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Abstract: In this paper, a defused decision boundary which renders misclassification issues due to
the presence of cross-pairs is investigated. Cross-pairs retain cumulative attributes of both classes
and misguide the classifier due to the defused data samples’ nature. To tackle the problem of the
defused data, a Tomek Links technique targets the cross-pair majority class and is removed, which
results in an affine-segregated decision boundary. In order to cope with a Theft Case scenario, theft
data is ascertained and synthesized randomly by using six theft data variants. Theft data variants
are benign class appertaining data samples which are modified and manipulated to synthesize
malicious samples. Furthermore, a K-means minority oversampling technique is used to tackle the
class imbalance issue. In addition, to enhance the detection of the classifier, abstract features are
engineered using a stochastic feature engineering mechanism. Moreover, to carry out affine training
of the model, balanced data are inputted in order to mitigate class imbalance issues. An integrated
hybrid model consisting of Bi-Directional Gated Recurrent Units and Bi-Directional Long-Term
Short-Term Memory classifies the consumers, efficiently. Afterwards, robustness performance of the
model is verified using an attack vector which is subjected to intervene in the model’s efficiency and
integrity. However, the proposed model performs efficiently on such unseen attack vectors.

Keywords: electricity theft detection; smart grids; robustness; smart meters; Tomek links

1. Introduction

Power generation, transmission and distribution collectively build a power system
infrastructure. The power generation phase generates electricity at a high voltage level. The
generated electricity is supplied to the end user through transmission lines. The end user is
the consumer who consumes the supplied electricity via distribution network [1]. Smart
Meters (SMs) are installed on the end users’ side by Utility Providers (UPs) in order to
monitor the consumed energy [2]. There are two types of losses, Technical Losses (TLs) and
Non-Technical Losses (NTLs) [3]. TLs are the network-associated losses, which are confined
to the design and material of the infrastructure, while NTLs are the losses which occur due
to the interruption of the end consumers to obtain financial benefits by under-reporting the
consumed energy. The interruption of the end consumer is basically a malicious activity,
which is adopted by the fraudulent consumers. The connected fraudulent consumers tend
to tamper the net metering of their consumed energy by adopting various data tampering
techniques, such as meter tampering using shunt devices, double tapping of the lines and
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electronic faults [4]. The effects of such malicious activities over-burden the UPs with huge
financial losses, which disrupt the smooth energy flow and demand curve. For instance,
the study conducted in [5] reports that the monitored losses have been increased from
11 percent to 16 percent during the last two decades (1980–2000). The increased losses
clearly highlight that revenue losses due to NTLs are a conspicuous issue and need special
attention. NTLs vary from country to country. The literature in [6] reports that about
20% of the total revenue loss in Indian electricity network is due to the aforementioned
malicious activities. Similarly, the United States is also facing a revenue loss of USD 6 billion
annually [7,8]. Worldwide, revenue losses of about USD 96 billion are reported due to such
malicious activities [9].

In order to investigate the aforementioned problems, the literature suggests various
counter measure approaches to reduce such losses. The suggested approaches are advance
metering infrastructure (AMI) and Neighborhood Area Network (NAN) [10], which are
hardware-based approaches. In AMI, a sequential data is a target parameter, which is
analyzed to extract suspicious behavior in order to find out maliciousness. Furthermore,
consideration of sequential and non-sequential information enhances the detection of
malicious behavior. Sequential data are Time-Series Data of the consumers, whereas non-
sequential data are an auxiliary data that contain attributes of geographical, demographical
and topographical data. Moreover, NAN and morphological patterning assessment focuses
on multiuser network-based detection. A NAN is a multiple consumer network where
a master meter is deployed to monitor the total consumed energy. A master meter is
connected to a distribution low-voltage side of the transformer, which works as an ob-
server meter to monitor the cluster of the connected SMs. TLs of the distribution lines
are numerically adjusted as a beta σ, which is added to the total network’s consumption.
The data relevancy of the network is observed in order to investigate the maliciousness.
Total consumption in addition with the σ factor is related to the observer meter’s reading.
Furthermore, in morphological patterning analysis, a historic and forecasted data compe-
tency is measured, which is correlated based on the error factor. A threshold is set as a
monitoring parameter which analyzes the parity check of each of the consumptions and
reports malicious activity.

Based on the above analysis, the motivation is to propose a data-oriented approach to
detect NTLs. The problem of imbalanced data, defused decision boundary and extraction
of abstract features are the main factors to target through data-oriented-based analysis of
the Time-Series Data.

2. List of Contributions

The contributions are as follows:

• To tackle the imbalance data issue, theft class data are synthesized using six theft
variants. Later on, the synthesized data are oversampled using a K-means synthetic
minority oversampling technique (SMOTE).

• A Tomek links technique is used to eliminate cross-pairs across the decision boundary.
• To overcome the data leakage problem, a simple stratified approach is opted for.
• Cumulative and distinct features are engineered using stochastic feature engineering,

which enables the model to learn data characterization and uniqueness.
• An integrated hybrid model of Bi-Directional Gated Recurrent Units (Bi-GRU) and bi-

directional long-term short-term memory (Bi-LSTM) is used to tackle misclassification
and high FPR issues.

• Furthermore, to verify the robustness of the proposed model, an unseen variant of
the theft data with temperate randomness is analyzed to acknowledge the stability
and integrity.

3. Literature Review

This section overviews Electricity Theft Detection (ETD)-related proposed research
activities of various authors in smart metering applications.
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3.1. Considering Sequential Data

A major portion of NTLs is due to fraudulent behavior of the consumers’ accom-
plishing an effort to bypass the Utility Provider (UP) surveillance and to under-report the
consumed energy. A solution proposed in [11] adopts a data-driven approach which uses a
Machine Learning technique, Ensemble Bagged Tree (EBT) algorithm by stacking many
Decision Trees to detect NTLs. As time complexity and memory consumption due to large
computational complexity have remained formal constrains for Machine Learning (ML)
algorithms. To improve both, searching and Weighted Feature Importance (WFI) tech-
niques are deployed to enhance theft detection schematics. A Gradient Boosting Classifier
(GBCs)-based detector is used to detect anomalies by considering intentional remedies
while non-fraudulent anomaly intervention is ignored. Furthermore, the Gradient Boosting
Theft Detector (GBTD) for the classification purposes is pursued by a preprocessing module
using WFI. WFI uses stochastic features such as mean, min, max and Standard Deviation
in collaboration with the consumption pattern extracted features, which improves perfor-
mance and reduces time complexity [12]. The author pinpoints the Detection Rate and FPR
only, however, a clustering mechanism is required to be considered in order to identify
the misclassification due to a sudden drop in the consumption, which is ultimately started
before the period of analysis. During training of the model, a problem of data leakage
occurs which is not tackled properly. In [13], a maximal overlapped discrete wavelet packet
transform is used to extract the abstract features from the dense time-series electricity
consumption data, whereas, to tackle the data balancing issue, a random under-sampling
boosting (RUSBoost) algorithm is proposed, which eliminates vital information of the data
while re-sampling the data samples. Similarly, [14] uses SMOTE for data balancing. The
balanced data are then preprocessed using a min–max scalar normalization method to
refine the input raw data. A pool of various algorithms is used containing AdaBoost, Cat-
Boost, XGBoost, LGBoost, RF [15] and extra trees to find FPR and Detection Rate, however,
SMOTE over-samples the minority class, with confused pairs having trace contents of
both classes. The generalization performance of single hidden-layer feed-forward neural
networks (SLFN) due to over-training leads to degradation when the back-propagation
algorithm performs. To overcome such issues, a hybrid Convolutional Neural Network
and Fandom Forest (CNN–RF) is proposed, where the CNN is designed to learn features
between different hours of the day [15]. Obtained features are taken as an input by Random
Forest (RF) to segregate thieves from honest customers. However, memory elapsing is a
serious issue to monitor consumption patterns for long periods of time. The RF module
takes a lot of memory, causing over-fitting issues. Significantly, a fast operation is an
optimum choice, whereas operating maxpooling is a slower operation and causes greater
time of execution. Furthermore, due to the non-availability of real-world theft scenarios,
data analyzing classification based only on linear Theft Cases is not a significant investi-
gation scenario. Similarly, a hybrid module integrating Convolutional Neural Network
and long-term short-term memory (CNN–LSTM) has been developed [4]. CNNs have the
capability of self-learning, whereas LSTM performs better on sequential data, however,
memory elapse is still a question for such scenarios. A Semi-Supervised Auto-Encoder
(SSEA) is used to learn the advanced features [16]. The input of multiple Time-Series Data
is organized as a 1D vector in multiple channels. Moreover, to improve a linear separability
of the samples, a distributed stochastic neighbor embedding (t-SNE) is used to localize
each data point. Adding a high dimensionality though class separation is a pre-requisite
for such a scenario, which is not simply tackled by t-SNE to add dimensionality for the
class separation. Data leakage during training of the model and the consideration of non-
malicious factors are important aspects, however, [17] pays no attention to these issues.
Furthermore, the authors in [18,19] adopt a data-driven approach using a Machine Learning
technique, XGBoost, without considering any auxiliary information. The study in [20,21]
investigates the impact of imbalanced data. The imbalanced data are balanced through
synthesized data. The data reductionality is carried out through Principle Component
Analysis (PCA) and hyper parameters are tuned through Bayesian optimizer. An AUC
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score of 97% is reported using a feed-forward network. The study in [22] uses a hybrid
model of graph convolutional network and EU Convolutional Neural Network. CNN
is used to capture the latest features. The study in [23] targets the AMI infrastructure to
investigate malicious consumers. The benign data are manipulated through cyber attacks.
A deep neural network CNNGRU hybrid model is developed to correlate the malicious
and benign samples.

3.2. Monitoring Morphological Patterning

An LSTM model is used by [24,25] to investigate pattern morphology. The pattern
authentication is investigated by mapping them together. A prediction error is calculated
between the real and predicted consumption, which decides the authenticity of the con-
sumed pattern. However, due to excessive computational complexities, LSTM is not a
suitable option. The authors in [26] propose a Stacked Sparse Denoising Auto-Encoder
(SSDAE), which monitors the reconstruction error of the corresponding consumption pat-
tern based on the extracted features. The extracted key features from the raw samples
are provided as an input. A comparative correlation is observed between the samples
provided as an input and reconstructed patterns. The similarity index is observed through
an Optimized Estimated Threshold (OET). OET decides the sample’s class based on the
measured value of reconstruction error (RE). However, based on non-sequential attributes,
consideration of exogenous variables affects the morphology of consumers’ patterns [27].
In addition to short-term vacations, demographical, geographical, SM firmware and EM
distort the pattern’s morphology, which is beyond the scope of detection, using SSDAE’s es-
timated threshold as a segregating boundary for the classes. Furthermore, the tampering of
consumption patterns before installation of SM on customers’ premises remains undetected.
The tampered pattern reconstruction significantly deceives the SSDAE detector, which
causes misclassification. In [28], NTLs are categorically divided based on the time period,
including consumers cheating during ON-Peak hours, OFF-Peak hours and malicious
customers cheating constantly. The detection model becomes unstable when inconsistent
attacks are injected. To monitor such inconsistent variations, categorical variables are
incorporated in linear regression to develop a categorical variable linear regression detector.
In [29], an Anomaly Pattern Detection Hypothesis Testing (APD-HT) investigates theft
activities. A reference and a detection window are used to analyze the data streaming
of SMs. The data streaming analysis is based on binomial data distribution. However,
variations due to the intervention of non-malicious factors are beyond detection.

3.3. Tampering with Smart Meter Readings

In addition to the data-oriented approaches [30–32], another novel Distributed Genera-
tion (DG)-based approach of energy monitoring is proposed. A renewable DG unit consists
of Photo-Voltaic (PV) modules, which are installed on consumers’ premises. Consumers
generate energy according to their needs and sell back the excessive amount of energy to
the UPs. A two-metering system is adopted, namely, net metering system and Feed-in
Tariffs (FITs) policy. Net metering systems monitor consumed energy provided by the UP,
while FITs policy monitors the excessive energy generated by a DG for selling purposes.
Manipulating and tampering with injected (sold) readings of DG by malicious customers
tends to falsely report over-charging. The work in [33] proposed a solution by deploying
Supervisory Control and Data Acquisition (SCADA) metering points to monitor various
electrical parameters.

3.4. Investigating Neighborhood Area Networks

Hardware-based infrastructure utilizes network-based topology to enhance detection
performance. The authors pinpoint the limitations of misclassification due to manipulation
of non-malicious factors and deceiving a detection detector to accept the malicious pattern
as a normal one [34]. The authors suggest to deploy an SM on the transformer’s side, so that
a balancing load flow scenario is overlooked, scrutinizing the discrepancies being caused
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by the non-malicious factors and smart attackers. A Neighborhood Area Network (NAN)
proposes a master meter (MM) approach, which is installed on the distribution transformer
side and monitors total supplied energy to the NAN [35]. The total supplied energy is
compared with the sum of total individuals’ SM readings within the corresponding NAN,
where TLs are accommodated by addition of a constant parameter. The inequality within
the readings indicates a theft occurrence, while equality in the NAN means a complete
benign consumption. A Correlation Analysis for Pinpointing Electricity Theft (CAPET)
scheme is introduced, which measures the correlation between total utilized energy in
the NAN at the low voltage level side. Inequality and deviation shows malicious activity.
However, change in TLs is subjected to environmental conditions; a seasonal change
abruptly affects the balanced correlation between MM and SM readings. Inequality in
reading of the dispatched side and consumer premises indicates suspicious activity, which
is beyond consideration. Similarly, in [36], the author develops an ensemble technique
by combining the suspicious ranks obtained from the Maximum Information Coefficient
(MIC) and clustering technique. The arithmetic and geometric means of these two ranks
are combined using a famous rank product method which decides whether a sample is
benign or malicious. The decision is based on the rank’s intensity. A high intensity indicates
malicious activity. The MIC and clustering technique analyzes the correlation of NTLs
and the observer meter, respectively. In order to identify unusual shapes, a degree of
abnormality is calculated by clustering technique [37]. However, such correlations are void
of consideration for variable TLs and non-sequential auxiliary data aspects.

4. Proposed System Model

Figure 1 shows the proposed system model, while limitations, along with their pro-
posed solutions, are mapped in Table 1.

The system model comprises the data preprocessing module, data augmentation
module and classification module. These modules are subdivided into 7 main steps.

• Step (1) is a data preprocessing step, where missing values are filled using a mean-
based strategy and outliers are removed. Filling and removing such values is a
necessary step of the data preprocessing, as noisy and ambiguous data affect accuracy
and degrade the misclassification scenario. A simple imputer is implemented to fill
such values.

• In step (2), the preprocessed data are augmented where benign samples are modified
and manipulated due to their rare existence. The problems of skewness and bias are
observed if the model is trained on such imbalanced data. Therefore, it is a necessary
step to balance the data before the training of the model.

• In step (3), benign class data are manipulated and theft class data are generated.
• In step (4), decision boundaries’ associated cross-pairs are identified and eliminated.

As cross-pair is a combination of the opposite class samples. Henceforth, a Tomek
links technique is used. The majority class samples are removed, and minority class
samples are retained in order to preserve the data integrity.

• In step (5), the data is stratified in order to inhibit the defusion of the data while splitting.
• In step (6), abstract features are engineered based on stochastic feature engineering.
• In step (7), Time-Series Data are inputted to a developed Bi-GRU [38] and Bi-LSTM [39].

A binary sigmoid function classifies the samples [40]. Bi-LSTM [41] is featured with the
handling of high dimensional data, while Bi-GRU is used to avoid the computational
complexity due to its fast operating features.
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Figure 1. System Model Architecture.

Table 1. Mapping of Limitations and Proposed Solutions.

Limitation Number Limitation Identified Solution Number Solution Proposed Validations

L1 Data imbalance issue S1

A K-means SMOTE
technique is used to

solve the data
imbalance issue

V1: Performance
comparison of the

models

L2 Misclassification due to
cross-pairs S2

A Tomek links
technique is used to

identify the cross-pairs
and remove them

accordingly

V2: Table 3 Removal of
cross-pairs

L3 Data leakage during
training S3

A simple stratified
methodology is used to
divide the data based
on key attributes into

subgroups for training
of the model

V3: Equations (1)–(7)

L4 High FPR S4

A hybrid model of
Bi-GRU and Bi-LSTM is

used to classify
samples precisely and

reduce high FPR

V4: Figure 6a,b AUC
and PRC curve

L5 Lack of abstract
features S5

A stochastic feature
engineering approach
is opted to generate

abstract features

V5: Table 5
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This paper is an extension of [9]. Algorithm 1 presents the BiGRU–BiLSTM-based
scheme for the detection of the anomalies in smart grids. It consists of seven steps. Initially,
data are segregated based on distinct characterizations. Later on, six data manipulating
techniques are appertained on the honest consumers’ data, which are pursued by concate-
nation and data balancing techniques. Moreover, data are preprocessed and cross-pairs are
removed. Furthermore, stratified sampling and feature engineering are accomplished.

Algorithm 1: Bi-GRU- and Bi-LSTM-based Detection Scheme.

1 Step 1:
2 Input: Benign Consumers BC, Output: Fraudulent Consumers FC
3 Step 2: Generating Theft Samples
4 T1 = BC∗random(0.1, 0.9);
5 T2 = BC∗xt where (xt = random(0.1, 0.9));
6 T3 = BC∗random[0, 1];
7 T4 = mean (BC)∗random(0.1, 1.0);
8 T5 = Mean(S) for each column;
9 T6 = S(T)− t revesing a time sequence;

10 Step 3: concatenation
11 Concat (BC + FC);
12 Step 4: Balancing Data
13 BC = FC;
14 Step 5:
15 Sith of majority class having smaller EU Distance with decision boundary is re-

moved;
16 Step 6: Data Leakage
17 p(s) = Ci + Cj;
18 Ci ⊆ p(s);
19 Cj ⊆ p(s);
20 Sj1, Sj2, Sj3, . . . , Sjn ε Cj;
21 Si1, Si2, Si3, . . . , Sin ε Ci;
22 Si /∈ Sj ;
23 Ci(Si1,...,n) /∈ Cj(Sj1,...,n);
24 Step 7: Feature Engineering
25 F1 = Mean of Ps against each row;
26 F2 = Std of Ps against each row;
27 F3 = Min ∈ Ci against each row;
28 F4 = Max ∈ Cj against each row;
29 Output: Honest Consumers ε BC , Fraudulent Consumers ε FC.

4.1. Dataset

A realistic electricity consumption dataset, namely, the State Grid Corporation of
China (SGCC), is used in this paper. It is administered during the 2014–2016 period and is
supposed to be one of the most extensive datasets of SMs. It is structured as Time-Series
Data, which are collected after every 24 h. Each consumer has a unique household ID.
The consumption volume of each consumer is recorded against their household ID along
with the date and time. It is a dataset of 1035 days and 42,372 consumers. We are using
1500 benign consumers’ data of six months due to the limited resources of our machine.
Machine specifications are Intel(R) core (TM) M-5y10c, CPU@ 0.80 GHz 1.00 GHz, RAM
4 GB. Moreover, The simulator is Google CoLab. The meta information of the SGCC dataset
is shown in Table 2.

Generally, in a power system, the electricity consumption data of end users are col-
lected through SMs. The collected data are acquired using various sensors of the SMs. A
data communication network aggregates the data at a specific central location. However,
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certain complications such as the malfunctioning of the sensors, failure of the SMs, errors
in data transmission and storage servers generate inherent erroneous and ambiguous
data. Discarding such data shrinks the size of the dataset considerably, and thus authentic
analysis of the data becomes onerous.

Table 2. Metadata Information of SGCC Dataset.

Description Value

Administering years of the dataset 2014–2016

Total number of benign consumers 38,756

Total number of fraudulent consumers 3616

4.2. Data Leakage

The population is divided into mutually exclusive subgroups using stratified sam-
pling. It is a homogeneous division and known as strata. The purpose of using stratified
sampling is to clearly classify each strata of the samples’ population. The SGCC dataset
is divided into training and testing data. The training and testing samples are segregated
into subgroups by opting stratified sampling in order to avoid misclassification due to
extensive diversity in the data. Training and testing samples are confined to their specific
operations only. Training samples are used to train the model, whereas testing samples are
exploited to validate classification and prediction. In this way, data leakage of training into
testing and vice versa is reduced, which results in a good generalization. The mathematical
representation of the data leakage is as follows:

p(s) = Ci + Cj (1)

Ci ⊆ p(s) (2)

Cj ⊆ p(s) (3)

Sj1, Sj2, Sj3, . . . , Sjn ε Cj (4)

Si1, Si2, Si3, . . . , Sin ε Ci (5)

Si /∈ Sj (6)

Ci(Si1,...,n) /∈ Cj(Sj1,...,n) (7)

where p, s and C represent Population of the Samples, Number of Samples and samples’
unique class, respectively, whereas i and j are the mutual binary classes.

4.3. Data Preprocessing

Data is preprocessed where raw data are transformed into affine usable data. As the
consumption data are highly complex in nature and dimensionality, tackling such large
data manually is an impractical task, which takes much time to execute. Such complex data
results in high FPR and low accuracy. Missing values in raw data are filled by applying a
simple imputer, where a mean-based strategy is applied for such ambiguous values.

4.4. Data Augmentation and Balancing

Due to the rare existence of the malicious samples, the benign class samples’ are
modified and manipulated to synthesize malicious class data, which are inputted to ML
and Deep Learning (DL) models. Such random data distribution causes skewness and
bias problems. To tackle such issues, over-sampling techniques are used. Under-sampling
techniques discard the majority class, which disrupts the important information, while
oversampling techniques synthesize the duplicate samples of the minority class, which are
prone to over-fitting. In our scenario, the balanced data are synthesized by six theft variants
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to cope with the realistic theft data. Manipulating techniques used for the synthesis of the
data are as follows [42–46]:

T1(st) = st ∗ rand(0.1, 0.9) (8)

T2(st) = st ∗ xt(xt = random(0.1, 0.9)) (9)

T3(st) = st ∗ (random[0, 1]) (10)

T4(st) = mean(st) ∗ random(0.1, 1.0) (11)

T5(st) = mean(st) (12)

T6(st) = ST−t (Where T is consumption time) (13)

• In data manipulation technique 1, as shown in Figure 2a, a random number is multi-
plied with benign class Time-Series Data in order to manipulate fair consumption.

• The data manipulating technique 2 is shown in Figure 2b. To capture the consump-
tion’s discontinuity, a random number is multiplied to manipulate the honest con-
sumption’s data. Random number multiplication is a series-based discontinuity in the
consumption pattern.

• The data manipulating technique 3 is shown in Figure 3a. A random multiplication of 1
and 0 with Time-Series Data shows either the original consumption or a complete zero
consumption. There is no ramping function in between 1 and 0. It is a straightforward
switching ON, OFF operation with a complete connected load or the cut off. The
multiplication is a mode to copy the historic consumption project, and it is not confined
to a continuous Time-Series Data.

• In Theft Case 4, total consumption is aggregated into a mean which is multiplied by a
random number in between (0.1, 1.0), as shown in Figure 3b.

• The data manipulating technique 5 is shown in Figure 4a. The aggregated mean is
multiplied with a random number. It is a two-part manipulation. The average value is
a centered value of continuous Time-Series Data, where maximum consumption is
under-reported. In the second part, the same aggregated value is multiplied with a
random number in between (0.1–0.9), where the average value is under-reported as
well in an extra exploitation.

• The data manipulating technique 6 is shown in Figure 4b. A continuous swapping
of the low consumption and peak consumption hours is practiced, where a couple
slabs of consumed energy are shifted from ON-Peak hours to OFF-Peak hours and
vice versa. In such manipulating techniques, the consumer pays the charges for the
consumed energy, however, the vigilant swapping does not affect the UPs extensively.
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Figure 4. (a) Theft Case 5. (b) Theft Case 6.

4.5. Bi-Directional LSTM

To resolve the problem of vanishing gradients in RNNs [47], Bi-LSTM is developed
to preserve information for a long time period. Bi-LSTM infrastructure consists of two
LSTMs, which operate parallel in the forward and backward direction. Past and future
Time-Series Data are processed through forward and backward direction gates, respectively.
The input data are fed in the forward direction, and the reverse copy of the same inputted
data are fed in the backward direction as well. Such nature of the inputted data with a
reverse copy increases the data compatibility. The compatibility limits the gates to function
accordingly as needed. The architecture contains two hidden layers, and the output layer is
concatenated afterwards.

4.6. Feature Engineering

Synthetic features are helpful to improve the performance of the model. Four various
types of synthetic stochastic features are generated, namely, mean, min, max and standard
deviation. Time-Series Data of SGCC are analyzed on a monthly usage basis. The generation
of the stochastic features creates a subset of available features, which reduces noise and
improves DR slightly. However, FPR is reduced to a larger extent. The stochastic features
are numeric features. Weighted Feature Importance (WFI) of these features is classifier-
dependent. Certain features may not be of default importance to obtain a suitable DR and
low FPR. The stochastic features are the principal important features, which contribute in
our scenario. To confirm the validation, we iteratively tested and trained the classifiers on
the SGCC dataset. Mathematical representation of the generated features is as follows:

y(t) = {yt; t = 0, 1, 2, 3, 4, . . . , n} (14)
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µ =
n

∑
i

On

TO
(15)

σ =

√
∑n

i=0(Oi − µ)2

Py
(16)

Minimum = Osv[y{ti}] (17)

Maximum = Ohv[y{ti}] (18)

where, y(t), t, O, T, n, u, sv, hv and P show Time-Series Data containing various numbers
of features, time spans, observations, total number of observations of a specific time
sequence, number of observations, mean, smallest value, highest value and total population
of the dataset, respectively. Figure 5 shows the complete flow diagram of the overall
classification scenario.

SM Data

Six Theft
Cases

Preprocessing

Benign
Users

Theft
Users

Class
Segregation

Data Balancing

Data Splitting

Removal of
Cross Pairs

Feature
Engineering

Model
Training

Does

Meet the
Standard?

Performance Classification
of

Consumers

YesNo

Figure 5. Methodology outline for detection of NTLs.

5. Performance Evaluation

To evaluate the performance of our developed hybrid model, we use DR, FPR and
AUC scores and accuracy [48]. The origin of all of the aforementioned parameters is a
confusion matrix. Parametric division of the dataset is observed based on the confusion
matrix in shapes of True Positive (TP), FP, True Negative (TN) and False Negative (FN). TP
and TN correctly analyze the honest user as honest and malicious as malicious, respectively.
FP and FN wrongly classify the samples. Similarly, a model’s detection and sensitivity are
monitored by DR, which is referred to as TPR in the literature as well. Basically, DR is the
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representation of the model’s sensitivity and detection, which is mathematically shown in
Equation (19).

DetectionRate =
TruePositive

(TruePositive + FalseNegative)
(19)

FPR is a vital evaluation factor in a detection and classification scenario to monitor the
competency of a model which shows false alarms. A false alarm is an incorrect classification
of positive samples as negative ones and vice versa. Such alarming parameters are quite
expensive, which requires on-site inspection to verify, and it results in a huge monitory
loss. To mitigate huge revenue losses, high FPR needs to be reduced. Mathematically, it is
shown in Equation (20) [49].

FPR =
FalsePositive

(FalsePositive + TrueNegative)
(20)

Moreover, the accuracy is the measure of the correctly predicted instances. Mathematically,
it is represented as in Equation (21).

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(21)

A suitable and good classifier is one having low FPR, high DR and high accuracy as well.

6. Simulation Results

The exploited data (SGCC) are a real-time residential consumer’s data. Similar index-
ing pattern-based morphology classifies the consumers into two classes, in perspective
of their consumption, which are properly labeled. A staging numeric binary is placed
for each individual consumer’s consumption pattern. Label 0 indicates a fair consumer,
whereas 1 indicates a fraudulent consumer. The monitored and reordered patterns are
recorded after every 24 h for each consumer. Benign class data are manipulated in order
to synthesize malicious data for each of the theft variants. Later on, both classes’ data are
concatenated. However, a data balancing technique is required to reduce the class bias
issue due to the skewness of the model towards the majority class. K-means SMOTE is
deployed to balance the data. Before provision of the data to a model for training, both
classes are segregated through an affine decision boundary, where cross-pairs are removed,
which degrades model detection and classification accuracy. The Tomek links technique
identifies and removes the in-rushed cross-pairs across the decision boundary. The number
of identified and removed samples is shown in Table 3.

Table 3. Cross-Pairs Identification and Removal.

Total Samples (Before) Removal of Cross-Pairs Remaining Samples

10,500 105 10,395

In Figure 6a, the performance of the proposed BiGRU–BiLSTM is compared with
an existing CNN–LSTM model [32]. The curves in Figure 6a indicate the AUC of the
CNN–LSTM, proposed and ML-based models. Initially, at an AUC score of 0.50, both of the
classifying models comparatively perform quite well, where high TPR and the lowest FPR
are achieved, as shown in Figure 7a. The initial assessment based on the AUC curve shows
that the CNN–LSTM model [32] classifies the samples efficiently with the recorded lowest
FPR when the inputted samples passed are fewer in number. However, a small spike in the
AUC curve at 0.60 shows that the data complexity moderately confuses the CNN–LSTM
classification and results in an increasing FPR. The increasing FPR behavior is fluctuated
in a range of AUC scores from 0.60–0.82, while during the defined ranged our proposed
hybrid model Bi-GRU–Bi-LSTM performs much better to learn the data complexity and
reduce FPR. The maximum AUC score of 0.93 is achieved by our proposed model with a
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high sensitivity rate (TPR) as compared with the opponent model. Moreover, performance
of the proposed model is analyzed using a PRC curve. Figure 7b shows the performance
curve of PRC, which ensures that a low PRC rate is not an optimal factor due to the high
misclassification rate. Misclassification of the consumers spikes FPR and burdens the
UPs due to the on-site inspection for the conformation of the consumers’ nature, which is
expensive in practice due to the revenue loss.
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Figure 6. (a) AUC Analysis of the proposed and CNN–LSTM models. (b) PRC analysis of
both models.
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Similarly, accuracy is not a good metric to evaluate the results of the whole classi-
fication scenario. Accuracy-based performance analysis of different models is shown in
Figure 7a,b. Accuracy is the number of correct predictions over the total number of pre-
dictions. However, the prediction sometimes goes wrong and misclassifies the samples
mistakenly. Figure 7b shows that CNN is a dumb classifier, and it takes advantage of the
skewness of available data. To overcome the issue and to evaluate the performance of the
classifier, F1 and precision scores are plotted.

The leading diagonal of the confusion matrix contains FP and FN, which are referred to
as mistakes of the classifiers. A perfect classifier has the zero leading diagonal. Fluctuations
in precision and recall are formally due to these two aforementioned factors.

Precision- and recall-based performance of a model is integrated into a single matrix
called an F1 score. It is the harmonic mean of the precision and recall. Only a significant
increase in both, i.e., precision and recall, can cause an increase in F1 score. Figure 7b shows
an equilibrium in precision and recall, which results in a high F1 score, while the existing
model has a low F1 score due to imbalance increase in precision and recall. Moreover, the
bench mark models such as SVM, RF and DT depict the same scenario of the existing model
with high fluctuations in F1 scores.

A comparative analysis in Table 4 shows a subsequent improvement in classification
between the honest and fraudulent consumers. In addition, feature engineering improves
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the accuracy of the proposed detection model as shown in Table 5. It is observed that the
accuracy is increased from 88.7% to 95%.

Table 4. Performance mapping of the executed models.

Models F1 Score Precision Recall Accuracy

Proposed 80.7 80.6% 80.9% 88.7%

Existing [33] 76.3 84.3% 74.7% 83.1%

SVM 75.0 62.5% 84.3% 72.5%

DT 75.7 62.3% 79.5% 76.3%

RF 78.2 64.2% 77.6 % 73.6%

Table 5. Performance improvement of the proposed model against stochastic feature engineering.

Models Without Feature Engineering With Stochastic Features

Proposed Model 88.7% 95%

7. Robustness Analysis

Robustness shows the effectiveness of a classifier against unseen and independent
samples of a similar dataset whenever it is tested on such type of data. The unseen and
independent data are referred to as the worst case of noisy data due to their distinctive
characterization. In our case, Theft Case 3’s data are taken to verify the robustness of the
model. Theft Case 3 presents the most irregular consumption patterns as compared with
the other Theft Cases due to a temperate randomness in consumption patterns, which
is caused by the multiplication of the patterns with 1 and 0. The irregular and distinct
patterns mimic changes as directives of inevitable factors, which proscribe the changes
as suspected ones. A high-degree patterns’ variation disrupts models’ decision making.
However, the proposed model survives to generalize completely on unseen data, as shown
in Table 6.

Table 6. Robustness Performance of Proposed Model against Unseen Theft Attacks.

Models Accuracy AUC Score F1 Score

Proposed Model 88.3% 57.6 54.9

Existing Model 86.9% 54.9 53.6.7

Table 6 depicts the observed accuracy, AUC and F1 scores. The statistics in Table 6
show that a higher DR is achieved with a high FPR. However, the high FPR is within an
acceptable range as compared with the existing model.

8. Computational Complexity

To analyze the computational complexity of the proposed model, execution time is
considered. Table 7 shows the execution time of the proposed and existing models. It is
observed that the execution time of the proposed model is slightly greater as compared with
the existing model. However, our major concern is high FPR. The proposed model beats
the existing model in high the FPR perspective, which is an expensive parameter. High
FPR burdens the UP and results in excessive monitory costs, whereas the computational
complexity is a time-oriented parameter, which can be compromised.
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Table 7. Computational Complexity Analysis.

Input Batch Size Execution Time Proposed
Model (s)

Execution Time Existing
Model (s)

50 218 62

100 165 88

150 159 48

200 159 87

250 166 87

300 152 88

9. Performance Validation

In order to validate the effectiveness of our proposed model, a random testing on
unseen theft class data is tested. The unseen theft class data are manipulated data of
Theft Case 3, as shown in Equation (10). The observed AUC score of 57% validates the
performance of the proposed model. Moreover, variation in the testing data due to the
addition of the stochastic features challenges the performance, where an AUC score of 95%
is observed. An AUC score of 95% is a good achievement and validates the performance of
the proposed model.

10. Conclusions

This research proposes a hybrid model of BiLSTM and BiGRU in order to detect
NTLs. Initially, benign and fraudulent consumers are segregated by defining an affine
decision boundary through the Tomek Links techniques. Cross-pairs are identified and
transformed into majority samples, where the majority class samples are removed and
reduce the misclassification of the defused data across a decision boundary, which results
in a low FPR. Furthermore, to synthesize theft variants, honest consumption is modified
and manipulated by using six different data manipulating techniques. Six numbers of
manipulated readings are synthesized for a single benign sample, which requires data
balancing. For provision of the balanced benign class data, K-means SMOTE is used. K-
means SMOTE over-samples the benign class using a clustering mechanism. The balanced
data are inputted to the hybrid architecture of Bi-GRU–Bi-LSTM. The classification analysis
is carried out on unseen data samples and achieves an AUC score of 0.93. Similarly, a
competitive model of CNN–LSTM is trained and tested on the same data, which fails in the
provision of a precise and accurate classification as compared with our proposed model.
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Abbreviations
The following abbreviations are used in this manuscript:

AMI Advanced Metering Infrastructure
APD-HT Anomaly Pattern Detection Hypothesis Testing
Bi-GRU Bi-directional Gated Recurrent Unit
AUC Area Under the Curve
Bi-LSTM Bi-directional Long Short-Term Memory
CatBoost Categorical Boosting
CNN Convolutional Neural Network
DTKSVM Decision Tree Combined K-Nearest Neighbor and Support Vector Machine
EBT Ensemble Bagged Tree
ETD Electricity Theft Detection
DT Decision Tree
DR Detection Rate
DG Distributed Generation
XGBoost Extreme Gradient Boosting
Fits Feed-in Tariffs
FN False Negative
FP False Positive
FPR FP Rate
GBCs Gradient Boosting Classifiers
LGBoost Light Gradient Boosting
MIC Maximum Information Coefficient
ML Machine Learning
NaN Not a Number
NAN Neighborhood Area Network
NTLs Non-Technical Losses
PV Photo Voltaic
PRC Precision Recall Curve
RUSBOOST Random Under Sampling Boosting
RF Random Forest
SSEA Semi-Supervised Auto-Encoder
SGCC State Grid Corporation of China
SMs Smart Meters
SSDAE Stacked Sparse Denoising Auto-Encoder
SCADA Supervisory Control and Data Acquisition
SVM Support Vector Machine
TLs Technical Losses
TN True Negative
TP True Positive
UP Utility Provider
WFI Weighted Feature Importance
C Sample’s Unique Class
O Observations
p Population of the Samples
S Number of Samples
St Time-Series Data
T Theft Case
σ Standard Deviation
µ Mean
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