the previous period. This can
control the GA’s adaptation to changes in different scenario parameters to achieve better
evolution to obtain better performance. Therefore, this paper proposes a controllable adap-



Sensors 2022, 22, 7930 11 of 20

tive genetic algorithm (CAGA) based on prior information on S-IoT-N. The optimization is
mainly on the improvement of genetic crossover and genetic mutation.

• Optimization of Cross Factor:

Before the service period Ti of satellite Si starts, the incoming serving satellite obtained
the optimal solution Aij(Ti−1), Aij(Ti−2), Aij(Ti−3), · · · , Aij(Ti−h) of the load balancing
scheme for Ser-Beams in former h periods. They grouped a set A_proij with a prior high-
fitness cross object sequentially, and the PDF variances ∆pg(Bi , Ti−δ , t), δ = 1 · · · h of each
optimal solution in the corresponding period were also obtained.

At the beginning of the crossover operation, individuals in the contemporary population
were divided into individuals whose fitness is higher than the average fitness of the population
and individuals whose fitness is lower than the average fitness of the population. Here,
whether to cross was judged according to the crossover probability shown in Equation (15).
Individuals with higher fitness than the population average were selected as crossover objects
with similar fitness according to the principle of matching each other. The individuals whose
fitness was lower than the average fitness of the population selected cross objects from the prior
high-fitness cross object set A_proij, where the probability of each element of A_proij being
selected is determined by the differences factor of densities variances ω(Ti , Ti−δ), δ = 1 · · · h.
The difference factor of PDF variances can be calculated as,

1
ω(Ti ,Ti−δ)

=
∫ Ti

Ti−1

[
∆pg(Bi , Ti , t)− ∆pg(Bi , Ti−δ , t)

]2dt,

=
∫ Ti

Ti−1

[
∂pg(Bi ,Ti ,t)

∂t − ∂pg(Bi ,Ti−δ ,t)
∂t

]2
dt

=
∫ Ti

Ti−1

[
∂(pg(Bi ,Ti ,t)−pg(Bi ,Ti−δ ,t))

∂t

]2
dt

=
∫ Ti

Ti−1

[
∂∆pg(Bi ,Ti ,Ti−δ ,t)

∂t

]2
dt

(17)

The probability of Aij(Ti−δ) selected can be calculated:

P
(

Aij(Ti−δ)
)
=

ω(Ti , Ti−δ)

∑h
d=1 ω(Ti , Ti−d)

(18)

where 1
ω(Ti ,Ti−δ)

is the quantification of the differences in user density mutation of Ser-

Beams in two periods. When 1
ω(Ti ,Ti−δ)

became smaller, the differences of two scenarios
in two periods became fewer, and the probability that the load balancing scheme of this
period was selected increased.

• Optimization of Mutation Factor:

Before the service period Ti of satellite Si starts, the incoming serving satellite obtained
pg(Bi , Ti , t) of F-Sat-Beams and pg

(
Bj , Ti , t

)
of the adjacent F-Sat-Beam which could be

accessed. In the set of any feasible solution Aij = {a1 , a2 , a3 , · · · ak}, the solution am to
access m-th F-Sat-beams included all possible F-Ser-beams in the m-th Sat-Beam. In the
operation of mutation, the mutated value of am was no longer randomly selected from
a random probability set instead of a certain probability. The factor ω(Bi) that affects
probability can be calculated as

1
ω(Bi )

=
1

Ti − Ti−1
×
∫ Ti

Ti−1

pg(Bi , Ti , t)dt (19)
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Furthermore, the probability of the selection of scheme access to Bi is:

P(Bi) = ω(Bi)

ω(Bi)+ω(Bj)

=
1

Ti−Ti−1
×
∫ Ti

Ti−1
pg(Bi ,Ti ,t)dt

1
Ti−Ti−1

[
∫ Ti

Ti−1
pg(Bi ,Ti ,t)dt+

∫ Ti
Ti−1

pg(Bj ,Ti ,t)dt]

=
1

Ti−Ti−1
×
∫ Ti

Ti−1
pg(Bi ,Ti ,t)dt

1
Ti−Ti−1

[
∫ Ti

Ti−1
pg(Bi ,Ti ,t)dt+

∫ Ti
Ti−1

pg(Bj ,Ti ,t)dt]

=

∫ Ti
Ti−1

pg(Bi ,Ti ,t)dt∫ Ti
Ti−1

[pg(Bi ,Ti ,t)+pg(Bj ,Ti ,t)]dt

(20)

In Equation (20) we can conclude that the higher the PDF of DoU of F-Sat-Beams, the
lower the probability of being selected. The overall evolution direction of the mutation
operation is limited to optimization in the load balancing direction. In addition, with the
observed periods and F-Ser-Beams varying, the evolution direction of the mutation can
automatically adapt to real scenarios following the variances of the relative differences of
PDF of adjacent F-Sat-Beams.

4.3. Advanced Load Balancing Scheme Based on Optimized GA

In the first two parts of this Section, we modeled the solution using the original GA
and improved genetic crossover and mutation. According to this work, we designed
an advanced load balancing scheme based on an optimized GA (LB-CAGA) in this part.
Before the start of each satellite service period, the service satellite inputs the relevant prior
information and user information of Ser-Beams and sets parameters for the GA. Next, the
GA figures out the traffic load balancing scheme for the service period. The specific solution
process is as follows:

The pseudocode of the algorithm is shown in Algorithm 1:

Algorithm 1: Load balance based on GA

1. Input: Tra
(

bij

)
; BWi; P(Bi); Aij(Ti−δ), P

(
Aij(Ti−δ)

)
, δ = 1 · · · h;

2. Output: Aij_best, f itness_best
3. Create a population matrix Population[N, k];
4. for i from 1 to N

5. Population[i, :]← rand
(

Aij )

6. Tratotal ← ∑k
j=1 Tra

(
bij

)
× Population[i, k]

7. T_delayave ← Tratotal
BWi×k

8. f itness(i)← k1×Tratotal
k2∗T_delayave

9. end for
10. Row vectors in matrix Population[N, k] sorted by fitness in descending order
11. f itnessave =

1
N ×∑N

i=1 f itness(i)
12. Perform crossover operations Crossover (Population[i, :])
13. Perform mutation operations Mutation(Population[i, :])
14. for i from 1 to end

15. Tratotal ← ∑k
j=1 Tra

(
bij

)
× Population[i, k]

16. T_delayave ← Tratotal
BWi×∑k

j=1 Population[i,k]

17. f itness← k1×Tratotal
k2∗T_delayave

18. end for
19. Row vectors in matrix Population[end, k] sorted by fitness in descending order
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Algorithm 1: Cont.

20. Tournament selects N rows to form a new population matrix
21. if reach the maximum evolution generation then
22. Aij_best← Population[1, :]
23. f itness_best← f itness(Population[1, :])
24. else
25. Go to step 11
26. end if

The flow chart of the algorithm is shown as Figure 6:
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The load balancing scheme inputs the service traffic of the Ser-Beams, satellite total
bandwidths, the optimal solution of the load balancing scheme in the former h periods,
the selection probability of optimal solution, and the selection probability of a single gene.
The GA is initialized first, creates a population matrix Population[N, k], and generates
an initial population. Next, it calculates individual fitness and the average fitness of the
group. Evolution starts when initialization is complete: First, it sorts the individuals in
descending order of fitness. Second, crossover and mutation operations are performed.
The generated new individuals join the original population to form a new group. Third,
the fitness of the new individuals and the average fitness of the new group are calculated.
Finally, the population of the next generation is selected by tournament. If this evolution
generation reaches the maximum evolution generation, it outputs the optimal solution and
its fitness. Otherwise, it enters the next generation evolution and repeats the crossover
mutation operation.

The crossover module inputs population matrix Population[N, k], the fitness of all
the individuals, the average fitness of the population f itnessave, the optimal solution
Aij(Ti−δ) of load balancing scheme in the former h periods, and the selection probability
P
(

Aij(Ti−δ)
)

of the optimal solution. The crossover module judges the crossover probability
and crossover mode of the individuals according to individual fitness. The individual
whose fitness is greater than the average fitness of the population takes the individual
behind itself as the crossover object and randomly selects the crossover starting point and
crossover length. After crossover, the two sub-individuals generated are inserted at the
end of the population. Individuals whose fitness is less than the average fitness of the
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group select the optimal solution of the load balancing scheme in the former h periods
as the crossover object according to the probability and randomly select the crossover
starting point and crossover length. After crossover, the two sub-individuals generated
are inserted at the end of the population. Finally, the population that has completed all
crossover operations is outputted.

The specific process of the crossover operation is shown in Algorithm 2:

Algorithm 2: Crossover

1. Input: Population[N, k]; f itnessave; f itness(i); Aij(Ti−δ), P
(

Aij(Ti−δ)
)

, δ = 1 · · · h;

2. Output: Population[end, k];
3. i = 1
4. while i ≤ N do
5. if f itness(i) ≥ f itnessave then

6. if rand ≤ Pacr(0)× f itnessmax− f itness
f itnessmax− f itnessave

then

7. Randomly choose a crossover starting node
8. Randomly choose the crossover length
9. Population[i, k] perform a crossover operation with Population[i + 1, k]
10. Sub-individuals are inserted at the end of the population
11. i = i + 2
12. else
13. i = i + 1
14. end if
15. else
16. if rand ≤ Pacr(1) then
17. Select prior high fitness crossover objects by selection probability
18. Randomly choose a crossover starting node
19. Randomly choose the crossover length
20. Population[i, k] perform a crossover operation with Aij(Ti−δ)

21. Sub-individuals are inserted at the end of the population
22. i = i + 1
23. else
24. i = i + 1
25. end if
26. end if
27. end while

The mutation module inputs population matrix Population[N, k], the current evolution
generation t, the maximum evolution generation tmax, and the probability of single gene
selection P(Bi). The mutation module judges whether the individual mutates according to
the adaptive mutation probability. The mutated individual randomly selects the mutated
gene node and selects the mutated gene value according to single-gene selection probability.
After mutation, the sub-individual generated is inserted at the end of the population. The
population that has completed all mutation operations is outputted.

The specific process of the mutation module is shown in Algorithm 3:

Algorithm 3: Mutation

1. Input: Population[N, k]; t; tmax; P(Bi);
2. Output: Population[end, k];
3. i = 1
4. while i ≤ N do
5. if rand ≤ Pmut(0)× tmax−t

tmax
then

6. Randomly select gene node for mutation
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Algorithm 3: Cont.

7. Select the result of mutation by probability
8. The sub-individual is inserted at the end of the population
9. end if
10. i = i + 1
11. end while

5. Simulation and Analysis
5.1. Simulation and Experimental Design

To verify the performance of the proposed scheme, we constructed a platform to
simulate the load balancing of S-IoT-N. This platform consisted of four modules: the
satellite simulation module, user simulation module, coverage simulation module, and
control and analysis module, as per Figure 7. The satellite simulation module was mainly
used to simulate satellite nodes under different satellite configurations, which affected the
size of satellite signal coverage on the ground, as well as the SSPs. The user simulation
module was mainly used to simulate different DoU, which related to the population
distribution and service behavior. The coverage simulation module mainly simulates F-
Sat-Beams, F-Ser-Beams, the trajectory of SSPs on the ground, and the constraint boundary
corresponding to the population distribution and determined constellation. The control and
analysis module was mainly used to complete scenario realization, parameter configuration,
and algorithm selection, as well as analysis of the learning ability of the algorithm, the
throughput, and the efficiency of the traffic balancing method.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 7. The simulation platform of load balancing for S-IoT-N. 

Using the simulation platform, we verified the performance of the GA’s learning ef-
ficiency and load balancing. 

The parameters of GAs are configured in Table.2. 

Table 2. Simulation parameter configuration for GA. 

 CAGA PAGA GA 
Crossover Two-point crossover Two-point crossover Two-point crossover 
Mutation Single-point mutation Single-point mutation Single-point mutation 

Select Tournament Tournament Tournament 
Crossover Probability Base probability 0.6 Base probability 0.6 fixed probability 0.6 
Mutation Probability  Base probability 0.1 Base probability 0.1 fixed probability 0.1 

Population Size 
40/60/ 
80/100 

40/60/ 
80/100 

40/60/ 
80/100 

Evolution Generation 0:200:2000 0:200:2000 0:200:2000 
Elitist Preservation use use use 

Termination Condition Reach the maximum evolu-
tionary generation 

Reach the maximum evolu-
tionary generation 

Reach the maximum evolu-
tionary generation 

The parameters of load balancing for S-IoT-N are configured in Table. 3. Load bal-
ancing simulation scenario considering 9 F-Ser-Beams at the edge of 3 F-Sat-Beams. Simi-
lar parameters can be found in the article [20]. 

Table 3. Simulation parameters configuration of load balancing. 

Number of F-Ser-Beam 9 
Traffic Value of F-Ser-Beam 400M 

User Density of Target F-Sat-Beam 0.5: 0.04: 0.9 
User Density of Adjacent F-Sat-Beam 0.5/0.6/0.7/0.8 

Satellite Total Bandwidth 2G 
Average Traffic Value of User Request 15M 
Average Arrival Rate of User Request 0.6 

  

Figure 7. The simulation platform of load balancing for S-IoT-N.

Using the simulation platform, we verified the performance of the GA’s learning
efficiency and load balancing.

The parameters of GAs are configured in Table 2.
The parameters of load balancing for S-IoT-N are configured in Table 3. Load balancing

simulation scenario considering 9 F-Ser-Beams at the edge of 3 F-Sat-Beams. Similar
parameters can be found in the article [20].

Table 2. Simulation parameter configuration for GA.

CAGA PAGA GA

Crossover Two-point crossover Two-point crossover Two-point crossover

Mutation Single-point mutation Single-point mutation Single-point mutation

Select Tournament Tournament Tournament



Sensors 2022, 22, 7930 16 of 20

Table 2. Cont.

CAGA PAGA GA

Crossover Probability Base probability 0.6 Base probability 0.6 fixed probability 0.6

Mutation Probability Base probability 0.1 Base probability 0.1 fixed probability 0.1

Population Size 40/60/
80/100

40/60/
80/100

40/60/
80/100

Evolution Generation 0:200:2000 0:200:2000 0:200:2000

Elitist Preservation use use use

Termination Condition Reach the maximum
evolutionary generation

Reach the maximum
evolutionary generation

Reach the maximum
evolutionary generation

Table 3. Simulation parameters configuration of load balancing.

Number of F-Ser-Beam 9

Traffic Value of F-Ser-Beam 400M

User Density of Target F-Sat-Beam 0.5: 0.04: 0.9

User Density of Adjacent F-Sat-Beam 0.5/0.6/0.7/0.8

Satellite Total Bandwidth 2G

Average Traffic Value of User Request 15M

Average Arrival Rate of User Request 0.6

5.2. Performance of the Improved Genetic Algorithm and Analysis

The solution efficiency and optimization effect of the three genetic algorithms were
simulated and compared, and the statistics of the simulation results are as follows:

It can be seen from the statistical chart that under the condition of different population
sizes in Figure 8, CAGA has higher optimization solution efficiency. The reason for this is
that CAGA exploited prior information to limit the convergence direction of the algorithm,
which accelerated the convergence speed of GA. The PAGA and traditional GA only choose
better solutions in the selection module. However, the CAGA chose better solutions in the
selection module, crossover module, and mutation module, which make the CAGA more
efficient. Taking a population size of 60 as an example, the CAGA figured out the global
optimal solution in the 1000th generation, which is 400 generations less than the probability
adaptive genetic algorithm (PAGA), and nearly 1000 generations less than the traditional
GA. Under the conditions of four different population sizes, the average generation used
by the CAGA to search for the optimal solution is 400 generations less than that of the
PAGA on average, and 700 generations less than that of the traditional GA.
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5.3. The Performance of Load Balancing for S-IoT-N and Analysis

In the above-mentioned simulation environment of satellite traffic load balancing,
LB-CAGA is compared with the most widely studied integrated weighted access scheme
(IWAS). The comparison of load balancing effects of the two schemes is shown in Figure 9.
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As we can see from Figure 9, the system throughput of LB-CAGA and IWAS is
consistent when the user density of the adjacent F-Sat-Beam is 0.5 and 0.6. When the user
density of the adjacent F-Sat-Beam is 0.7, and the user density of the target F-Sat-Beam is
less than 0.74, the system throughput of LB-CAGA and IWAS is consistent. When the user
density of the adjacent F-Sat-Beam is 0.7, and the user density of the target F-Sat-Beam is
more than 0.74, the system throughput of LB-CAGA is on average 0.4G higher than that
of IWAS. When the user density of the adjacent F-Sat-Beam is 0.8, and the user density of
the target F-Sat-Beam is less than 0.62, The system throughput of LB-CAGA and IWAS is
consistent. When the user density of the adjacent F-Sat-Beam is 0.8, and the user density
of the target F-Sat-Beam is greater than 0.62 and less than 0.82, the system throughput
of LB-CAGA is on average 0.4G higher than that of IWAS. When the user density of the
adjacent F-Sat-Beam is 0.8, and the user density of the target F-Sat-Beam is more than 0.82,
the system throughput of LB-CAGA and IWAS is consistent.

From the above analysis, we found that LB-CAGA does not achieve more system
throughput than IWAS when the user density of F-Sat-Beam is too low or too high but
achieves more system throughput when the user density of the F-Sat-Beam is high and still
within the capacity of the serving satellite. The reasons are as follows:

When the user density of the F-Sat-Beam is low, the traffic load is still within the
capacity of the serving satellite. Both schemes allow for the serving satellite to fully
accommodate all user traffic. Consequently, the system throughput of both schemes is the
same as the total traffic load. When the user density of the F-Sat-Beam is too high, the traffic
load exceeds the capacity of the service satellite. Neither of the two schemes can make the
serving satellite bear more traffic load. As a result, the system throughput of both schemes
is the same as the capacity of the serving satellite. When the user density of F-Sat-Beam
is high but still within the capacity of serving satellite, LB-CAGA can improve the total
throughput of the system to a certain extent and maximize the efficiency of the satellite
system. Under this condition, LB-CAGA has a better load-balancing effect than IWAS.

6. Conclusions

This paper proposes a novel load balancing scheme of adjacent beams for S-IoT-N
based on the modeling of spatial–temporal distribution of users and advanced GAs. The
main conclusions are as follows:

(1) We modeled the PDF of DoU in the direction of movement of SSP trajectory, which
provided a multi-directional constraint for non-uniform distribution users in S-IoT-N.
Compared with the existing model with permanent global distribution and pure random
distributions, the proposed model can characterize the PDF variances of DoU more correctly
in the scenario of a highly dynamic satellite.

(2) The crossover factor and mutation factor in GAs are proposed to optimize with
prior information such as the periodicity of satellite movement and the proposed model of
DoU, which can better improve the efficiency of GAs and the performance of load balancing
in S-IoT-N than other existing methods.

(3) Based on the proposed improved GA, we obtained the optimal load balancing
scheme under the conditions of adaptation from the local balancing scheme to global
balancing and the selection of Ser-Beam access. In the scenario of extremely non-uniform
DoU and dynamic density variances, advances in beam-hopping were fully realized.

The proposed load balancing scheme has many application scenarios in S-IoT-N. For
example, S-IoT-N can make up for the lack of terrestrial networks caused by earthquakes
and other natural disasters; this scheme can effectively relieve the sudden increase of traffic
load pressure and keep the communication link unblocked. Moreover, when using sensors to
monitor and transmit the circuit status information through S-IoT-N, this scheme can ensure
the timeliness of the information, so as to take timely measures for various emergencies.
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