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Abstract: Aiming at the problems of single detection target of existing distributed denial of service
(DDoS) attacks, incomplete detection datasets and privacy caused by shared datasets, we propose a
trusted multi-domain DDoS detection method based on federated learning. Firstly, we divide the
types of DDoS attacks into different sub-attacks, design the federated learning dataset for DDoS
detection in each domain, and use them to realize a more comprehensive detection method of
DDoS attacks on the premise of protecting the data privacy of each domain. Secondly, in order to
improve the robustness of federated learning and alleviate poisoning attack, we propose a reputation
evaluation method based on blockchain, which estimates interaction reputation, data reputation and
resource reputation of each participant comprehensively, so as to obtain the trusted federated learning
participants and identify the malicious participants. In addition, we also propose a combination
scheme of multi-domain detection and distributed knowledge base and design a feature graph of
malicious behavior based on a knowledge graph to realize the memory of multi-domain feature
knowledge. The experimental results show that the accuracy of most categories of the multi-domain
DDoS detection method can reach more than 95% with the protection of datasets, and the reputation
evaluation method proposed in this paper has a higher ability to identify malicious participants
against the data poisoning attack when the threshold is set to 0.6.

Keywords: DDoS; federated learning; reputation evaluation; knowledge base

1. Introduction

With the rapid development of 5G, network security problems are becoming increas-
ingly serious, and a DDoS (distributed denial of service) attack is destructive, particu-
larly [1–3]. DDoS attacks can be divided into different sub-attacks according to different
perspectives [4], such as network layer DDoS attacks [5], application layer DDoS attacks [6],
DRDoS (reflective DDoS) attacks [7], LDDoS (low-rate DDoS) attacks [8] and botnet DDoS
attacks [9]. Due to the wide variety of DDoS attacks, the types of attack dataset collected
by a single user is often not comprehensive, and the detection model trained based on
this dataset has certain limitations. If datasets transfer from all domains to one party for
training, it will demand the performance of the central server, and large-scale data can
also cause high latency when uploading. At the same time, some organizations sometimes
do not want to make all the flow information in their network domain public, and if this
sensitive data is transmitted, it may be leaked or misused in the process, resulting in privacy
and security issues. With protection of users’ privacy making dataset sharing a limiting
factor, how to use the dataset collected from multiple domains without compromising
data privacy, so as to detect DDoS attack flow comprehensively, is an urgent problem to
be solved.

The proposal of FL (federated learning) [10] solves the problem of data privacy effec-
tively. FL aims to build a global model by enabling multi-participant with local data to
train the same model in a distributed manner, and only by exchanging model parameters
or intermediate results without exchanging sample data. However, it brings other hidden
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risks of privacy and security [11], such as inference attack and poisoning attack. Inference
attack refers to that intermediate parameters like gradient and loss of the model are exposed
to the outside directly without encryption and intercepted or reasoned maliciously, but
there are good solutions for such attacks currently [12]. Poisoning attack is the mainstream
of current research. It mainly refers to malicious behaviors initiated by semi-honest or mali-
cious nodes in participants, including providing poisoning models or training poisoning
data to improve activity and contribution [13]. For poisoning attack, some scholars put
forward the method of using a reputation evaluation mechanism, but this kind of method
needs interaction with the training model of each round. It will lead to vulnerability to
malicious reasoning models during evaluation and increase privacy and security risks. In
addition, too often interacting with blockchain would lead to consuming a large number of
communication resources.

Therefore, in this article, we present a multi-domain DDoS attack detection method
based on trusted federated learning for data privacy protection. Firstly, use blockchain to
register and set the initial reputation of FL participants, and wait for processing task appli-
cations. Secondly, preprocess the local FL dataset, respectively, after the task application
is approved, and use ML (machine learning) or DL (deep learning) methods to train the
preprocessed local dataset to obtain the local model. Then, the local model parameters
will be encrypted and uploaded to the aggregation server to generate the global model,
and the final global model is generated by iterative training. Finally, upload the relevant
information of the task to the blockchain for audit, use the smart contract to calculate the
comprehensive reputation and update the reputation of participants.

The contributions of this article are as follows:

(1) A multi-domain DDoS detection method based on FL is proposed. The types of DDoS
attacks are divided into five categories: network layer DDoS, application layer DDoS,
LDDoS, botnet DDoS and DRDoS. Based on the classification, the labels of FL datasets
in each domain are redesigned to realize multi-domain DDoS detection.

(2) A reputation evaluation method of Federated participants based on blockchain is
proposed. The reputation of FL participants is evaluated and calculated from three
perspectives: interaction reputation, data reputation and resource reputation, which
realizes the effective evaluation of reputation on the basis of reducing the number of
interactions.

(3) Build a topology network for multi-domain DDoS attack and detection and carry
out multi-domain DDoS detection under the above trusted Federation learning. The
proposed scheme can distinguish malicious participants from trusted participants
effectively after simulating the FL data poisoning attack.

(4) A knowledge export scheme of FL is designed, which stores the feature knowledge
after multi-domain learning to the feature graph of malicious behavior, and stores the
model to the model base, so as to realize the construction and update of the distributed
knowledge base from local domain knowledge to multi-domain knowledge under
the condition of privacy protection.

This study includes five sections. The Section 1 introduces to trusted multi-domain
DDoS detection based on federated learning. The Section 2 deals with the literature review
of studies related to federated learning DDoS detection and reputation evaluation of
participant. The Section 3 gives detailed information about the methodology of the study.
The results obtained from the method mentioned in the methodology section are discussed
in the Section 4. In the Section 5, conclusion about the study has been provided.

2. Related Works

In this section, we review the previous work of the development of DDoS attack
detection methods, DDoS detection based on FL, and reputation evaluation methods of FL
participants.
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2.1. DDoS Attack Detection Method

At present, the existing detection methods for DDoS attacks are mainly based on
ML or DL. Build an intrusion detection classifier by selecting an appropriate ML or DL
model [14–17] and analyze the difference in features between normal flow data and abnor-
mal flow of the network, so as to judge the type of attack. Jing et al. [18] investigated the
existing DDoS-related data and detection methods of DDoS and worm attacks, divided the
datasets into packet level datasets and flow level datasets, and introduced the detection
technologies from application layer DDoS, network layer DDoS, LDDoS and botnet DDoS.
From the perspective of detection methods, these methods can be divided into supervised
ML or unsupervised ML [19], offline detection or real-time online detection [20]. In addi-
tion, the existing DDoS detection methods [5–8,21,22] only aim at a specific category of
attack, such as application layer DDoS attack, and lack a comprehensive method to detect
different categories of DDoS as a whole. In a word, the above methods usually require a
large number of training sets, especially for the purpose of achieving a variety of attack
categories, so the ML model trained in a single domain is difficult to achieve high detection
ability.

2.2. DDoS Detection Based on FL

The DDoS detection methods based on FL solve the problem of insufficient data
volume effectively on the premise of ensuring the privacy of the data owner. It uses the
datasets mastered by each participant to train the local model and share the model parame-
ters to realize multi-party joint modeling, which can be completed without uploading data.
Some scholars apply FL technology to intrusion detection [23,24], and construct distributed
network intrusion detection systems. It is proved that intrusion detection based on FL
can improve the efficiency and confidentiality of training and achieve an accuracy similar
to centralized ML after data sharing. Since datasets of FL are located on different clients,
data samples and labels may follow different distributions. This non-iid (non-independent
identically distribution) may significantly reduce the performance of FL [25]. Therefore,
Zhao et al. [26] apply the long-term and short-term memory model to the FL framework,
and Zhang et al. [27] propose a hierarchical aggregation algorithm based on K-means,
which improves the impact of datasets on DDoS detection capabilities. However, most
literature only detect a specific category of DDoS attacks [28], there are few schemes to
realize multi categories DDoS detection under multi-domain.

2.3. Reputation Evaluation Method of FL Participants

From the perspective of the security of FL, poisoning attack is the most prominent
security problem. At present, there are two patterns to mitigate poisoning attacks, one
is a fault-tolerant global model aggregation algorithm [29], and the other is to identify
malicious participants by designing an evaluation mechanism for local models [30,31]. For
example, Xu et al. [32] use the reputation evaluation scheme of cosine similarity between
the model gradient and the global model gradient. Recently, some scholars have proposed
to combine the reputation evaluation mechanism of blockchain. Park et al. [33] propose
a miner selection method based on reputation reliability, which realizes reliable joint
learning by using a subjective logic model with multiple weights and uses blockchain for
reputation management. Zhang et al. [34] introduced model cross entropy to calculate
reputation value through model quality parameters to evaluate workers’ reliability. Uprety
et al. [35] estimate binomial Bayesian reputation score based on beta distribution, and the
posterior reputation score updated each time is the combination of a priori reputation
score and new feedback. In addition, in order to make FL more equitable, some scholars
have proposed a blockchain-based audit mechanism to record and reward high-quality
participants. Mugunthan et al. [36] propose an audit mechanism, which uses Ethereum and
smart contracts to encourage good behavior and rewards all parties with cryptocurrencies
according to the quality of their contributions. The methods for mitigating poisoning
attacks based on blockchain mentioned above are effective to a large extent, but most need
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to evaluate each round of models. Once the model parameters are exposed, the risk of
being maliciously reasoned will increase greatly. At the same time, these methods will also
increase the burden of communication.

We organize the above research into Table 1, where N means No and Y means Yes.

Table 1. Existing Survey on DDoS detection with ML/FL and our new contribution.

Areas Paper

DDoS Detection with ML/FL

HighlightsData Set
Type

Real-Time
Detection

Categories
Diversity

Supervised/
Unsupervised

Poisoning
Attack

Solve
Non-iid
Problem

ML

[14] Flow N N supervised Not
involved

Not
involved

A method to detect
flooding attacks

[18] Flow/
package N Y supervised Not

involved
Not

involved

Propose a more
comprehensive DDoS
detection classification

[5–9] Flow Y N supervised Not
involved

Not
involved

Detect specific types of
DDoS such as network
layer and application

layer respectively.
An online detection

method based on time
window is proposed

[19] Flow Y N Semi-
supervised

Not
involved

Not
involved

Present an online
sequential

semi-supervised ML
approach for DDoS

detection

[20] Flow N N unsupervised Not
involved

Not
involved

Propose a hybrid
unsupervised DL

approach using the stack
autoencoder and

One-class Support
Vector Machine for

DDoS attack detection.

[22] Flow Y N supervised Not
involved

Not
involved

Provide a real-time
DDoS detection scheme

in SIP system

FL

[26] Flow N N supervised N N

Propose an effective
intrusion detection
method based on

FL-LSTM framework

[23] Flow N N supervised Y N

Describe a method of
licensing joint learning

based on blockchain
Put forward the method

of auditing machine
learning model

Our
work Flow Y Y supervised Y Y

Design datasets for
multi domain learning

and implement FL
DDoS training

Propose reputation
evaluation scheme

based on blockchain
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In order to solve the problems of existing DDoS attack detection based on ML and
FL, such as single detection target, incomplete detection dataset, and privacy caused by
shared dataset, we propose a multi-domain DDoS detection method based on FL. In our
method, DDoS types are divided into five categories, so as to realize a more comprehensive
detection method for multi-domain and multi type DDoS attacks. In addition, in order
to improve the robustness of our method and mitigate poisoning attacks, we propose a
reputation evaluation method based on blockchain to obtain trusted FL participants. In
addition, we also propose a combination scheme of multi-domain detection and distributed
knowledge base and design a feature graph of malicious behavior based on knowledge
graph to realize the memory of multi-domain feature knowledge. Finally, based on the
experimental topology, we verify the scheme of our proposals.

3. Multi-Domain DDoS Detection Method Based on Trusted FL

In this section, we introduce the overall framework of multi-domain DDoS detection
based on trusted FL firstly. Then, the implementation scheme and corresponding key tech-
nologies of the three main modules in the framework are introduced in detail. Finally, we
describe the calling relationship between the three modules and the overall implementation
process.

3.1. Framework Overview

In order to achieve a more comprehensive detection of DDoS attack targets, we
simulate a variety of DDoS attacks and normal flow, classify the simulated DDoS attacks,
redesign the datasets, and complete the FL DDoS detection by using the designed multi-
domain datasets. At the same time, in order to prevent poisoning attacks caused by the
introduction of FL, we add a reputation evaluation scheme based on blockchain to select
trusted participants to complete trusted federated DDoS detection. Finally, we store the FL
models and effective features in the knowledge base and deploy models in the gateway
to complete online detection guided by the knowledge base, so that even if there is no
specific attack type in this domain, it can be divided into its own attack category under the
knowledge of other domains.

In this paper, we summarize the scheme as three modules: federated learning module,
blockchain module and distributed knowledge base module. Each module is deployed in
multiple domains, with the architecture shown in Figure 1.

The main contents of the federated learning module are as follows. Firstly, the local
model is generated through the steps of collecting local datasets and starting local training.
Then, the model parameters of all domains are uploaded to generate a global model. Finally,
the model parameters of each domain are updated according to the generated global model.
This module enables each domain to learn global DDoS knowledge from datasets owned by
all domains, so as to obtain stronger DDoS detection capabilities. For example, the dataset
collected by domain 1 does not include HTTP-GET attacks in application layer DDoS, but
HTTP-GET attacks have already occurred in domain 2. The scheme proposed in our paper
will enable domain 1 to learn the knowledge of domain 2 through FL, so as to ensure
that if HTTP-GET attacks occur in network domain 1 later, they can also be classified as
application layer attacks correctly. However, it should be noted that we consider designing
untrusted participants to improve the robustness of our scheme, as shown in domain 3 in
Figure 1. We consider the data poisoning attack, especially the flip label attack, in which
the label of the training example was flipped to the target class. For example, in MNIST a
“1–7” flipping refers to training on the image of “1” but using “7” as a label.

The blockchain module is deployed and maintained by all domains participating in
FL and implements the reputation evaluation mechanism and the secure transmission
mechanism. The reputation evaluation mechanism not only processes the reputation
request of the federated learning module and feeds back the reputation value, but also
audits the tasks of the federated learning module to complete the updating and maintenance
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of the reputation value. The secure transmission mechanism ensures that the model cannot
be tampered with in the interaction process.

The distributed knowledge base module realizes the distributed construction of the
local knowledge base based on the blockchain. In this module, the FL model and the
extracted effective feature are stored in the model base and the behavior base, respectively,
through the secure transmission mechanism of the blockchain module, so as to store and
update the knowledge and finally provide knowledge feedback for malicious behavior
detection.
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3.2. Federated Learning Module

The federated learning module includes DDoS datasets design of each domain, data
preprocessing and offline training, which is shown in Figure 2.
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3.2.1. Dataset Design

Considering that there are fewer datasets for comprehensive detection of DDoS at
present, the datasets are designed in the federated learning module first.

We use tools and scripts to simulate attacks and normal flow [5], shown as Table 2. For
example, SlowHTTPTest is used to simulate slow headers, slow body, and slow headers
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belong to LDDoS attacks by setting the content length of the application layer to be large or
the sending rate parameter to be lower than the expected rate, so as to continuously occupy
HTTP connection sessions. Python’s scapy library is used to forge requests to some UDP
protocol servers, such as TFTP servers, which can conduct IP spoofing without verifying the
identity of the sender to form a more harmful attack. Then, to collect the flow we simulated
at the network entrance of each domain for a certain period of time to get the original data
flow. Through CICFlowMeter (https://github.com/CanadianInstituteForCybersecurity/
CICFlowMeter/ (accessed on 7 October 2022)), a tool to extract flow feature, the original
feature information of DDoS attacks and normal flow in each domain is obtained. There
are 22 types of simulated attacks, which are described as ACK, UDP, SYN, SlowBody,
Shrew, SlowHeaders, SlowRead, Ares, BYOB, Miral, Zeus, IRC-Botnet, TFTP, Memcached,
DRDoS_SSDP, DRDoS_NTP, Chargen, DRDoS_SNMP, CC, HTTP-Get, HTTP-Flood and
HTTP-Post.

Table 2. Attack datasets.

Attack Type Quantity Sub-Attack (Label) Tool

Benign 880,693 Benign
socket package

(https://docs.python.org/3/library/socket.html
(accessed on 15 April 2021))

ACK 47,535
Network layer DDoS hping tool (https://github.com/antirez/hping

(accessed on 7 October 2022))
UDP 47,066
SYN 45,450

SlowBody 110,043

LDDoS

Slow HTTPTest (https:
//github.com/shekyan/slowhttptest/(accessed on 7

October 2022))
SlowRead 45,389

SlowHeaders 100,793

Shrew 68,074 Scapy (https://scapy.net (accessed on 7 October
2022))

CC 253,524

Application layer DDoS

Webbenchbench (http://www.ha97.com/4623.html
(accessed on 7 October 2022))

HTTP-Flood 63,435 Golden-Eye
(https://github.com/jseidl/GoldenEye/(accessed

on 7 October 2022))
HTTP-Post 56,887
HTTP-Get 51,556

TFTP 42,059

DRDoS Scapy

Memcached 39,021
DRDoS_SSDP 22,035
DRDoS_NTP 9430

Chargen 23,077
DRDoS_SNMP 15,576

Ares 709,748

Botnet DDoS

Ares (https:
//github.com/sweetsoftware/Ares/(accessed on 7

October 2022))

BYOB 2926
BYOB

(https://github.com/malwaredllc/byob/(accessed
on 7 October 2022))

Miral 2251
Miral

(https://github.com/jgamblin/Mirai-Source-Code
(accessed on 7 October 2022))

Zeus 273 Zeus (https://github.com/Visgean/Zeus (accessed
on 7 October 2022))

IRC-Botnet 42 https://github.com/jpdias/botnet-lab (accessed on
7 October 2022)

Since the network flow collected by each domain may not include all the above attack
types, we design datasets suitable for multi-domain DDoS detection, and divided the above
22 attack types into five categories, namely botnet DDoS attack, application layer DDoS
attack, slow DDoS attack, DRDoS attack and network layer DDoS attack, which is also in

https://github.com/CanadianInstituteForCybersecurity/CICFlowMeter/
https://github.com/CanadianInstituteForCybersecurity/CICFlowMeter/
https://docs.python.org/3/library/socket.html
https://github.com/antirez/hping
https://github.com/shekyan/slowhttptest/(accessed
https://github.com/shekyan/slowhttptest/(accessed
https://scapy.net
http://www.ha97.com/4623.html
https://github.com/jseidl/GoldenEye/(accessed
https://github.com/sweetsoftware/Ares/(accessed
https://github.com/sweetsoftware/Ares/(accessed
https://github.com/malwaredllc/byob/(accessed
https://github.com/jgamblin/Mirai-Source-Code
https://github.com/Visgean/Zeus
https://github.com/jpdias/botnet-lab
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Table 2. The label design method we proposed improves the label missing situation when
there are many attack types in training datasets, so it can mitigate the influence of non-iid
to a certain extent.

The datasets generated by CICFlowMeter in each domain have the same feature space,
including 84 kinds of feature information, such as ID, quintuple information (source IP
address, destination IP address, source port, destination port and protocol), stream features
and packet features. Considering that the feature relationship of datasets is similar to
horizontal FL, the DDoS detection scheme designed in this paper is a horizontal FL method.

In addition to the above classification, we add each to flow a feature of ID information
of each dataset in their respective domains. In practice, the send time of each data flow is
different, so each data flow should be given a new ID. In addition, if the local dataset still
has non-iid conditions after label design, we improve learning ability by sharing a small
part of the data in consideration of the number of datasets and the proportion of labels.

3.2.2. Data Preprocessing

The outputs of the dataset design step still have abnormal data, non-standard data
and redundant features, so they should be preprocessed.

The data preprocessing proposed in this paper includes three major steps: data clean-
ing, data normalization and feature selection. Firstly, deal with the outliers in the dataset,
delete the row where the missing value is located or set the missing value as a fixed value,
and use coding to convert qualitative features into quantitative features. Secondly, min-max
standardization is used to normalize the data and convert the data to the range of 0 and 1,
so as to convert different features into the same dimension and improve the convergence
speed of the model. Finally, select the features, remove the irrelevant features such as IP
address and timestamp, and use the random forest as the selection method to sort the
importance of the features. Integrate the factors of training time and training effect, and
finally, we select the first 53 features.

3.2.3. Offline Training

The offline training part is mainly responsible for generating the FL model with a high
detection rate under the premise of protecting privacy. The specific algorithm is described
as Algorithm 1. The algorithm used in this paper is HomoCNN, jointly implemented by the
aggregator and the participants to realize the local CNN training and secure aggregation
process.

Algorithm 1 HomoCNNb (Horizontal Convolution Neural Network) Algorithm

Input: Training dataset and test dataset of K participants; iteration N; local epoch E
1: /*Central server*/
2: Initialize model parameters M(0);
3: for n = 0; n < N; n++ do:
4: for k = 0; k < K; k++ do:
5: C(n)

k ← the encrypted model parameters of participant k;
6: end for
7: M(n+1) ← ∑ C(n)

k /K ;
8: end for
9: /*Client update*/
10: for k = 0; k < K; k++ do:
11: M(n−1)

k ← the global CNN model parameters;
12: for e = 0; e < E, e++ do:
13: M(n−1)

k ← M(n−1)
k − η∇l(M(n−1)

k ) , where l(M(n−1)
k ) is loss function;

14: end for
15: update local CNN model M(n)

k ← M(n−1)
k ;

16: encrypt local CNN model C(n)
k ← M(n)

k + ∑
i 6=j

R(n)
i,j , where Ri,j is random mask;

17: end for
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The local training model in the offline training is realized by CNN, including 1 input
layer, 1 convolution layer, 1 pooling layer and 2 dense layers, and the specific network is
shown in Figure 3. The input layer receives data after preprocessing with a dimension
of 53 × 1. The convolution layer extracts the input features and their relationships, and
generates three feature maps using three 2 × 2 convolution kernels. The pooling layer uses
a 2 × 2 filter to pool the three feature maps and reduce its dimension. Flatten layer is used
for dimension transformation to realize the flattening of dimensions. The dense layers
realize the mapping between the relations of features, in the meantime, the last dense layer
connects the softmax layer to realize the output of probability.
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The locally trained models will achieve privacy protection of datasets and model
parameters through security aggregation. On the one hand, the CNN models are trained
independently by each participant to protect the dataset of each participant. In Algorithm
1, the interaction of each participant only needs to upload its model parameters Ck

(i) to
achieve average aggregation, where the weight of each model is 1/K in aggregation. On
the other hand, the security aggregation of the model is realized by using a single mask.
Specifically, model parameters encrypted by random mask are translated to central server,
then aggregated by central server to obtain the decrypted global model. The key used
to encrypt parameters is random mask Ri,j, which is agreed between participants i and
j according to the total order of participants. When encrypting model parameters, each
participant will use the Ri,j negotiated by them together to mask its model parameters Mk

(i).
If i < j, add Ri,j to Mk

(i), otherwise, subtract.
When the central server aggregates the encryption model, the encrypted results are

added, and all encryption keys will be offset, but the actual input of each participant will
not be exposed, so as to realize decryption. In this process, the privacy protection of model
parameters is achieved.

3.3. Blockchain Module

The blockchain module includes the reputation evaluation mechanism and the trans-
mission mechanism. The following will describe the two main contents of the reputation
evaluation mechanism first, one is participant identity registration, information manage-
ment and feedback, and the other is reputation evaluation of the participants. Then,
elaborate on the transmission mechanism.

3.3.1. Identity Registration, Information Management and Feedback

Identity registration is the premise for participants to participate in FL training. When
registering, it is necessary to set up the only identity information party ID of FL and name
description information of this participant. The blockchain calls the smart contract to
register its identity, writes the information of the participants who apply and who have to
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participate in the FL training task into the blockchain, and waits for the task request after
registration.

After registration, the blockchain can carry out information management and feedback
on the participants. Among them, information management will manage the identity
attributes, data attributes and job attributes of the participants, respectively, as shown in
Table 3.

Table 3. Attributes of information management.

Attribute Variable Describe

Participants
identity attributes

owner_ethaddr Ethereum address of participant
timestamp Timestamp that device created

latest_timestamp Timestamp the latest online
party_id Participant id

domain_name Participant name description
online Online status

data_quantity Data quantity stored in each device
frequency Training times

Data attributes

owner_ethaddr Ethereum address of dataset owner
owner_partyid Party_id of dataset owner

namespace Data description: namespace
table_name Data description: table_name

data_entropy Information entropy of dataset
data_quantity Quantity of dataset

Job attributes

job_id ID of job
guest Party_id of guest

arbiter Party_id of aggregator
host Party_id of host

job_data Data used in training
cross_entropy Cross entropy of all models

Identity information management is responsible to modify the online status, domain
name and other attributes of participants and log out the identity after their identity
registration is completed.

Data information management is responsible for adding local dataset descriptions
and modifying or deleting the added dataset information. The attributes include the
Ethereum address of the dataset owner, the party ID of the data owner, the data description
namespace and table name, information entropy and quantity of data.

Job information management is responsible for auditing each FL training task. After
completing the training task and evaluating the received models trained by other partici-
pants, the guest of the job is required to upload the evaluation score and the corresponding
job ID, party ID and other information to the blockchain to facilitate the retrieval of task
and task related information. At the same time, it facilitates to modification of the job ID,
party ID and the cross entropy of all models of the audited task.

Information feedback provides output interface functions for attributes information
mentioned above.

3.3.2. Reputation Evaluation Method

The evaluation indicators of reputation include the interactive reputation of partici-
pants, data reputation and resource reputation jointly, as shown in Figure 4. Specifically,
interactive reputation is influenced by cross entropy of the latest model and historical
model. Data reputation is composed of the volume and information entropy of the partici-
pator’s datasets. Resource reputation is determined by the proportion of online time of the
participator.
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We concretize the above indicators and calculate the latest interactive reputation score
SLATEST and historical interactive reputation score SHISTORY, respectively, according to the
cross entropy of the model. The calculation formula is shown in (1) and (2), where b1 and
k1 is the constant that maps the cross entropy H(fi(xi),yi) to score.

SLATEST = b1 − k1 × HLATEST( fi(xi), yi) (1)

SHISTORY = b1 −
k1

n− 1 ∑n−1
j=1 Hj( fi(xi), yi) (2)

Since the model transmission of the interaction process is under encryption, the
aggregator cannot evaluate all the models during this process. At the same time, in order
to ensure that the beginning training models that are easier to reason are not intercepted
maliciously in the aggregation, the interactive reputation evaluation method we proposed
only evaluates the model of the last iteration, which not only retains the original model
encryption transmission process but also increases the cost of the malicious attacker’s
reasoning source data. We need to calculate the cross entropy H(fi(xi),yi)of each model
and calculate the corresponding cross entropy score SLATEST and SHISTORY. The calculation
method of cross entropy of the model is shown in Formula (3), Where (xi, yi) is the dataset
used to evaluate the model, fi(xi) is the final model trained by each participant, and N is the
number of evaluation dataset.

H( fi(xi), yi) = −
1
N ∑

xi

yi log( fi(xi)) (3)

Therefore, the calculation method of interactive reputation is shown in Formula (4).
In our paper, the RVi of the untrusted participants will be lower significantly because the
poisoning dataset makes their models of low quality and hence their cross entropy score
low.

RVi =
1
2

SLATEST +
1
2

SHISTORY (4)

Data reputation is weighted by the volume score SNd and the data entropy score SHd
of datasets that all users hold. In order to encourage participants to provide more datasets
for FL training, the score we set for the submitted dataset includes upper and lower limits,
and the corresponding scores can be obtained even if the amount of dataset provided is
small. Specifically, we use piecewise function SNd to score the amount of data, and the
calculation method is shown in Formula (5).

SNd =


40, N < 1000

b2 + k2 × N, 1000 < N < 100000
100, N > 100000

(5)
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Data information entropy score SHd is expressed by normalized information entropy,
and it can map the information entropy to a fixed range, shown as Formula (6), where j is
the type of label yi.

SHd =
−∑yi

p(yi) log p(yi)

− log(1/j)
(6)

Data reputation is represented by Formula (7), which can detect the data with low
quality effectively and give these data a relatively small score, especially for poisoning
datasets whose quality is generally poor.

RVd =
1
2

SNd +
1
2

SHd (7)

The resource reputation is determined by the proportion of the user’s online time
Sti. The calculation method is shown in Formula (8), where Tonline is the online time of the
device, and T is the time interval from the registration of the participant to current.

RVr = Sti =
Tonline

T
(8)

To sum up, the calculation of comprehensive reputation update is shown in For-
mula (9), where a1, a2 and a3 are the weights corresponding to the evaluation index, and
a1 + a2 + a3 = 1. The scheme of a comprehensive evaluation of interaction reputation, data
reputation and resource reputation proposed has significant advantages for data poisoning
attacks.

R = a1 × RVi + a2 × RVd + a3 × RVr (9)

The reputation evaluation mechanism will calculate and evaluate the comprehensive
reputation value of each FL participant, so as to feed back the evaluation results to the guest
of task, and it will judge whether the comprehensive reputation of each participant is at the
reputation threshold β, so as to decide whether to determine the node as the participant of
FL training.

3.3.3. Secure Transmission

After completing the training task, the guest of the job needs to receive the final model
trained by other participants and evaluate them together to upload information such as
interaction scores to the blockchain for audit. During the point-to-point transmission of
the model, if the process takes too long, the data transmission time may be manipulated.
Therefore, we add a secure transmission mechanism to the blockchain module to improve
the security and immutability of transmission.

Store the hash value of model knowledge and feature knowledge into the blockchain.
If the hash value on the blockchain is the same as the hash value of the model received
through the point-to-point transmission protocol, it can be proved that the model has not
been maliciously tampered with in the transmission process, and the transmission process
is secure.

3.4. Distributed Knowledge Base Module

The distributed knowledge base module models the same category of DDoS attacks
from the perspective of flow features, obtains the significant difference between the features
of this category of DDoS attack and normal flow, and models different categories of DDoS
detection methods to provide knowledgeable guidance for detection, so as to detect and
mitigate DDoS attacks effectively.

The construction process of the distributed knowledge base proposed in this paper is
shown in Figure 5. In the figure, the data collection module is responsible for collecting
the experimental data, the models and the effective features. After processing by the data
source processing module, they are classified into structured data and unstructured data.
Among them, the effective features and other data are used to build the behavior base,
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which is responsible for remembering the malicious attack behaviors, mainly DDoS. The
model data is used to construct model base to store local detection models and global
detection models built by multi-domain individually or cooperatively. The knowledge
base is composed of behavior base and model base. The constructed knowledge base
is used for behavior reasoning and feedback, providing model information and feature
knowledge for the detection module. Finally, the predicted results as experimental data of
the detection module will be feedback to the data collection module, and the whole process
forms closed-loop management.
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Model base is mainly built based on the trained model, which includes local model
and federated model. The local model is trained according to the local dataset, which has
not been trained jointly, so it can only detect the attacks that have appeared locally. The
detection ability of local model is limited by the attacks that does not appear in the local
domain. However, the federated model is the result of the collaborative multi-domain
training, which reflects the knowledge of DDoS flow received by all domains and has a
more comprehensive guidance ability. The models in the model base mainly include model
structure and model weight, as shown in the Formula (10).

M = < M_S, M_W > (10)

Behavior base is constructed in the form of triples based on the knowledge graph, as
shown in the Formula (11).

KG = < E, R, P > (11)

where E = {e1, e2, . . . , ei} is the set of entities, representing objects stored in the knowledge
graph. R = {r1, r2, . . . , rj} is the set of relationships, representing association relationships
between these entities. P = {p1, p2, . . . , pn} is a set of attributes and a specific representation
of the stored data of the knowledge graph, and any relationship and entity may have
different attributes.

3.4.1. Model Base

The models in the model base are mainly stored in the form of a combination of model
structure and model parameters. Specifically, we take the final model generated by the
participant who performs best in FL as the global model and provides a coarse-grained
DDoS classification method for the detection module.

In order to identify 22 specific attack types more accurately, we train five local fine-
grained models in each domain such as network layer DDoS detection model after the
coarse-grained category detection is completed, which are trained by four domains, respec-
tively, and distributed stored in the distributed knowledge base.
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3.4.2. Behavior Base

In the behavior base, we build a feature graph of malicious behavior. The main function
of the malicious behavior feature graph is to count the traffic features corresponding to 5
categories of sub-attacks and 22 specific attack types. These corresponding relationships
come from the above two modules, which are the effective feature results obtained from the
FL feature analysis. The triples of malicious behavior feature graph are shown in Table 4,
including 4 entities, 1 DDoS attack, 5 sub-attacks, 22 attack types and 79 flow features. The
knowledge graph after FL will increase the corresponding relationship between sub-attacks
and flow features, which reflects the effective features of the 5 sub-attacks divided in our
work. The knowledge graph will provide feature selection guidance of the five sub-attacks
for coarse-grained detection.

Table 4. Triples of malicious behavior feature graph.

Entity Attribute Relationship

DDoS attack DDoS attack description Include sub-attack
Sub-attack Description of five categories Associate attack type and flow feature
Attack type Description of 22 attack types Associate flow feature
Flow feature Description of 79 flow features Correspond sub-attack and attack type

3.4.3. Distributed Construction

The distributed construction of knowledge base is based on blockchain. See Section 3.3.3
for the specific transmission process.

3.5. Calls between Modules

In the process of multi-domain DDoS detection based on trusted FL, collaborative
implementation of the federated learning module, blockchain module and distributed
knowledge base module is required. Therefore, in this section, we mainly explain the call
relationship between the above three modules, as shown in Figure 6. In addition, we also
give the implementation details of trusted federated learning after merging blockchains, as
well as the details of the interaction process with the knowledge base.
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We first describe the roles of participants in FL, including guest, arbiter and host. The
guest of the task is the task requestor, who controls the training process to a certain extent,
including task start, task end and task information uploading to the blockchain. The arbiter
of FL can be designated by the guest, and responsible for model aggregation and update.
Hosts are the other domains that cooperate in FL.

The steps are as follows:
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Step 1. The current domain who applies for an FL task initiates the training request as
a guest, and specifies the arbiter and the hosts of the task. Arbiter is responsible for the
aggregation of the multi-domain model, and hosts are responsible for the collaborative
training of the DDoS detection model.

Step 2. After the job application is uploaded to the blockchain, the blockchain will
judge the registration status, online status and reputation evaluation of all participants,
and return the corresponding status and reputation value of each participant to ensure that
they are safe and credible. Meanwhile, if the reputation evaluation is passed, return the
data description owned by all participants, complete the training-related configuration,
and start the training task.

Step 3. The FL task includes two main steps: local training and security aggrega-
tion. The above steps are trained iteratively until convergence or the reaching of the max
iterations. The algorithm of step 1–3 is described as Algorithm 2.

Algorithm 2 Algorithm of FL joint reputation evaluation

Input: config file
1: parse Arguments: partyID of guest, host, arbiter← config file;
2: for i in (guest, host, arbiter) do:
3: if getDevices(i):
4: if getOnlinestatus(i):
5: DataMsg = getDataMsg(i);
6: reputation = calReputation(i);
7: return DataMsg, reputation;
8: else:
9: return Null;
10: end for
11: if reputation > default:
12: run Algorithm 1 with DataMsg and application config file;

Step 4. After training, all participants will save the trained model to the local domain,
so as to deploy the trained DDoS detection model to the intrusion detection system.

Step 5. Transmit the final model to guest through the secure transmission mechanism
of blockchain for it to calculate the cross entropy of all models.

Step 6. The guest uploads the cross entropy of the model of the last iteration of all
participants to the blockchain, then the blockchain audits this job, and the smart contract
updates its interactive reputation and the comprehensive reputation of each participant,
shown as Algorithm 3.

Algorithm 3 Job audit and reputation update algorithm

Input: jobID, guest, host, arbiter, crossEntropy, dataMsg
1: for i in (guest, host, arbiter) do:
2: if getDevices(i):
3: devices[i].frequency++;
4: end for
5: FLjob(jobID, guest, host, arbiter, dataMsg);
6: crossEntropy[jobID]= crossEntropy;
7: for i in (guest, host, arbiter) do:
8: calcu_rvi(i);
9: calcu_reputation (i);
10: end for

Step 7. Store the trained FL model and effective feature knowledge into the distributed
knowledge base based on blockchain.

Step 8. The knowledge base provides guidance for subsequent DDoS detection and
assists in the deployment and online detection of the model at the gateway.
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4. Experiment and Result Analysis

In this section, we implemented the prototype system of trusted FL DDoS detection,
using FATE as the main framework of FL. Firstly, we validate the detection methods
proposed for 22 attack types. Secondly, we analyze the influence of non-iid datasets on
accuracy. At the same time, we simulate the FL attack to test the reputation evaluation
method and judge the impact of the threshold on the experimental results. The trusted
multi-domain DDoS detection based on FL is carried out under the condition of an optimal
threshold and compared with the scheme without reputation evaluation. Then, we compare
the difference in detection rate between FL and their corresponding ML algorithms. Finally,
we verify the time cost and the update of the knowledge graph of our scheme.

4.1. Experimental Environment

In order to verify the detection effect of this method for multi-domain DDoS, a virtual
platform based on VMware vSphere is built as the experimental environment. The exper-
iment mainly involves four virtual machines, which are the participants of FL, of which
party 10,000 is the aggregator at the same time. The topology of the experiment is shown in
the Figure 7, and based on this topology, the deployment of an enterprise-oriented clustered
FL environment is realized.

The trusted FL experiment in this paper is based on the framework of FATE (https:
//github.com/FederatedAI/FATE/ (accessed on 7 October 2022)) and Ethereum (https:
//www.ethereum.org/ (accessed on 7 October 2022)). The ML experiment is based on Ten-
sorFlow (http://tensorflow.google.cn/install/ (accessed on 7 October 2022)), the software
environment is ubuntu18.04 operating system, the number of virtual cores is 8, and the
memory is 150 GB. It should be noted that the attack domains and its corresponding party
host belong to the same domain, and the gateway connected is responsible for collecting
data in this domain.

Taking party 10,000 as an example in Figure 7, the dataset of this domain is collected
at gateway router 1. The attack type of this domain is mainly low-rate DDoS attacks.
Therefore, if data sharing with other domains is not carried out, the detection ability of the
trained model for other types will be limited. We use the dataset collected above to test the
performance of this paper.
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4.2. Evaluation Indicators

Precision, recall and accuracy are used to evaluate the model, the calculation formulas
are shown as Formulas (12)–(14), in which true positive (TP) refers to the number of data
pieces that the label belongs to i and the predicted result also belongs to i. False positive
(FP) refers to the number of data pieces whose labels do not belong to i prediction results
belong to i. True negative (TN) refers to the number of data pieces whose labels belong to i
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and the predicted results do not belong to i. False negative (FN) refers to the number of
data pieces whose labels do not belong to i and the predicted results neither belong to i.

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

Accuracy =
TP + TN

TP + FP + TN + FN
(14)

4.3. Performance Analysis
4.3.1. Comparison of Multi-Domain DDoS Detection Algorithms

In order to describe the performance of the model in multi-domain DDoS detection,
we design multi classification detection experiment, test the simulated five attack categories
and normal flow including 22 attack types, and compare the HomoCNN method used in
this paper with HomoSecureBoost [37] and HomoDNN. We set the parameters in Table 5.

Table 5. Parameter setting.

Parameter HomoCNN Homosecure Boost HomoDNN

learning_rate 0.01 0.04 0.01
max_iter 100 - 55
optimizer Adam - RMSprop

aggregate_every_n_epoch 1 1 1
subsample_feature_rate - 0.9 -

num_trees - 3 -
max_depth - 7 -

Figure 8 shows the precision and recall rate of the participants who perform best in
the multi classification experiment using the three algorithms mentioned above. We can
observe that the HomoCNN model is better than the other two models in terms of precision
and recall rate. For normal traffic, the HomoCNN model used in this paper has obvious
advantages over the Homo secure boost model. For network layer DDoS, LDDoS and
Botnet DDoS attacks, the performance of the three algorithms is relatively excellent. For
DRDoS attacks, our algorithm has higher precision than HomoSecureboost and higher
recall than HomoDNN. In general, the HomoCNN algorithm used in this paper can achieve
a precision rate of more than 95% for four types of attacks and normal traffic, and can reach
80% precision for DRDoS.
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4.3.2. Comparison of Dependent Identically Distributed Data

We test the performance of datasets with different label proportions to verify how
non-iid data affect experimental results. We add a small amount of information of other
attack domains into the local dataset required for the experiment as seed data D to test
the relationship between accuracy and the quantized value γ = D/G × 100%, where the
number of the local dataset is recorded as G, the value γ reflects the ratio between the
number of the label who has the lowest proportion and the label who has the highest
proportion. Table 6 shows the dataset designed at γ = 1%, the label and number of training
and prediction datasets used by each training party are shown in the Table 6.

Table 6. Federated learning dataset of all parties at γ = 1%.

Party Id Category (Label) Training Datasets Prediction Datasets

9999

Benign 50,000 30,000
NetworkDDoS 50,000 30,000

LDDoS 499 30,000
DRDoS 499 30,000

10000

Benign 50,000 30,000
NetworkDDoS 499 30,000

LDDoS 50,000 30,000
DRDoS 499 30,000

9998

Benign 50,000 30,000
NetworkDDoS 499 30,000

LDDoS 499 30,000
DRDoS 50,000 30,000

Increase the value γ, make γ from 0.1% to 10%, then we use three participants for
training. The accuracy of the three parties is shown in Figure 9. We can see that the accuracy
of the three participants all increases in turn with the increase of γ, and it tends to be stable
when γ is between 1% and 5%. At this time, it can achieve high accuracy, especially in
party 10000.
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4.3.3. Comparison of Poisoning Intensity of Malicious Participants

We simulate the data poisoning attack, using the ratio of data poisoning to represent
the intensity of the attack, and test the impact of poisoning intensity on FL. We used the
HomeCNN method in Section 4.3.1 to detect DDoS attacks with four participants, and
the parameter settings are the same as the Section 4.3.1. In order to show the impact of
poisoning attack on the participants, we verified the accuracy of the worst performing
party.

As shown in Figure 10, the accuracy of the worst party tends to decrease with the
increase of data poisoning intensity, which means that the accuracy rate of participants will
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decrease with the increase of data poisoning intensity. If untrusted participants launch a
data poisoning attack, the accuracy of learning will be negatively affected to a large extent.
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4.3.4. Comparison of Reputation Evaluation Methods

Based on the experiment of the data poisoning attack, we verify the effectiveness of
the reputation evaluation method proposed in our paper. After the completion of every FL
task, we evaluate the reputation of the participants. In the beginning, we set the parameters
for calculating reputation in the experiment in Table 7, and the specific meanings of these
parameters can be found in Section 3.3.2.

Table 7. Parameters for calculating reputation.

Parameter Value Parameter Value

b1 100 a1 0.5
k1 2.898 a2 0.3
b2 40 a3 0.2
k2 600 - -

Figure 11 shows the changes in the reputation value of malicious participants before
and after the poisoning attack. We add a data poisoning attack during the training time
of five and use the following schemes to compare with the scheme in this paper: the
scheme without reputation evaluation, the RFFL Scheme [34] and the scheme of interactive
reputation.

The scheme without reputation evaluation: the reputation value of the participants
remains unchanged at 1.0, which does not have the ability to identify the malicious partici-
pants.

RFFL scheme: The cosine similarity between the local model and the global model is
taken as the reputation value.

The scheme of interaction reputation: Only considers the cross entropy of the interac-
tion model and does not consider the data reputation and resource reputation.
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The results show that in the fifth experiment, that is, when the poisoning attack is just
added, the reputation value of the scheme without reputation evaluation will not change.
In the fifth experiment, although the reputation of the RFFL scheme is reduced, it is still
above 0.8. In the sixth experiment, the reputation value is reduced significantly, but still
above 0.6. At the same time, in the eleventh experiment, the reputation value is unstable.
The reason is that when the number of trusted participants participating in the training
is not enough, the global model cannot be a good representative of the trusted model,
therefore, the cosine similarity between the global model and the untrusted model is not
enough to reflect the difference between the trusted participant’s model and the untrusted
model stably. Compared with the scheme in this paper, the scheme of interaction reputation
cannot detect the data poisoning attack effectively so the change slope of the reputation
value is relatively small, for the reason that it does not consider the data reputation, and
the dataset of the attacker in the data poisoning attack is often of poor quality.

To sum up, we set the reputation judgment threshold β to 0.6, See Section 3.3.2 for
details of β. The experimental results show that our scheme can better judge poisoning
behavior than the other two schemes when adding poisoning attack, so as to reduce its
reputation value to less than 0.6 and can reduce its reputation value every time it launches
a poisoning attack steadily. In addition, based on blockchain, our scheme makes the
reputation value more transparent.

Finally, we eliminate the participant whose reputation is less than β, as shown in
Figure 12, the experimental results show that the accuracy of the best performing party is
improved by 3%–4% compared with that before the malicious party is eliminated.
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4.3.5. Performance Comparison between FL and ML

In order to compare the performance of the FL scheme proposed in this paper, we use
the corresponding ML CNN to make a comparison. We design two experiments: uploading
the datasets of each domain to a central party for centralized training and using local
datasets for training in three participants, respectively.

We use the average of the accuracy and recall of the three local models trained to reflect
the comprehensive effect of local detection. Figure 13 shows the comparison between the
FL scheme proposed in this paper and the local ML training without dataset sharing. When
the local domain dataset is used simply, ML can only detect the category of attacks that
have occurred and normal traffic locally. As shown in the figure, since LDDoS attacks do
not occur in the other two domains, the average accuracy of LDDoS in the three domains
is not high, but the normal traffic can be effectively detected for they occur in all three
domains. This figure reflects that the FL scheme proposed in this paper can effectively
detect the attack categories that do not appear in the domain.
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Figure 14 shows the comparison between the HomoCNN model of FL and the CNN
model of ML. As we can see, our FL method can achieve the same effect as the ML model
trained by concentrating data on one client, but it does not need to contribute all the data.
Therefore, FL can provide an effective detection scheme for multi-domain DDoS Federation.
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4.3.6. Time Cost Analysis

In order to verify the time cost of our scheme after joining the blockchain, we analyzed
the time required for our scheme, include the time of repudiation request, training and
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audit. The experimental results are shown in Figure 15. The repudiation request time
refers to the connection time, request data and request reputation time of Ethereum. The
training time is the training duration of the three models, HomoNN, HomoCNN and
HomoSecureBoost, with the same parameters as Section 4.3.1. The audit time includes the
broadcast time of the transaction, the queue time of transaction and the block out time. The
broadcast of transactions is mainly determined by the number of nodes built in the network
and the point-to-point communication delay between network nodes, and the queuing and
block out time are mainly determined by the consensus algorithm of the blockchain system
and its parameters which are configured according to the mining difficulty and block size
when the blockchain is initialized. To sum up, since we consider the time delay caused
by multiple interactions in other schemes, our scheme only considers one interaction per
training, hence the training time is the most critical time in the whole. Therefore, we believe
that the advantages of blockchain to this scheme are obviously higher than the impact of
its delay.
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Finally, we analyze the training duration of the HomoCNN algorithm in different
iterations, as shown in Figure 16. It can be seen that the training time is almost propor-
tional to the number of iterations, because each additional iteration requires an additional
communication between the aggregator and all other participants.
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4.3.7. Comparison before and after Knowledge Base Update

The comparison diagram before and after the update of the malicious behavior feature
graph of the distributed knowledge base is shown in Figure 17. Before the update, the
malicious behavior feature graph includes the relationship between attack type and feature,
with a total of 494 relationships. After FL training, the knowledge base will be updated, and
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the updated knowledge graph adds 80 relationships, which is the connection relationship
between sub-attack and feature.
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5. Conclusions

In this paper, we focus on the reliable application of FL to multi-domain DDoS de-
tection. We first introduce a multi-domain DDoS detection method, which realizes the
detection of 22 types of DDoS attacks and classifies them into 5 categories, with most of
them reaching more than 95%. To ensure the reputation of FL participants, we introduce
blockchain to evaluate the reputation of participants from three aspects: interaction rep-
utation, data reputation and resource reputation, which has a higher ability to identify
malicious participants against the data poisoning attack when the threshold is set to 0.6.
In addition, by comparing with ML, our scheme has a higher precision and recall rate
than the local detection scheme without dataset transmission and pays more attention to
dataset protection than the scheme that transmits datasets to the central training party, with
the similar accuracy and recall rate. In addition, most of the time spent on multi-domain
DDoS detection combined with blockchain is spent on the process of FL, and the time spent
interacting with blockchain is greatly reduced because we only evaluate the model of last
iteration. Finally, we combine the model trained using our method with the knowledge
base to build and update the feature graph of behavior, so as to save the global knowledge
and provide knowledge support for detection.

In the future, in order to further improve the detection accuracy, we can further study
how to mitigate the impact of non-iid datasets. At the same time, more weight parameters
can be considered to optimize the reputation evaluation process and achieve more reliable
FL detection.
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