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Abstract: Although IoT technology is advanced, wireless systems are prone to faults and attacks.
The replaying information about routing in the case of multi-hop routing has led to the problem
of identity deception among nodes. The devastating attacks against the routing protocols as well
as harsh network conditions make the situation even worse. Although most of the research in the
literature aim at making the IoT system more trustworthy and ensuring faultlessness, it is still a
challenging task. Motivated by this, the present proposal introduces a trust-aware routing mechanism
(TARM), which uses an edge node with mobility feature that can collect data from faultless nodes.
The edge node works based on a trust evaluation method, which segregates the faulty and anomalous
nodes from normal nodes. In TARM, a modified gray wolf optimization (GWO) is used for forming
the clusters out of the deployed sensor nodes. Once the clusters are formed, each cluster’s trust
values are calculated, and the edge node starts collecting data only from trustworthy nodes via the
respective cluster heads. The artificial bee colony optimization algorithm executes the optimal routing
path from the trustworthy nodes to the mobile edge node. The simulations show that the proposed
method exhibits around a 58% hike in trustworthiness, ensuring the high security offered by the
proposed trust evaluation scheme when validated with other similar approaches. It also shows a
detection rate of 96.7% in detecting untrustworthy nodes. Additionally, the accuracy of the proposed
method reaches 91.96%, which is recorded to be the highest among the similar latest schemes. The
performance of the proposed approach has proved that it has overcome many weaknesses of previous
similar techniques with low cost and mitigated complexity.

Keywords: Internet of Things; modified gray wolf optimization; artificial bee colony optimization;
trustworthy nodes; edge node

1. Introduction

Incredible development in the Internet of Things (IoT) in a decade has led this technol-
ogy to flourish in various domains. Connecting billions of devices in the physical world
through IoT technology has narrowed the gap between the physical and the cyber world.
Though many IoT applications have made our lives simpler, it is cumbersome to manage
these systems with high security and fidelity. Security and privacy issues are significant
concerns to IoT applications [1]. These concerns are so because, due to the unattended
randomly placed sensor nodes that are vulnerable to intrusions and attacks, even the data
transmitted by sensor nodes are not trustworthy many times. The breach in security may
incur huge losses to these systems. Thus, it is indispensable to inhibit such losses to con-
struct a reliable and trustworthy approach [2,3]. Secured data transmission is one of the key
challenges in IoT applications. The devices involved in the process of data collection and
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transmission are more prone to attacks and faults. Some of the applications’ requirements
are not only limited to security but also mandate the mitigation of delay, energy usage,
and packet loss. Some of the issues such as congestion, delay in transmission, and energy
consumption can be dealt with using existing routing algorithms [4–6]. Figure 1 shows the
cloud-based sensor network having EDGE nodes to send the data to the cloud server for
real-time data analysis.

Figure 1. EDGE-node-based IoT application.

Edge technology, which serves as an extension of the cloud, shows an enormous
technological improvement by shifting the burden of storage and computing to the edge
network that is confined to an edge layer near the sensing devices. This technique not
only alleviates the resource constraints at the end devices but also uplifts the system
performance [7]. The Edge network can be easily integrated with IoT networks and achieves
a remarkable success in obtaining desired QoS parameters. The trust issues can also be
resolved using this technology [8]. There has been enormous research conducted to solve
the issue of security by using edge node approaches and trust mechanisms such as [9–11].
In [10], the best route path with trustworthy nodes is generated and a mobile edge node
visits each sensor with a significant trust value and collects data. Some research works have
focused on establishing route paths using trust-based schemes. In [11], a belief-based trust
approach to identify malicious nodes is proposed that guarantees defense against Denial
of service (DoS), Bad-mouth, and On–Off attacks. The direct and indirect trust values are
gathered using the Bayesian estimation technique to determine the correlation in time series
data, which can be used to estimate inaccurate knowledge thereby avoiding data from
malicious nodes. The issues encountered while designing a network for data collection
using trust-based scenarios such as cross-layer optimized networks, 3D underwater sensor
networks, UAV-based edge networks, etc. are also major concerns while designing a sensor
network. These issues are addressed and resolved in [10,12–14].

Although these methods promise good gain and robustness to the system, some
loopholes exist in the functionality of these systems. The trust-based routing and selection
of trustworthy nodes consumes much energy and time. This paper presents an optimal way
of solving this problem by introducing a novel Trust-aware Routing Mechanism. It deals
with the IoT architecture exhibiting the edge layer, which uses security-enabled designs,
authorization, authentication, privacy, and intrusion detection mechanisms and protocols.
It also employs an optimized way to organize the nodes and apply a trust mechanism
to all nodes. Furthermore, it establishes a route path using artificial bee colony (ABC)
optimization, which is specially designed for edge nodes. The motivation behind this
architecture is to provide a buffer facility and enhance the system’s privacy using edge
nodes. Our proposed approach is efficient in conserving energy and boosting the accuracy
of the system. The main and original contributions of this work are listed below:
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1. The sensor network having sensor nodes randomly deployed is clustered and the
selection of cluster head is conducted using the modified gray wolf optimization
approach [15].

2. The clustered network consists of many clusters with their respective cluster heads
and a mobile edge node that evaluates the trust of every node in a cluster and gathers
trustworthy information from those nodes.

3. The inter- and intra-cluster routing is optimized using the artificial bee colony op-
timization approach, which provides the best optimal path for the data flow to the
edge node.

4. The performance analysis for the proposed model is based on energy consumption,
delay, detection rate, accuracy, and network lifetime.

The remainder of this paper is arranged as per the sections mentioned below:
Section 2 gives an overview of the relevant works associated with the technique used in

the proposed model. Section 3 describes the problem formulation. A thorough explanation
of the techniques used to build the model is discussed in Section 4. It also presents the
algorithm of the proposed approach. Section 5 analyses the performance of the work on
various metrics and compares it with other similar existing approaches. Section 6 gives a
conclusion with a future direction to the proposed methodology.

2. Related Works

In this section, we provide an overview of the recently published trust-aware routing
protocols with their advantages and limitations. We summarize these in Table 1.

Table 1. Summary of related work on recently published trust-aware protocols.

Reference Algorithm/Protocol Advantages Remarks

Wang et al. [16] TEM-MEN Reliable because of efficient hostile
attacks prevention

Failed to minimize the energy and costly
due to multiple mobile edge nodes

Hu et al. [17] TBSEER Resolve the congestion and serious energy
dissipation problems

Increasing the percentage of malicious
nodes increases the number of rounds
needed to exclude them.

Wang et al. [10] VFDC
Overcomes limited storage capacity and weak
computation power due to mobile edge
data collector

The applications complying with the
edge intelligence network have to be
made more trustworthy

Yang et al. [18] ITCM Improves detection accuracy of malicious nodes
and solves

Not suitable for resource constraint
systems, convergence speed needs to
be improved

[19–21] Trustworthy nodes
selection

Can be improved to encounter other external or
internal attacks such as ballot stuffing,
conflicting behavior, Sybil attacks, etc.

Security breach from distributed network
threats, not cost effective

Zhang et al. [8] DRL Intelligent trust nodes selection High computational complexity and
resource rich

Majhi et al. [22] ALO-K Efficient hybrid clustering
Intra-cluster distance must be minimum
and F-measure must be maximum for
better cluster quality

Das et al. [23] Modified BCO with
K-means Low convergence time Restricted to single-objective

optimization functions

Khan et al. [24] Modified ABC Detects Sybil attacks in pervasive edge
computing based IIOT

Kumar et al. [25] ACO Efficient data collection by minimizing delay and
maximizing the network life

Hard to decide population size and
initial parameters

Rm. et al. [26] PCA

Iwendi et al. [27] WOA-SA Efficient selection of cluster heads Energy consumption and security issues
need to be addressed

Our approach TARM High convergence with no local optima problem None
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There are many research contributions on trust-aware routing in the literature; we
summarize the most recent ones in this section. Wang et al. [16] proposed a trust evaluation
scheme based on mobile edge nodes for IoT. In [17], the authors propose a routing protocol
called trust-based secure and energy (TBSEER) routing protocol to resolve the congestion
and serious energy dissipation problems. In this proposal, the nodes calculate the adaptive
direct trust value, and the sink nodes take care of indirect trust computation. Here, the edge
nodes efficiently identify the untrustworthy nodes, thereby reducing the risk of attacks.
A virtual force data collection (VFDC) scheme is proposed in [10] that enables a mobile edge
node to visit every trustworthy node and collect their data to ensure both energy-saving
and security of the system. Another approach called Intelligent Trust Cloud (ITCM) [18]
management is used to determine the untrustworthy devices in the Internet of Medical
Things (IoMT). This approach works in three phases: firstly, the trust clouds are formed;
then, they are established through the Fuzzy inference system; finally, the third phase deals
with seeking untrustworthy nodes in it.

In [19–21], the authors propose trust-based algorithms to select trustworthy nodes,
and the data are collected from those nodes using edge node or edge intelligence. These
approaches isolate the detected malicious nodes using different techniques. Deep rein-
forcement learning-based trustworthy target tracking is presented in [8]. This approach is
efficient but computationally heavy and resource hungry. The trustworthiness is also help-
ful in Industrial IoT for secure applications [28]. In addition to the trust evaluation of the
sensor nodes, the routing of nodes is another important aspect of the cloud-enabled sensor
network. There have been many optimization algorithms implemented by researchers to
procure optimal routing for the nodes.

The use of optimization also plays a vital role in establishing optimal paths for the
nodes in IoT-based sensor networks. The hybrid algorithms for clustering, namely, K-
means with Ant lion optimization (ALO-K) and modified bee colony optimization with
K-means, are proposed in [22,23], respectively. In [29], Black Widow (BWO) optimization
and ABC protocol are utilized for optimized clustering and routing in a resource-limited
sensor network for IoT applications. In [24], the authors use the modified version of
artificial bee (ABC) colony optimization called parallel ABC algorithm to detect various
attacks and ensure successful communication in edge-enabled industrial IoT. A blockchain
approach is used in [26] to address the trustworthiness of IoT agriculture applications
in [30]. This approach is cost-efficient but computationally complex. Similarly, ref. [31] also
used blockchain technology to address trustworthiness in digital twins. In [25], authors use
the Ant Colony Optimization approach (ACO) to fetch data from the rendezvous points in
an optimally routed sensor network that generates uneven data from the sensors. In [26],
authors use a hybrid approach by implementing Principal Component Analysis (PCA)
along with the gray wolf optimizer to optimize the parameters of the Deep neural network,
which enables detecting the intrusion in the Internet of Medical Things (IoMT). The authors
in [27] incorporate a hybrid metaheuristic approach to choose optimal cluster heads to
obtain energy efficiency in the network. This approach uses a hybrid algorithm called
Whale Optimization and Simulated Annealing (WOA-SA).

The above-discussed methods deal with the problem of security and energy consump-
tion by providing various solutions such as trust-based data collection, optimized routing,
and edge-node-enabled secure data transmission. However, a trade-off has been observed
between the efficiency and security of the algorithms, as mentioned above. This is because
some researchers use the edge nodes for secure and prosperous transmission based on
the trust values of nodes, and some use optimized routing to enhance the system’s QoS
parameters. So, a hybrid approach that uses edge node computing and optimized route
establishment for data transmission needs to be developed in clustered IoT-enabled sensor
networks. This paper uses a modified gray wolf optimizer (GWO) for the clustering pro-
cess. It provides high convergence with no local optima problem. It also employs the trust
evaluation approach to pick trustworthy nodes. The route path is devised by implementing



Sensors 2022, 22, 7820 5 of 22

the artificial bee colony optimizer, enabling the mobile edge node to collect data optimally
from all trustworthy nodes.

3. Problem Statement

The goal of this article is to evaluate the trustworthy nodes and to detect the faulty
nodes using the proposed trust evaluation scheme on the nodes. This improves the security
of the IoT cloud. We assume the highest energy mobile node as an EDGE node called ‘MEN’,
which is capable of collecting and fusing the data to the sensor cloud network. It also
provides good computing power and a buffer facility for unused data. The set of sensors de-
ployed in a 50× 50 m2 underlying cloud-based sensor network are sn = {sn1, sn2, . . . , snn}.
The trusted nodes are identified by calculating the trust values considering various parame-
ters. Idir and Iindir are direct and indirect trust values used to evaluate the trustworthiness of
the nodes in each cluster. Furthermore, the trusted nodes from every cluster are considered
to route via trust paths for optimal data aggregation at the MEN.

4. Proposed Trust-Aware Routing Mechanism

This paper deals with trust issues arising during data transmission in IoT-enabled
WSNs. The proposed model uses an edge node to fetch the data from only trusted nodes.
However, detecting the trusted nodes is a challenging task. In this context, we proposed a
Trust-Aware Routing Mechanism (TARM) through an edge node for IoT-enabled WSNs,
which is summarized using a flow graph in Figure 2. The proposed algorithm uses modi-
fied GWO and ABC optimizations to achieve the goal in this context. Modified GWO is
employed for the clustering of nodes to ensure energy efficiency in the network. Then, all
nodes of each cluster are checked for their trustworthiness using a trust evaluation algo-
rithm based on the calculation of direct and indirect trust values. Once the untrustworthy
nodes are identified, the mobile edge node collects the data from all CHs in each cluster.
The notations used in the paper are given along with their meanings in Table 2.

Table 2. Frequently used notations.

Symbols Meaning

pop population of gray wolf
p current iteration
pmax maximum iterations
W swarm size
R maximum communication range
itrc current iteration
t number of cycles or iterations
fi objective function value
onl onlooker bees
Emp employer bees
Fij ith dimensional data of jth food site
S sink node
Fmax

j upper limit for Fij

Fmin
j lower limit for Fij

Fj jth site for food.
RGCH relay group for packet forwarding, it yields minimum value
Fkj ∈ [1, k] food source searched randomly
k number of food sites.
ϕ random number which lies in [−1, 1]
DDj rate of data delivered from jth energy to ‘s’ queue length
(wj) weight of routing
chj cluster head for jth cluster
chi cluster head for ith cluster
DD(CHm) likelihood of delivery for transmission of data
DD(CHm)

′ indicates upgraded node model for delivery.
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Figure 2. Optimized clustering and trust evaluation process with ABC-based routing.

An optimized routing mechanism based on ABC optimization is utilized to efficiently
route the data from nodes to CH and from CH to Mobile Edge Node (MEN). The ABC
aims to find an optimized relay path from the nodes that reach CH and ultimately the
MEN. There are three sets of bees—onlookers, scouts, and employee bees. The suggested
ABC approach for routing guarantees the drop in energy depletion during the routing
of information in inter- and intra-cluster. The low hop count indicates that this is a low
energy consumption when data are sent from nodes to CH and all CHs to the mobile
edge node. The process is repeated, and scout bees search and forage the food site again.
Figure 3 depicts the routing paths for the nodes, which are evaluated as trustworthy and
untrustworthy nodes, the latter of which do not participate in data transmission.

Figure 3. Evaluation of trustworthy nodes establishing optimized trust path for data routing.
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4.1. Clustering through Modified GWO

The modified GWO [15] is employed to elect the cluster head (CH) in every cluster.
The distance, CH balancing factor, and residual energy are the primary factors to identify
the best CH in a cluster. The positions of the nodes are sent to the BS after the network
deployment. The BS implements a modified GWO algorithm (Algorithm 1) using the
objective function based on the above parameters. Initially, for the sensor nodes whose
residual energy is higher by 10% compared with average energy, those nodes are considered
to be CHs. Based on the hierarchy of dominance of gray wolves (high-energy nodes), α is
considered the best solution, (with the least value of fitness) followed by β (higher value
than the least) and then δ. Apart from those, ω is taken as the least optimal solution
calculated by the objective function given below:

F = (t− z)×O1 + (1− x + t)×O2

+(1− t)O3 + (t− y)×O4
(1)

where t = y + z, x + t = 1

O1 =
1

∑b
a=1 (ECHa)

(2)

The above equation represents the total energy of all CHs. A minimum value of this
factor denotes less energy usage, where a is the cluster number and b denotes total CHs.
CHa represents cluster head in cluster a.

O2 =
b

∑
a=1

n
b
− ca (3)

O2 is the balancing factor. To avoid the formation of some huge and small clusters, this
parameter is defined to balance the cluster size to minimize power consumption. n is the
total number of sensor nodes and ca represents the number of sensor nodes in cluster a.

O3 =
b

∑
a=1

1
ca
− dist(CHa, S) (4)

O3 is the average sink distance from each CH. S is the base station position.

O4 =
b

∑
a=1

1
ca

ca

∑
k=1

dist(snk, CHa) (5)

O4 is the average intra-cluster distance and dist(snk, CHa) is the total intra-cluster dis-
tance of each node from its CH. snk are ‘k’ sensors that are in a communication range.
The above equation must evaluate the minimum value. The overall fitness function defined
in Equation (1) needs to be minimized. For an optimal selection of CH, the above objective
function is evaluated for each CH. The node with the least value of fitness in that cluster is
selected as CH.

While hunting, gray wolves surround their prey and then attack it. Initially, the lo-
cation of the prey is unknown. The hunting process is governed by best solutions alpha,
beta, and omega and they upgrade their positions using the search agents beta and alpha,
shown in Equations (6)–(12).

~Aα =
∣∣∣~B1 · ~Pα − ~P

∣∣∣ (6)

~Aβ =
∣∣∣~B2 · ~Pβ − ~P

∣∣∣ (7)
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~Aδ =
∣∣∣~B3 · ~Pδ − ~P

∣∣∣ (8)

~P1 = ~Pα − ~C1 · (~Aα) (9)

~P2 = ~Pβ − ~C2 · (~Aβ) (10)

~P3 = ~Pδ − ~C3 · (~Aδ) (11)

P(p + 1) =
~P1 + ~P2 + ~P3

3
(12)

where ~Pn is the position of CH; n = 1, 2 . . . , ~Pα, ~Pβ, ~Pδ are the positions of gray wolves (best
optimal solutions); p is the ongoing iteration; ~Bn, ~Cn are coefficient vectors for various prey
positions, where ~B = 2 · ~m1 and ~C = 2~a · ~m2 −~a. Here, ~m1 and ~m2 are vectors randomly
picked between [0, 1].

Algorithm 1 Modified gray wolf optimizer based clustering
Input: pop, pmax,Pα, Pβ, Pδ

Output:Pα

1: Initialize the gray wolf population Pn randomly
2: Initialize a, B & C
3: Determine the fitness of Pn using Equation (1)
4: while i ≤ pmax do
5: for each wolf Pn do
6: Update the position using Equation (12)
7: Update Pα, Pβ, Pδ

8: i = i + 1
9: end for

10: end while
11: return Pα

Finally, the wolves attack, and the range of ~C also reduces in [−2a, 2a], where a is
reduced to 0 from 2. The two conditions that play an important role in selecting the optimal
cluster head are as follows:

1. When |C| > 1, the nodes diverge to search for the prey depending on the positions
of α, β, and δ.

2. When |C| < 1, the wolves converge to attack the prey. After the successful completion
of clustering, the optimal CHs are chosen and the non-CHs join the CH in their
proximity by sending a request for joining as a cluster member.

After successful completion of clustering, the optimal CHs are chosen and the non-
CHs join the CH in their proximity by sending a request for joining as a cluster member.
The non-CHs are acknowledged by receiving an acceptance; this way, the clusters are
formed. Figure 4 shows the positions of α, β, δ wolves and the candidate wolf with
reference to the position of the prey. The nearest position is of α.

4.2. Trust-Value-Based Route Path Selection

In this section, we evaluate the values for trusted nodes along with the routing strategy.
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Figure 4. α, β, δ, and candidate wolves with reference to the position of the prey.

4.2.1. Trust Values Evaluation

To ensure data trustworthiness, nodes are at first checked whether they are trustworthy
or not. The mobile edge node, which gathers information, evaluates the node trust, thereby
reducing the distance and mobile delays. Let It be the initial trustworthiness of nodes,
T be the threshold for trustworthiness, and Ic be the trust value of a node. Keeping the
storage space of all nodes in consideration, the space for memory can be taken in [0, 10]
intervals. Let 5 be the initial trust value of the node. If Ic = 0, the node is untrustworthy.
If Ic = 10, it shows complete trustworthiness. To avoid the biased performance of nodes,
a multi-dimensional model for evaluating trust is employed. The trust calculation exhibits
direct and indirect trusts, which is discussed as follows:
DIRECT TRUST: Manifests a trust relationship between directly communicating nodes.
The direct trust values can be determined using the below parameters [21]:

1. Communication trust value:

Idir
com = vold × Idir

old + vnew × Idir
new (13)

Idir
new =

SC
N

(14)

Idir
com is the communication trust value; vold and vnew are the weight variables of old and

new trust values, respectively; Idir
old andIdir

new are old and new trust values, respectively.
SC is the number of successful communications and N is the total communications.

2. Positional intimacy: The measure of successful delivery of messages when a node is
very close to CH.

Idir
c = 1− dist(c, CH)

R
(15)

Idir
c indicates trust value of the node with location, dist(c, CH) is the distance between

the node and CH, R is the range of communication for that node.
3. Loss of packets:

Idir
p =

Sp − Rp

Sp
(16)

Sp is the number of packets sent and Rp expresses the number of packets received.
4. Energy: Determines the lifetime of nodes. Trust value of a node in terms of energy is

the ratio of its residual energy to its initial energy

Idir
i,j = vcom × Ic + vl × Il + ve × Ie + vp × Ip (17)
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Idir
i,j shows the total trust values of i and j; vcom, vl , ve, and vp are the weights of

communication trust; and vcom + vl + ve + vp = 1.

INDIRECT TRUST: When two nodes communicate via a recommendation of a third node
adjacent to one of the two nodes, the indirect trust value has to be calculated. For example,
A and B nodes interact via intermediary nodes x, y, and z, which are the neighborhood
nodes to A. Then, A projects indirect trust at B, and the trust is transferred from A to B
through nodes x, y, and z. The indirect trust of node A at B can be expressed as

(IA,B)x = IA, x × Ix,B (18)

(IA,B)x is the trust of A after passing through x to B. The indirect trust of A at B is expressed as

Iindir
i,j = IA, B =

m

∑
x=1

∂x × (IA, B)x (19)

∂x =

[
(Ix,B)

∑m
n=1 Ix,n

]
(20)

where n is the counter representing m adjacent nodes to A. The total trust is given by the
sum of direct trust (Idir) and indirect trust (Iindir), which is calculated as

Tot_trust = Idir + Iindir (21)

To identify the faulty node and trustworthy node, the following measure should
be considered:

Trust =

{
trusted_node if Tot_trust = 1
f aulty_node if Tot_trust = 0

(22)

Algorithm 2 shows how nodes are evaluated based on trust values and how un-
trustworthy nodes are identified. The trusted routing path based on the optimized
ABC approach, utilized to transfer data from all trusted nodes to all CHs and then
to the MEN, can be achieved with Algorithm 3. Figure 2 represents the flow of the
proposed methodology.

Algorithm 2 Trust evaluation scheme
Input: W, CHi, MEN, R
Output: Trustworthy nodes with trust values for each cluster, optimized inter- and intra-
cluster route paths

1: for all nodes in c cluster do
2: if dist(currentnodeA, CH) < R then
3: the node is directly communicated and compute direct trust value using

Equations (13)–(17)
4: else
5: The node is not directly communicated
6: for A node do
7: if dist(Atox + xtoCH) < R then
8: Mark x as the neighbor of A and compute indirect trust values using

Equation (19)
9: else

10: node x is not the neighbor of A
11: end if
12: end for
13: end if
14: end for
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Algorithm 3 ABC routing on trusted paths for all trusted neighboring nodes

1: The scout bee (cluster member) searches for food resources
2: Initiating food source (Fij)
3: Finding optimized solutions (relay CH) for food sites by employee bees using

Equation (19)
4: The CH transmits “PATH_MESSAGE” (which includes energy, node ID, length of

queue, etc.) to the nodes in its cluster.
5: New food source by employee bee is generated using Equation (26)
6: Employee bee shares all best solutions with onlooker bees
7: The onlooker bee chooses the best solution using the probability pi elucidated in

Equation (28)
8: if MEN receive the data packets then
9: It acknowledges the CH intending the delivery probability. The upgrade in delivery

can be achieved using Equation (29)
10: end if
11: for All paths in the network do
12: if the present source exceeds the limit of the search then
13: it is not considered as an optimized solution and is discarded.
14: else
15: CHs transmit their data to the MEN using the optimized path
16: end if
17: end for

4.2.2. Routing

The artificial bee colony algorithm [32] is a search-based probabilistic evolutionary
approach of optimization. It works in three stages: (i) food sources; (ii) foraging for food
by employer bees; (iii) observing and random searching by scout and onlooker bees to
know the food source, which is the solution set. Although the search time of this algorithm
is longer, it is beneficial in preventing premature convergence. To combat the problem
of search time, we have modified the fitness function and developed the ABC approach,
which is inspired by [24] to enhance its accuracy. The following steps can be followed to
easily understand the proposed ABC approach:

1. Initialize the swarm size, food source, employer bees, and onlooker bees such that
S = Emp = Onl = W

2 . The scout bee (cluster member) searches for food resources
CHi, r = fi, 1, fi, 2, . . . fi, R

2. Initialize the random solutions using the equation below:

Fij = Fmin
j + rand(0, 1)× (Fmax

j − Fmin
j ) (23)

3. Find optimized solutions (relay CH) for food sites by employee bees using the
equation below:

RGCH
(
chj
)
= chi|dist(chj, chi) ≤ min RG

(
chj
)

; dist(chi, MEN) < dist
(
chj, MEN

) (24)

The expression for objective function is given as

fi() = (1− t)O3 + (t− y)× O4 (25)

where O3 and O4 are the same as shown in Equation (4) and Equation (5), respectively.
The fitness for every solution is calculated using

Fit =

{
1

1+ fi()
if fi() ≥ 0

1 + | fi()| if fi() < 0
(26)
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4. The random solutions are generated from the above equation, this solution set chooses
candidate and partner solutions from the remainder set. The new solution by selecting
a decision variable from the first chosen solution can be generated using Equation (27)

Fnew
ij = Fij × rand(0, 1) + (Fij − Fkj)ϕij+

(zij − Fij)(θij − 0.5)2
(27)

where (zij − Fij)(θij − 0.5)2 is the global best solution that produces optimal con-
vergence efficiently and θij is the new step size given by θij = 1− itrc

t . The above
Equation (26) enables the CHs to quickly relay the data to the nearest trustworthy CH
or node.

5. The next phase is the onlooker bee phase; these onlooker bees are managed by the
CH nodes. It searches for the relay CH depending on the following probability for
each solution:

pi =
oi

∑ch∈RGCH(chj)
oi

(28)

where oi =
wj

∑ ch∈RGCH(chj)
ws
× DDi

∑h∈RGCH(chj)
DDs

. Once all the probabilities associated

with every solution are obtained, the onlooker bees select the initial S and compare its
probability with the random number x ∈ [0, 1].

(a) If x > pi, the onlooker bees repeat the same process and do not generate new
S.

(b) If x < pi, the onlookers generate new S by choosing an arbitrary decision
variable in current S using Equation (26).

6. The scout bees use a trail vector to keep track of the failures when they fail to generate
a better solution. Here, the new solutions are generated using Equation (23). The best
fitness value among the previous and newly generated solutions based on the fitness
function is stored in the trail vector.

7. If the mobile edge node receives the data from CH, it acknowledges CH intimating
delivery. The delivery update equation is determined by Equation (29):

DD(CHm)
′ =

DD(CHl) + DD(CHm)

2
(29)

where l and m are the two nodes in a cluster.
8. Based on the optimized path, the nearest CH transmits its data to the MEN.

The pseudo-code for the trust evaluation scheme based on the ABC routing approach
for mobile edge node is provided in Algorithm 1. Figure 5 portrays a visualization of the
proposed TARM that focuses on the clustered network wherein clustering is performed by
the modified GWO. This clustered network then undergoes a trust evaluation mechanism
at MEN to identify trustworthy nodes. Routing through the trustworthy nodes via the CH
is then performed using the ABC algorithm explained in Section 4.2.2. It initially evaluates
the trust values of the nodes and classifies them as trustworthy and untrustworthy nodes.
Then, it applies the ABC approach proposed in this section on the MEN and enables the
optimal route discovery for MEN through the trusted nodes and, finally, to the base station.
The edge node is used because of its properties such as storage capability, processing ability,
and location near the base station. The mobility of the MEN is restricted to its transmission
radius. Nevertheless, the CHs are able to relay the information to other CH nodes in order
to make the information reach the CH nearer to the MEN.
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Figure 5. The trust evaluation model for proposed TARM.

4.3. Complexity Analysis

In general, the GWO algorithm starts with the initialization of parameters with a
complexity of O(nw) where nw is the number of packs. An outer for loop runs until
maximum rounds are reached computing the complexity of O(nw). Now, the inner three
for loops run until the number of packs are reached and they count the complexity of
O(maxit, nw, s), where maxit is the maximum iterations and s is the size of the pack. Thus,
the total complexity for the worst case is determined by O(nw) + O(nw) + O(maxit, nw, s).
ABC does not depend on the problem dimension; thus, time complexity for it is scaled
to O(n) where n is the size of the bee population. The search complexity (depending on
onlooker bee population) of ABC is given by 2× LB×maxcy, where LB is the number of
onlooker bees and maxcy indicates maximum cycles.

5. Performance Evaluation

In this section, the performance of the proposed TARM is verified in the MATLAB
software (8 GB RAM, i7 core CPU Windows 10 system) and is validated with other sim-
ilar latest trust-based models that employ edge nodes such as ITCM [18], TBSEER [17],
VFDC [10], TEC-SFS [33], and TEM-MEN [16]. Deployment of the sensor nodes in the
network is considered according to Sah et al. [34]. The simulation is performed using some
parameter settings described in Table 3. We evaluated and plotted (Figure 6) different met-
rics including the rate of detecting the untrustworthy nodes to the total number of nodes in
the network, the accuracy of the model with the increasing percentage of untrustworthy
nodes, overall energy utilization in the network, the trust values of nodes with increasing
untrustworthy node percentage, average end-to-end delay, and network life evaluation.

The experiment includes one IoT network that has clustered WSN scenarios, one
MEN, and one base station. The CH in each cluster gathers data from the nodes once
the trustworthy nodes are identified. The CH has the ability to relay data to other CHs
until it reaches the CH closest to the MEN. The trusted route path established using ABC
optimization is updated at the MEN, and the MEN with the data transmission rate of
2 Mbps receives the data from its nearest CH. The data transmission time from MEN to the
cloud server is 10 ms. The MEN moves with uniform speed and its motion is restricted to
the CH, which is in its proximity. This is performed to save energy and to avoid unnecessary
delays. However, the selection of starting point, radius of communication, and speed can
be adjusted.
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Figure 6. Simulation results. (a) Percentage detection rate versus the number of nodes in the network.
(b) Accuracy in % with respect to the increasing percent of untrustworthy nodes. (c) Representation
of trusted route and initial route paths for 50 nodes in 50× 50 m2 network size. (d) Evaluation of
energy consumption (mJ) of all algorithms for varying percentages of untrustworthy nodes. (e) Trust
values of nodes for different untrustworthy node percentages. (f) Average end-to-end delay in ms
versus the percent of untrustworthy nodes. (g) Network lifetime evaluation for FND, HND, and
LND. (h) Rate in % for packet loss in the network.
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5.1. Accuracy and Rate of Detection of Untrustworthy Nodes

Figure 6a presents the comparison of various approaches in terms of detection rate
in percentage while varying the number of nodes. When the network undergoes a high
number of detection rounds, the detection rate of the proposed TARM technique to detect
the untrustworthy nodes enhances gradually. In Figure 6a, the approaches considered for
comparison are VFDC, TEM-MEN, TEC-SFS, and the proposed method. We can see that
the rate at which the proposed TARM detects the untrustworthy nodes increases rapidly
compared with the TEM-MEN and TEC-SFS, which show a more or less constant increase in
the rate of detection. However, TEC-SFS has a good detection rate but the rate of increase of
the detection percent in the case of TEC-SFS from zero number of nodes to 200 is not much
and it gradually increases at a constant pace. Both TEM-MEN and TEC-SFS show only a
14.6% and 9.5% increase in the rate of detection when starting from the 0th node to 200th
node, respectively. At the same time, the TARM offers a 67.6% hike in the enhancement of
detection rate from 0 nodes to 200 nodes. TARM has a slightly higher detection rate than
the VFDC and TEM-MEN for the maximum number of nodes. Further, it is examined that
as the iterations of the moving path enhances, the rate of recognition of trust evaluation
correspondingly increases.

The accuracy of the trust evaluation mechanism is defined as how accurately the
scheme can recognize untrustworthy nodes. It is verified that the TBSEER and proposed
method both resist sinkhole attacks under a varying number of malicious nodes. As shown
in Figure 6b, the accuracy plot is drawn against the percentage of untrustworthy nodes.
The lowest accuracy is shown by the VFDC method, which is 71.1%. The highest accuracy
is shown by the proposed method, which is 91.96%. The TBSEER performs very well in this
case and records an accuracy of 88.76% for the highest percentage of untrustworthy nodes.

Figure 6c shows the initial route path in the absence of a trust evaluation scheme and
the trusted route when the trust evaluation algorithm is executed. Figure 6c shows that
the trusted route path takes mostly trustworthy nodes and covers a very short distance to
transmit the data to the destination, whereas the same task if performed by the initial route
path takes more nodes and hops, which enhances the distance as well as the energy and
latency in the network. The calculation for energy consumption for the trusted route has
been performed and is represented in Figure 6d.

5.2. Impact of the Percentage of Untrustworthy Nodes on QoS Parameters

Figure 6d shows energy consumption in the whole network for the increasing number
of untrustworthy nodes. The proposed method, as observed in Figure 6d, outperforms the
other three similar methods. The TBSEER method shows 13.09% more energy consumption
compared with the proposed method. Similarly, for VFDC, the percentage enhancement in
energy usage is 54.92% higher than the energy usage in the proposed method. The proposed
method shows 73.37% higher energy efficiency compared with the ITCM approach.

Figure 6e depicts the node trust values for increasing percentage of untrustworthy
nodes. As the proportion of the untrustworthy nodes enhances to 50%, the trust values of
the nodes decline rapidly. This factor reflects the trustworthiness of the proposed trust evalu-
ation scheme. All the algorithms show the same declination but the proposed method shows
superiority over others. The proposed model shows 58% higher trustworthiness compared
with the TBSEER method and this percentage goes beyond 100 for other approaches.

In Figure 6f, the value of average end-to-end delay rises as the percentage of untrust-
worthy nodes increases. In the case of TBSEER, the frequent packet losses are responsible
for the delay in establishing the link between the nodes for packet re-transmission. More-
over, it leads to the degradation of the routing stability. The proposed approach shows
85.16% less delay than the TBSEER protocol. The TEM-MEN approach is tested on the
cloud as well as edge computing and it is verified that edge computing is more reliable
for real-time applications as it offers low latency, as shown in Figure 6f. The ITCM of-
fers 81.77% high delay and the proposed method is 35.5% more delay-efficient than the
TEM-MEN approach.
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The network lifetime analysis is depicted in Figure 6g. As can be observed from
the graph, the network lifetime represented by the number of rounds is calculated when
the first node dies, when the half node dies, and when the last node dies. The proposed
model offers the highest network life for all three conditions ensuring the effectiveness
and reliability of the system over a longer period. The ITCM performs poorly; TBSEER
performs moderately in all three cases and outperforms the other two algorithms, which are
ITCM and VFDC. The proposed method is 83.8%, 45.1%, and 28% more efficient compared
with TBSEER for FND, HND, and LND, respectively. In general, it is verified that for the
same network size, the scenario with a high number of IoT devices offers short network life
compared with the small scenario. In the proposed method, the network size of 50× 50 m2

is kept constant and the number of nodes is increased. It is recorded that there is not much
difference between the scenario with 50 nodes and the scenario with 200 nodes. However,
in the case of ITCM, the network life is short because of the same reason.

Figure 6h depicts the packet loss rate for TBSEER, VFDC, TEM-MEN, and the proposed
method. It can be seen from the graph that as the percentage of untrustworthy nodes
increases in the network, a large number of packets or data flows to the untrustworthy
nodes produces a gradual increase in the packet loss rate. However, the proposed trust
model offers low packet loss since the distance of the average route length gets reduced
resulting in the low untrustworthy nodes encountering the trusted route. It is observed that
for a low percentage of untrustworthy nodes, the percentage hike in the packet loss rate
is 38.74%, 45.5%, and 59.39% for TEM-MEN, TBSEER, and VFDC methods, respectively,
when contrasted with the proposed method. For a higher percentage of trustworthy nodes,
the percentage packet loss of the proposed method reduces by 24.86% when compared
with TEM-MEN. TBSEER performs better than VFDC and shows an 11.66% decrease in
packet loss rate than that in VFDC.

Table 3. Network parameters.

Parameters Value

Deployment area 50× 50 m2

Total nodes 200
Initial energy 2 J

Packet size 1000
Number of rounds 5000

Threshold distance of transmission 20 m
CHs percent 10–15%

Table 4 gives the average route length for the trust evaluation approaches that employ
edge nodes. The proposed scheme calculates the shortest route length for the trusted route.
The longest route path is given by the VFDC algorithm. TBSEER performs moderately
and the TEM-MEN approach performs well after the proposed method. Table 5 shows
the comparison between various optimization approaches on the basis of energy usage,
data sent to the cluster heads, and cluster load balance factor. It can be clearly observed
that the proposed model, which employs a modified GWO algorithm, delivers the highest
number of packets to CH—i.e., 1858—whereas the other optimization approaches such as
PSO, Cuckoo search, GWO, and whale optimization, respectively, delivered 1124, 1466,
1689, and 1256 packets successfully to CH node. The minimum load balance factor for
cluster balance is recorded for modified GWO and is 0.48. The energy consumed during
the intra-cluster communication is lower for modified GWO (0.26 J) than for PSO (0.89 J),
GWO (0.38 J), CS (0.73 J), and WOA (0.45 J).
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Besides this, a separate set of experiments are conducted on the two untrusted scenar-
ios, which are mentioned below:

1. Of the total 200 nodes, 25% or 50 untrustworthy nodes are considered to be uniformly
distributed in the given area of 50× 50 m2.

2. Of the total 200 nodes, 50% or 100 untrustworthy nodes are considered to be uniformly
distributed in the given area of 50× 50 m2.

The simulation results for network lifetime, throughput analysis, and energy efficiency
are presented in Figure 7, Figure 8 and Figure 9, respectively. The proposed method is
compared against the untrusted scenarios of TBSEER and VFDC approaches. Figure 7a
depicts the network life for the 25% of untrustworthy nodes out of the total 200 nodes.
Similarly, Figure 7b gives the network lifetime analysis for 50% of untrustworthy nodes out
of the total 200 nodes. It is noticed that the network lifetime of the proposed TARM method
is higher than the other two methods. Figure 8 presents the throughput evaluation for 25%
and 50% of untrustworthy nodes out of 200 nodes in Figure 8a and Figure 8b, respectively.

It is observed that for the first scenario—that is, 25% of untrustworthy nodes out of total
nodes, the performance of the proposed method is better and sustains for more iterations
compared with the second scenario—that is, 50% of untrustworthy nodes out of 200 nodes.
This shows that as the number of untrustworthy nodes increases, the performance starts
degrading. Hence, the proposed method works on detecting the faulty or untrustworthy
nodes and establishing trust routes using trusted nodes in the sensor network.

Finally, the efficiency in terms of energy is depicted for both the untrusted scenarios
against TBSEER and VFDC methods in Figure 9a and Figure 9b, respectively.

(a) (b)

Figure 7. Network lifetime evaluation for untrusted scenarios: (a) 25% of untrustworthy nodes out of
the total 200 nodes; (b) 50% of untrustworthy nodes out of the total 200 nodes.

(a) (b)

Figure 8. Throughput analysis for untrusted scenarios: (a) 25% of untrustworthy nodes out of the
total 200 nodes; (b) 50% of untrustworthy nodes out of the total 200 nodes.
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(a) (b)

Figure 9. Energy efficiency in joules for untrusted scenarios: (a) 25% of untrustworthy nodes out of
the total 200 nodes; (b) 50% of untrustworthy nodes out of the total 200 nodes.

Table 4. Average route length.

Algorithms Average Route Length

VFDC 4.41
TBSEER 4.0

TEM-MEN 3.79
TARM 3.22

Table 5. Intra-cluster parameters comparison with other optimization approaches used for clustering
of nodes.

Methods A 1 B 2 C 3

PSO 1124 0.89 2.3
Whale optimization 1256 0.45 1.0

Cuckoo search 1466 0.73 1.7
GWO 1689 0.38 1.5

Modified GWO 1858 0.26 0.48
1 Total packets sent to CH. 2 Average Energy usage (intra-cluster) in joules. 3 Cluster balancing factor.

5.3. Statistical Evaluation

The statistical evaluation is the non-parametric evaluation of the approach performed
for validating the performance of the proposed technique with other similar techniques.
For comparison, we consider five existing but similar approaches i.e., particle swarm
optimization (PSO), ant colony optimization (ACO), hybrid whale GWO [35], modified bee
colony optimization (MBCO) [23], and ant lion optimization with K-means (ALO-K) [22].
The objective function is taken to be the proposed one, which is expressed in Equation (1).
Table 6 shows the success rates and average time taken for execution of all these algorithms.
Higher success rate exhibits better performance, and lower time taken for execution leads
to faster convergence of the algorithm. It can be noted that the proposed modified GWO
and ABC algorithms performs better than other existing algorithms.

We compare the heuristic algorithms using the datasets described in Table 7 and paired
observations. Statistical tests such as Friedman’s test and Holm’s test help in identifying
the best heuristic approach for trustworthiness. The test procedures used in this paper to
analyze the observations in datasets are Friedman’s test and Holm’s test. In these methods,
the null hypothesis (H0) says that all algorithms have the same variances and mean cost
while the alternate hypothesis (H1) says that all algorithms have different variances and
mean cost.
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Table 6. Success rates and average time of execution for all algorithms.

Algorithms Average Time Success Rate

PSO 60.12 68
Hybrid WGWO 57.44 70

ACO 42.78 59
MBCO 35.05 87
ALO-K 31.84 92
TARM 28.56 97

Table 7. Dataset description.

Datasets Number of Instances Classes Number of Features

Iris [36] 150 3 4
Wine [37] 178 3 13
RSSI [38] 6611 3 15
Dry bean [39] 13,611 7 17
Air quality [40] 9358 2 15

5.3.1. Friedman Test

It is used to find the variations between the groups which have rank-dependent
variables. The null hypothesis states that all algorithms perform equally while the alternate
hypothesis says that there are differences in each algorithm’s performance. Here, we
consider the best optimal values of intra-cluster distances expressed in Equation (5) as the
basis to assign ranks (written in brackets after each best-optimized value) from one to six,
as shown in Table 8. The Friedman distribution value is given by

Fr =
(x− 1)χ2

Fr
x(y− 1)− χ2

Fr
(30)

where χ2
Fr is expressed as

χ2
Fr =

12x
y(y + 1)

[
y

∑
i=1

r2
i −

y(y + 1)2

4

]
(31)

where x is the number of datasets and y is the total number of algorithms (x = 5 and y = 6)
being compared. The degree of freedom is (y− 1) and (y− 1)(x− 1), i.e., between 5 and 20;
using this, the critical value obtained from F-distribution at α = 0.05 is 2.711. The values of
χ2

Fr and Fr computed from the above equations are 18.428 and 11.216, respectively. As it can
be noticed that Fr is greater than the critical value, the null hypothesis is rejected, showing
that the performances of all algorithms are different.

5.3.2. Holm’s Test

Friedman’s test shows the rejection of the null hypothesis for all algorithms; so, here,
we use Holm’s procedure as a post-hoc test. The z-value is given by z = r0−ri

h , where
the ranks are taken from Table 8. r0 is the average rank of the proposed method and

h =
√

y(y+1)
6x . Using this z-value, the p-value is obtained from a normal distribution

chart. This p-value is compared with α
(y−i) . If the p-value is less than α

(y−i) , the null
hypothesis is rejected; otherwise, it is accepted. Table 9 shows that Hybrid WGWO, MBCO,
and ALO-K perform similarly to the proposed algorithm and other heuristic approaches
perform differently.
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Table 8. Average ranks of algorithms based on optimized values.

Datasets PSO HybridWGWO ACO MBCO ALO-K TARM

Iris 113.7 96.1 101.4 95.4 97.4 97.25
(6) (2) (5) (1) (4) (3)

Wine 16,960.8 16,480.1 16,960.8 16,230.9 16,334.5 16,210.1
(5.5) (4) (5.5) (2) (3) (1)

RSSI 4763.1 4496.1 4440.8 4440.8 4432.6 4225.7
(6) (5) (3.5) (3.5) (2) (1)

Dry bean 1995.4 1988.9 1967.6 1948.2 1901.6 1948.2
(6) (5) (4) (2.5) (1) (2.5)

Air quality 2989.5 2701.3 2843.6 2248.6 2248.6 2081.6
(6) (4) (5) (2.5) (2.5) (1)

(Average ranks) ri 5.9 4.0 4.6 2.3 2.5 1.7

Table 9. Average ranks of algorithms based on optimized values.

Algorithm z-Value p-Value α/(y − i) Hypothesis

PSO −3.54969 0.00020 0.01 Rejected
Hybrid WGWO −1.94388 0.02619 0.0125 Accepted

ACO −2.45098 0.00714 0.0166 Rejected
MBCO −0.50709 0.30854 0.025 Accepted
ALO-K −0.67613 0.25143 0.05 Accepted

6. Conclusions

To establish a trust-based relationship between the nodes in an IoT-based network
and a mobile edge data collector for dynamic scenarios, we develop a trust-aware model
that enables clustering and routing in a sensor network. In our proposed work, an edge-
enabled IoT architecture is implemented to find trustworthy nodes and those nodes are
only targeted for data gathering. The clustering is performed using modified gray wolf
optimization and the ABC approach is utilized for effective routing. The results manifested
that the proposed work ensures energy-saving and has the advantage of having negligible
packets drop. The proposed scheme shows approximately 80% reduction in average delay
and around 50–70% reduction in energy consumption when compared with other state-
of-the-art approaches. Furthermore, the accuracy of the proposed scheme is recorded
to be 91.96%. The proposed distributed method can be easily implemented for a broad
range of IoT applications that ensures good data transmission and information storage
by virtue of edge intelligence. As a future direction, this work can be further extended
for large-scale sensor networks that can use more than one edge node. The method can
be made computationally efficient by employing some novel learning techniques to find
trustworthy nodes and routes. Furthermore, multi-objective optimization can also be used
to achieve energy-efficient optimized clustering and routing.
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