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Abstract: The traditional pointer instrument recognition scheme is implemented in three steps, which
is cumbersome and inefficient. So it is difficult to apply to the industrial production of real-time
monitoring. Based on the improvement of the CSL coding method and the setting of the pre-cache
mechanism, an intelligent reading recognition technology of the YOLOv5 pointer instrument is
proposed in this paper, which realizes the rapid positioning and reading recognition of the pointer
instrument. The problem of angle interaction in rotating target detection is eliminated, the complexity
of image preprocessing is avoided, and the problems of poor adaptability of Hough detection are
solved in this strategy. The experimental results show that compared with the traditional algorithm,
the algorithm in this paper can effectively identify the angle of the pointer instrument, has high
detection efficiency and strong adaptability, and has broad application prospects.

Keywords: YOLOv5; object detection; CSL; binary coding; angle recognition

1. Introduction

In most commercial and civil scenarios, pointer meters have been replaced by simpler
and more convenient digital meters, but in industrial scenarios with harsh environments,
digital meters are often difficult to work normally and cannot effectively monitor the
results. Therefore, pointer meters are still widely used in industrial scenarios due to
their advantages of stability, strong anti-interference ability, and easy cable installation.
However, the problem of reading storage of pointer meters has not been effectively solved,
resulting in the existing pointer meters being unable to meet the urgent needs of intelligent
development of industrial production. The problem is particularly prominent in fieldwork
environments such as sports vehicle systems or oil drilling engineering.

With the development of deep learning, the research on automatic identification of
instruments based on deep learning has gradually been carried out. Wan Jilin et al. intro-
duced the Faster R-CNN method to detect the meter and pointer area, and the Dice function
of U-Net is constructed to solve the problem of classification imbalance and improve the
accuracy and practicability of small targets in complex images [1]. Aiming at the problem
of insufficient generalization of the current detection methods, Ma Bo et al. used adaptively
extracted key features as prior knowledge to generate virtual samples to optimize the
recognition effect and increase the robustness in complex situations but did not realize the
problem of dial correction [2]. Chen Mengchi et al. used QR codes to locate and correct the
perspective transformation, so they were able to overcome the problem of image distortion
caused by the inclination of the shooting angle [3]. Zhou Dengke et al. used generalized
least squares to perform ellipse fitting on the key points extracted by the convolutional
neural network and realized tilt and rotation correction by using perspective transforma-
tion and calculation of the key symmetry point of the central axis of the instrument [4].
Aiming at the problem of the large number of parameter calculations in deep learning,
Li Huihui et al. used the improved MobileNetV2 network mixing combined with Hough
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detection, compared with ResNet, the result reduces 90.51 percent of the parameters and
92.40 percent of the calculation, which is helpful for further deployment in mobile or
embedded devices [5]. Summarized the traditional scheme, Shen Weidong et al. used the
SSD network to locate the position of the instrument in the complex background, and used
the multi-scale Retinex algorithm to enhance the HSL color space image. Finally, Canny
edge detection 42 and Hough transformation are used to obtain the pointer tilt angle [6].
Xu Li et al. proposed an iterative maximum inter-class variance algorithm to optimize
the pointer extraction under different illuminations and added constraints on the Hough
transform to achieve a recognition rate of 95 [7].

However, the traditional strategies of classic deep learning algorithms in pointer meter
recognition are not suitable for the embedding of real-time monitoring systems. Although
the detection model has been optimized at present [8,9], the image processing such as
illumination, rotation correction, and Hough detection algorithm still requires a lot of
time and is inefficient. Therefore, the traditional deep learning scheme is still limited in
practical applications.

A new strategy of introducing the CSL algorithm into the YOLOv5 framework to
detect the rotating target of the meter and the pointer is presented in this paper, which can
simplify the detection steps and realize the direct recognition of the angle of the pointer and
pointer meter. Binary encoding is used to improve the original encoding method of CSL,
and the pre-cache mechanism is introduced into the algorithm to reduce the number of
parameters and the calculation of the original algorithm in this strategy, then the accuracy
of angle detection is improved and the angle interaction problem existing in the original
algorithm is solved. The experimental results show that the scheme is not only less sensitive
to light interference, but also can effectively solve the problem of rotation correction. The
scheme has strong adaptability to the detection of different instruments, and the detection
speed is far faster than the traditional scheme.

2. Instrument Image Features and Recognition Model
2.1. Traditional Identification Technology and Its Problems

The traditional instrument identification method is generally divided into three
steps [10–13]: firstly, target detection to remove the background; secondly, image pre-
processing to adjust the light shadows and correct the meter rotation; finally, Hough
detection to obtain the angle and calculate the reading. The scheme is shown in Figure 1.

Figure 1. Traditional instrument identification process.

Pointer parameter images typically suffer from three flaws in unstable environments
such as movement scenes or in the wild:

(1) The instrument image background is complex. Instruments are often used in outdoor
environments with complex and diverse backgrounds, such as pipelines on oil sites,
drilling rigs, and other complex scenes.

(2) The instrument image has uneven light and shadow. Whether it is an indoor or
outdoor scene, the light received by the instrument image is too dark, too bright, or
uneven in brightness, which will increase the difficulty of identification.

(3) Instrument image rotation. Due to equipment reasons, it cannot be guaranteed that
the instrument is installed in the standard position, and the picture of the instrument
in the camera may be rotated or even reversed.

In order to solve the problems above, the traditional pointer instrument image recog-
nition technology usually needs to spend a lot of time for additional image preprocessing,
this method is inefficient and slow, resulting in a serious waste of resources and it cannot
meet the real-time requirements of industrial production [14].
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2.2. Intelligent Identification Technology of Pointer Meter Based on Improved Circular Smooth
Label Algorithm

Considering the characteristics of common instrument images, an automatic recog-
nition scheme for YOLOv5 instrument pointers based on the CSL (circular smooth label)
algorithm is designed. The process is shown in Figure 2.

Figure 2. Identify readings based on CSL detection.

As shown in Figure 2, a target detection algorithm to detect the angle of the pointer
and the meter directly is proposed in this paper. The angle is used to calculate the relative
angle difference, and the information needed for the meter identification is obtained directly
from the value of the relative angle in one step in this new algorithm. This paper will use
the target detection algorithm to directly detect the angle of the pointer and the meter, use
the angle to calculate the relative angle difference, and directly pass the value to obtain the
information needed for meter identification in one step.

3. Introduction and Defects of Circular Smooth Label Algorithm
3.1. Circular Smooth Label Algorithm

The CSL (circular smooth label) algorithm is an angle prediction method without
boundary problems. The current problems of angle prediction based on 97 regression
methods can be summarized as: the ideal prediction result exceeds the initially defined
range and produces a large loss. Dr. Yang proposed the CSL algorithm and limited the
range of the prediction results to reduce the angle classification error so that the IOU loss of
the prediction box and anchor box is minimized to improve the target result [15].

3.2. Use of Circular Smooth Label Algorithm
3.2.1. Circular Smooth Label Algorithm Labeling Method

A Gaussian function is used as a window function for angle classification by compari-
son in CSL, the original angle is calculated separately and brought in the corresponding
label for angle classification. A similar idea of sliding labels is also used in borderless object
detection [16]. The calculation method is shown in Formula (1):

CSL = f (x) =

{
e
−(x−θ)2

2r2 , θ − r ≤ x ≤ θ − r
0, otherwise

(1)

3.2.2. Feasibility Analysis of Circular Smooth Label Algorithm

The CSL algorithm converts angle recognition from a regression problem to a classifi-
cation problem. From continuous to discrete, there will be a loss of accuracy. The algorithm
divides the angle into integer categories, which makes it impossible to predict non-integer
angles. In the case of integer classification, the classification interval can be assumed as ω,
and the angle maximum accuracy loss and average loss are shown in Formulas (2) and (3):

Max(loss) = ω/2 (2)

E(loss) =
∫ ω/2

0
x ∗ 1

ω/2− 0
dx = ω/4 (3)

We take ω as the smallest integer, 1 as an example, and the center point of the prediction
frame as the rotation. The maximum loss deviation and average loss deviation of the IOU
under different aspect ratios of the image are shown in Figure 3.
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Figure 3. IOU loss under different aspect ratios.

As shown in Figure 3, as the aspect ratio of the detected target frame increases, the IOU
loss will increase. If ω takes the smallest integer 1 and the aspect ratio is 10, the average
loss deviation of IOU generated by the picture is 0.022, and the maximum loss deviation is
only 0.043. The IOU loss of angle participation is within the allowable range, so it is feasible
to perform angle prediction in a classification manner.

3.2.3. Limitations of Circular Smooth Label Algorithm

The original intention of the CSL algorithm is to reduce the IOU loss of the anchor
frame by classification to further improve the accuracy of target detection. It does not pay
much attention to the prediction ability of the angle. Based on many experiments, the CSL
algorithm has two limitations.

(1) Classification limitations

CSL is mainly classified by integer angles, so it cannot be more precise. When the classi-
fication interval is further reduced to improve the prediction accuracy, the prediction classi-
fication parameters and the calculation amount will increase, which has certain limitations.

(2) Ambiguous orientation

The CSL algorithm does not take the interactivity of angles into account. The algorithm
uses the −90 to 90-degree range of the long-side notation angle notation to represent −180
to 180 degrees, but the pointer angle generally requires an exact and fixed value.

4. Circular Smooth Label Algorithm Improvement
4.1. Improvement of Classification Limitations

The classification interval determines the prediction accuracy. As the classification
interval decreases, the classification category increases, and the accuracy increases, too.
Theoretically, the smaller the classification interval, the better the measurement result.
However, in fact, too many classification categories will lead to an increase in the prediction
parameters and increase the complexity of classification calculation.

Binary coding [17] is used to improve the coding of CSL classification and the classifi-
cation category is represented by binary coding. Taking four categories as an example, the
encoded annotation types are shown in Table 1.

Table 1. Binary coded annotation type.

Theta −90 −45 0 45

Class num 0 1 2 3

Onehot label 0001 0010 0100 1000

Binary code 00 01 10 11
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Under binary coding, multi-objective classification can be regarded as a simple binary
coding classification problem, but the number of classification types will be limited to
2n. For example, the classification category has 512 classes. The angular interval of the
classification is 0.352, the IOU loss deviation is almost negligible and a certain accuracy
is added.

Under this classification, the CSL algorithm needs to use 512 parameters to represent
angles, but the binary-coded CSL algorithm only needs eight parameters to represent
512 types of angles. During prediction, the angle parameter Tn, the total angle partic-
ipation parameter Pn and the parameter calculation amount Cn are calculated by the
following formulas:

Tn = Anchor−num× Prarmeter (4)

Pn = Channel out × ker nelsize 2 + Tn (5)

Cn = 2× Channel out × l × ker nelsize 2 × pixel num (6)

pixel−num = Channelin × sum(hi × wi) (7)

Using YOLOv5 as the piggyback model for this algorithm, The number of prediction
boxes (Anchor_num) is 9. “Parameter” represents the number of parameters involved in the
angle calculation, The number of channels output by the prediction layer is 256, and the
convolution kernel size is 3. The prediction layer feature image size includes (76, 76, 256),
(38, 38, 256), and (19, 19, 256). The parameters and calculation amount of the CSL algorithm
under YOLOv5 and the improved CSL algorithm are shown in Table 2.

Table 2. Comparison of parameter calculations.

Method Tn Pn NPn Cn NCn

Regress 9 46.6 M - 252.7 -

CSL 4608 57.2 M 22.7 percent 441.3 74.6 percent

Bin+CSL 72 46.8 M 0.4 percent 261.1 3.4 percent

As shown in Table 2, compared with the target detection in the original regression
method, the improved algorithm uses fewer relative to the CSL algorithm in terms of the
number of parameters and the amount of computation, which actually reduces the time by
about 70 percent in the actual training and testing.

4.2. Improvement of Directional Ambiguity

When making angle predictions, there are often cases where the actual angle differs
from the predicted angle by about 180 degrees. This is due to the interaction of the angles.
As shown in the figure, the real angle should be angle “b”, but in the CSL algorithm, the
angle is limited to −90 degrees to 90 degrees, and the predicted result is angle “a”, which is
180 degrees different.

In Figure 4, the pointer green “P” points to the upper half area, that is, when the
pointer angle is in the range [0, 180), the predicted angle “B” and the actual angle “b” are
the same; however, when the pointer red P points to the lower half area, that is, when
the pointer angle is in the range [0, −180), the actual angle is “a” but the predicted angle
is “A”, and the difference between the two angles is 180 degrees. Therefore, the angle
transformation should be introduced.
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Figure 4. Angle interactivity.

In Figure 4, if the pointer angle is in the range [0, 180), the predicted angle B and the
actual angle b are the same angle when the pointer green P points to the upper half area.
When the pointer red P points to the lower half area, if the pointer angle is in the range
[0, −180), the actual angle is a but the predicted angle is A and the difference between the
two angles is 180 degrees. In this case, angle transformation is required.

As shown in Table 3 relative angle predictions, the predicted value is shown by
“Pred(a,b)”, “a” represents the predicted dial angle result, “b” represents the predicted
pointer angle result, “Error” represents the relative error with the actual angle, and “T/ F”
represents the prediction result of the relative angle.

Table 3. Relative angle forecast.

Pred (0, 0) (0, 1) (1, 0) (1, 1)

Error 0 180 −180 0

T/F T F F T

Due to the interactivity of the angle, setting the angle label range between −180 and
180 is not ideal for angle prediction due to the interactivity of angles. Therefore, the idea
of frame angle cache is proposed, and the angle of the previous frame image is cached.
Thresholds are set to ensure the continuity of angle changes. If the angle jump exceeds the
threshold, it can be considered that the predicted angle and the real angle have interactively
transformed, and then adjust the forecast angle.

5. Implementation of the Algorithm
5.1. YOLOv5 Rotating Target Detection Based on Circular Smooth Label Algorithm

At present, there are three approaches for object detection with bounding boxes: one-
step SSD [18], YOLO, and two-step Faster R CNN [19] frameworks. However, due to the
real-time nature of instrument identification, a one-step network framework needs to be
selected for target detection, and the target detection includes small pointer targets, which
requires a relatively high-precision method for target detection. Therefore, the YOLOv5
algorithm is selected as the instrument identification detection framework.

5.1.1. Introduction to the Advantages of YOLOv5

(1) Using the Mosaic method [20] to enhance the data, through random cropping, scal-
ing, and random stitching of four pictures, the detection effect of small targets
is strengthened.

(2) Using the adaptive anchor box, each time the optimal anchor box value of different
training sets is calculated, the training can converge faster.

(3) Focus structure, slice the input feature image, improving the model detection speed
from the amount of calculation and the number of parameters.

(4) Using GIoU loss as the bounding box upfront loss function, CIoU loss as the bounding
box late loss function, and using DIoU loss in the process of NMS [21] not only



Sensors 2022, 22, 7800 7 of 16

improves the convergence speed and performance of the model but also enhances the
ability to detect occluded overlapping objects.

5.1.2. The Improved Circular Smooth Label Algorithm

The CSL algorithm after using binary encoding is still the classification algorithm for
angles. During the training process of YOLOv5, we should encode and decode the angle
information of the annotation information. The pseudocode for the encoding and decoding
process during training is as follows in Algorithms 1 and 2.

Algorithm 1 Binary encode.

Input: label before encode, Angle interval ω
Output: label encoded

for label.θ in label do
θ = label.θ;
delete label.θ;
theta_encode = Bin(−Round(θ − 90)/ω);
list_theta = list(theta_encode);
for i in List_theta do

label.append(i);
end for

end for
return label;

Algorithm 2 Binary decode.

Input: model predict result, Angle interval ω
Output: result decoded

for line in result do
pred = line[log2(180/ω) : −1];
θ = 90−ωInt(Round(Sigmoid(pred)));
Delete pred from line;
Line.Append(θ);

end for
return result;

The pseudocodes in Algorithms 2 and 3 represent the encoding and decoding op-
erations used for training, respectively. The input unencoded angle information is the
normal angle information marked by the field side notation, and the angle interval is the
passing angle.

For the predicted angle, only predicted values for 0–180 degrees exist and the predicted
value corresponds from −180 to 180 and the threshold is 90. The pseudocode of the
algorithm is as follows in Algorithm 3.

In Algorithm 4, since the predicted angle can only recognize the angle of 0–180 degrees,
the boundary threshold of 90 degrees should be used as the threshold for the 226 algorithm’s
angle exchange directly. When the absolute value of the predicted angle value minus the
angle value of the previous frame buffer is greater than 90 degrees, the predicted angle can
be considered to have an angle misprediction. In this case, the angle needs to be exchanged,
and the obtained dial and pointer angles are cached to replace the cached frame angle for
the next prediction comparison.
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Algorithm 3 Angle transform.

Using the initial state value to initialize the cached angle list.
Input: cached angle list, predict angle list
Output: cached angle list, relative angle

para_angle c0 = cached angle list[0]
po_angle c1 = cached angle list[1]
para_angle p0 = predict angle list[0]
po_angle p1 = predict angle list[1]
if −90 6 c0− p0 6 90 then

cached angle list[0] = p0;
else

p0 = p0− 180;
cached angle list[0] = p0;

end if
if −90 6 c1− p1 6 90 then

cached angle list[1] = p1;
else

P1 = p1− 180;
cached angle list[1] = p1;

end if
relative angle = p1− p0
Return cached angle list, relative angle

Algorithm 4 Data augmented.

Input: The original images
Output: Augmented images & Augmented labels

Label� using labelimg get json labels;
Read The original images;
for i in 180 step 3 do

Images� Rotate the image i degrees;
Labels� Rotate the label i degrees;
Write images and labels in Augmented images files & Augmented labels files;

end for
for label in Augmented labels files do

if ∃num ∈ (x1, y1, x2, y2, x3, y3, x4, y4) in label out of boarders then
delete label and pair image

end if
end for
for label in Augmented labels files do

label� normalize label;
Yolo label�minAreaRect(label)
if w < h then

w, h = h, w;
θ = θ + 90;

end if
end for

5.2. Fit Calibration Method

In actual detection, the dial is often tilted or laid flat. The traditional technology needs
to correct the tilt of the dial before proceeding to the next step of pointer recognition.

Using the scheme of this paper to detect the instrument recognition target will obtain
two angles. One is the rotation angle of the current meter—offset. The other is the angle
of the pointer relative to the horizontal and subtract the meter angle from the last pointer
angle obtained. The tilt correction process to obtain the angle of the pointer relative to
the dial can be avoided, thus the detection speed can be improved greatly. It can directly
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avoid the tilt correction process to obtain the angle of the pointer relative to the dial, which
greatly speeds up the detection speed.

6. Experimental Results
6.1. Data Annotation and Data Augmentation

About 1000 instrument image data captured on site and searched on the Internet
were selected for data annotation augmentation. The pseudocode of the data annotation
augmentation process is as follows in Algorithm 4.

Firstly, the json file data annotation is used to get the initial data and rotate the image
at multiple angles. Secondly, the annotation information recorded in the json file is utilized
to rotate the annotation frame for data augmentation, and the information beyond the
boundary are filtered. Thirdly, the center point and the angle information of the opencv
representation are obtained. Finally, the annotation information is converted into long-side
notation and the data is normalized. As a result, about 18,362 YOLO annotations with
angular long-side notation are obtained.

6.2. Algorithm Verification
6.2.1. Object Detection Accuracy

In the algorithm verification process, considering the problem of frame labeling caused
by the tilt of the meter and the pointer, in this paper we choose to separate the detec-
tion accuracy of the meter and the pointer to discuss the classification of the three algo-
rithms. Table 4 separate discussion of the detection accuracy of meter and pointer under
various algorithms.

Table 4. Relative angle forecast.

Method Pa_tAP Po_tAP Pa_vAP Pa_vAP

Yolov5 99.2 percent 95.7 percent 97.3 percent 87.6 percent

Yolov5+CSL 98.6 percent 96.3 percent 94.2 percent 90.3 percent

Yolov5+CSL_B 97.3 percent 94.8 percent 92.6 percent 88.5 percent

The table represents the average precision of the gauges and pointers on the training
and validation sets, respectively. It can be seen from the table that, as for the detection
accuracy of the instrument, the original Yolov5 has the best mesh results, and the CSL and
CSL_B detection accuracy is not better than it. As for pointers, the detection accuracy of
the YOLOv5 model with CSL or CSL_B is higher than the original model. It proves that
target detection with added rotation detection is better for target detection with a relatively
large aspect ratio. Additionally, objects with oblique angles with larger aspect ratios have a
smaller proportion of features in the original calibration frame. Therefore, rotating object
detection reduces feature loss and makes prediction more accurate.

6.2.2. Angle Error Calculation

In the experiment, there are two types of angle errors. One of the artificial angle
errors is in the process of calibrating the label, the other is the machine angle error during
prediction. It requires the calculation of machine angle error for verification, but human
error cannot be avoided. Therefore, in this paper, we take 1 degree as the artificial error
threshold and consider that the angle prediction is correct if the error between the predicted
value and the calibration value is between (−1, 1). If the threshold is exceeded, the angle
error value needs to be calculated. The pointer and meter fitting curves of the CSL algorithm
and the improved algorithm are shown in Figure 5.
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(a) CSL pointer angle fitting (b) CSL+B dial angle fitting

(c) CSL+B dial angle fitting (d) CSL+B angle fitting

Figure 5. Annotation and prediction angle fitting curve.

Figure 5a,b show the pointer, meter angle labeling, and prediction fitting curve under
the CSL algorithm, respectively. Figure 5c,d are meter labeling and prediction fitting curves.
In the figure, it can be seen from the figure that the detection result of traditional rotating
target detection for discs with a small aspect ratio is much worse than that of a pointer
with a large aspect ratio. The improved algorithm is not much different from the prediction
results of the CSL algorithm in the prediction of integer angles, but the prediction error for
non-integer results is smaller.

The error curve between the true relative angle value and the prediction result after
Algorithm 4 is shown in Figure 6.

Figure 6. Annotation and prediction angle fitting curve.

In Figure 6, the blue curve is the angle error of the original CSL algorithm, the green
curve is the error of the improved CSL algorithm, and the red curve is the error 0 baseline.
In the picture, we can obtain the CSL algorithm that has not been processed by Algorithm 4
has a maximum error of ±180 degrees relative to the baseline. The interaction of angles is
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not considered so that the predicted angles are between [0, 180]. At this time, the detection
results of the pointer and the meter do not match, and the relative angle deviation is about
180. However, after Algorithm 4, the prediction result will be corrected according to the
result of the previous frame, which is very stable.

In addition, this paper carries the improved CSL algorithm on several different de-
tection models for comparison. The detection rate and accuracy are shown in Table 5.

Table 5. Comparison of detection results of different models.

Method SSD RCNN [22] RRPN Faster RCNN

MAP 63.21 percent 72.01 percent 76.04 percent 88.32 percent

Method RRD [23] RoI-Transformer [24] RetinaNet-R [14] Yolov5

MAP 85.64 percent 89.12 percent 90.23 percent 93.3 percent

YOLOv5, due to the advantages of its own framework improvement, the original
detection effect is relatively good. This paper compares the detection accuracy of the
common models equipped with the CSL algorithm. After the comparison of various
models equipped with the CSL rotation detection algorithm, the YOLOv5 detection model
has higher accuracy in pointer and meter recognition. Additionally, it is more dominant in
industrial applications.

6.3. Algorithm Verification
6.3.1. Algorithm Selection Design

Since the traditional algorithm needs to process the image and then perform Hough
detection to obtain the pointer angle, it is not suitable for the basic detection network to
select the same YOLOv5 for comparison. SSD is selected as the target detection network of
the traditional algorithm and made backbone replaced with the MobileNet [25] network to
speed up detection. Then we use the adaptive Retinex [26,27] to adjust the light and rotation
correction using least squares and perspective transformation [28] from the literature [4].
As for Unet [29] segmentation, the detection pointer needs to classify each pixel of an image.
As for its consuming trait, the faster Hough detection [30] is selected to obtain the position
of the center of the circle and the angle information of the pointer, and finally, the pointer
reading is obtained.

6.3.2. Comparison of Detection Effects

Since the SSD network has a very high missed detection rate for small targets, the
pointers to small targets are basically undetectable. However, YOLOv5 is still very friendly
to small targets [31]. Therefore, this section does not compare the detection accuracy, the
problem of image jitter is generally solved on the hardware camera side, and the jitter
problem is not considered in this section.

The system environment of the test results includes Windows 10 Education Edition,
Inter (R) Core (TM) i9-10900X CPU @ 3.70 GHz processor, memory (RAM): 64.0 GB, system
type: 64-bit operating system, and GPU: 2080Ti.

Since the image processing time of the Retinex feature enhancement algorithm is
related to the image quality and the Gaussian surround scale, the real adaptive Retinex
algorithm test consumption time is not stable with different lighting, as shown in Figure 7.
Therefore, the more stable single-scale Retinex algorithm is selected for comparison, and the
Gaussian surround scale is fixed as 80, which is commonly used, and the average processing
time obtained is used as the comparison time of the illumination correction algorithm.
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Figure 7. Influence of Gaussian surround scale on time.

In Table 6, rotation correction and lighting correction are time-consuming in practice,
and the average optimal detection frame rate in an ideal environment is 1.4 fps. It is
inconvenient whether it is in real-time monitoring or storage processing. The improved
CSL_B algorithm directly obtains the angle from the target detection model, and the
sensitivity of illumination is very low. The angle is processed during detection, and the
detection is 26 fps, which can fully meet the real-time requirements.

Table 6. Relative angle forecast.

Method Target Lighting Rotation Hough Total Frame
Detection Correction Correction Detect Duration Rate

Traditional 36 ms 468 ms 230 ms 4.9 ms 739 ms 1.4 fps

CSL_B 38 ms 0 ms ≈0 ms 0 ms 38 ms 26 fps

In the comparison of traditional algorithms, it is found that the traditional Hough
detection has the disadvantage of weak adaptive ability, as shown in Figure 7. For Hough
detection of different instruments, it may be necessary to set corresponding thresholds to
ensure the detection of circles, circle centers, and straight lines. Otherwise, the detected
results will have great deviations. In this paper, the algorithm target detection obtains
results in one step and has stronger adaptive ability and stability.

6.3.3. Test Result 1

To test the feasibility of the proposed scheme, the error detection of the test results is
carried out under normal conditions, uneven illumination, and a certain rotation angle.
The scale range of the detected instrument is 0.0 to 0.6 MPa, and the pressure gauge is
evenly scaled. The test results are shown in Tables 7–9.
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Table 7. Test result table.

Manual measurement 0.00 0.10 0.15 0.20 0.25 0.30
of the true value

The value calculated 0.00 0.10 0.15 0.20 0.24 0.30
by the algorithm in this paper

Manual measurement 0.35 0.40 0.45 0.50 0.60 /
of the true value

The value calculated 0.37 0.40 0.45 0.51 0.60 /
by the algorithm in this paper

Table 8. Measurement results under uneven lighting.

Manual measurement 0.00 0.10 0.15 0.20 0.25 0.30
of the true value

The value calculated 0.00 0.10 0.15 0.20 0.24 0.30
by the algorithm in this paper

Manual measurement 0.35 0.40 0.45 0.50 0.60 /
of the true value

The value calculated 0.37 0.40 0.45 0.51 0.60 /
by the algorithm in this paper

Table 9. Random angle rotation measurement results.

Manual measurement 0.00 0.10 0.15 0.20 0.25 0.30
of the true value

45 degree test results 0.02 0.11 0.15 0.20 0.26 0.31

90 degree test results 0.00 0.11 0.15 0.20 0.24 0.31

−60 degree test results 0.00 0.10 0.16 0.20 0.24 0.33

Manual measurement 0.35 0.40 0.45 0.50 0.60 /
of the true value

45 degree test results 0.35 0.43 0.44 0.51 0.60 /

90 degree test results 0.35 0.41 0.46 0.50 0.60 /

−60 degree test results 0.34 0.41 0.44 0.50 0.58 /

As shown in the tables, in this paper, the measurement accuracy is set to two decimal
places to magnify the similarities and differences between the measurement results. The
detected values obtained under ideal conditions in Table 7 are basically consistent with
the real values, with occasional errors, and the error value does not exceed 3.4 percent.
After adding an appropriate amount of uneven illumination, the results remain unchanged,
which also shows that the algorithm is not sensitive to the influence of illumination.

In Table 9, unquantified rotation due to machine detection and manual rotation errors
will slightly increase the detection error. However, from the data point of view, the error
value can be controlled within the range of 5 percent, and it still shows a very stable
prediction result, which basically meets the use of drilling sites.

6.3.4. Test Results 2

An example of the detection results of the algorithm part is shown in Figure 8 and the
detection result is better.
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(a) (b)

(c) (d)

(e)

Figure 8. Annotation and prediction angle fitting curve.

Figure 8a,b show the results of the algorithm detecting the instrument images captured
in different directions. Additionally, Figure 8a includes multi-pointer detection. This case
shows the algorithm can effectively solve the problem of multi-pointer detection and can
effectively detect and identify the distortion meters photographed from different angles.

Figure 8c shows the detection and recognition results of the algorithm in multi-target
detection and instruments under different rotation angles. It can be seen that the algorithm
effectively framed each meter and pointer without any missed detection or false detection.
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Figure 8d shows the detection results of the instrument image with a certain rotation
angle and a certain distortion. The results show that the algorithm can effectively solve the
problems of distortion and rotation interference.

Figure 8e shows the algorithm detection results of multiple targets and small targets.
It can be seen from the results that there is no missing detection in the algorithm detection,
indicating that the algorithm still performs well in small target recognition.

From the example graph of the detection result of Figure 8, we can see that the
algorithm can effectively detect pointers and the algorithms enable efficient detection of
pointers and gauges. Meanwhile, the algorithm can also effectively detect distorted, rotated
meter images and even small target meter images.

The detection algorithm proposed in this paper has a strong anti-interference ability
and can meet the detection of small targets, and has strong practicability in instrument
detection and identification.

7. Conclusions

A new strategy for an instrument pointer recognition scheme is proposed in this paper,
two defects of the CSL algorithm in angle detection are indicated and the 368 algorithm
has been improved by using the strategies of binary encoding and threshold contrast
preset and cached. The problem of the CSL algorithm is solved, and the results of the
algorithm are also verified. The improved CSL algorithm is introduced into the OBB target
detection of the YOLOv5 model, then the direct detection of the pointer angle is realized,
and the one-step intelligent identification of the pointer-type meter readings is completed.
Compared with traditional schemes, the tedious process of image preprocessing is avoided,
the effects of light and shadow are overcome, and the rotational correction process to the
instrument image is eliminated. Additionally, the problem of the insufficient adaptation
ability of Hough detection is also addressed, and the ability of the improved algorithm
scheme to detect small target instruments is also greatly improved, which can meet the
requirements of industrial production in accuracy and speed. This new strategy has an
important application value to the intelligent development of industrial production.
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