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Abstract: A stroke is a common disease that can easily lead to lower limb motor dysfunction in the
elderly. Stroke survivors can effectively train muscle strength through leg flexion and extension
training. However, available lower limb rehabilitation robots ignore the knee soft tissue protection of
the elderly in training. This paper proposes a human–robot cooperative lower limb active strength
training based on a robust admittance control strategy. The stiffness change law of the admittance
model is designed based on the biomechanics of knee joints, and it can guide the user to make
force correctly and reduce the stress on the joint soft tissue. The controller will adjust the model
stiffness in real-time according to the knee joint angle and then indirectly control the exertion force of
users. This control strategy not only can avoid excessive compressive force on the joint soft tissue
but also can enhance the stimulation of quadriceps femoris muscles. Moreover, a dual input robust
control is proposed to improve the tracking performance under the disturbance caused by model
uncertainty, interaction force and external noise. Experiments about the controller performance and
the training feasibility were conducted with eight stroke survivors. Results show that the designed
controller can effectively influence the interaction force; it can reduce the possibility of joint soft tissue
injury. The robot also has a good tracking performance under disturbances. This control strategy
also can enhance the stimulation of quadriceps femoris muscles, which is proved by measuring the
muscle electrical signal and interaction force. Human–robot cooperative strength training is a feasible
method for training lower limb muscles with the knee soft tissue protection mechanism.

Keywords: rehabilitation robot; human–robot interaction; admittance control; robust control; active
strength training

1. Introduction

The independent walking ability of the elderly is the basic premise to ensure the quality
of life [1]. However, limb weakness increases with age and the impact of cardiovascular
disease often leads to physical disability in the elderly [2]. According to statistics, there are
more than millions new incident stroke cases worldly in every year, and there is a high
probability of losing walk ability among the survivors [3,4]. Facing such a large number of
disabled people, more rehabilitation physicians and rehabilitation training equipment are
needed to help them regain lower limb strength, stand up again and return to society [5,6].
As a new type of intelligent medical robot, rehabilitation robot can effectively improve
limb disabilities caused by aging or sequela and their therapeutic effect has been proved by
many clinical experiments [7–9].
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Muscle weakness is well established as the primary impairment that affects walk-
ing after stroke, and strength training can effectively promote the recovery of muscle
strength [10,11]. The effectiveness of strength training has also been proven by some resis-
tance training [12,13]. The quadriceps femoris is the biggest human skeletal muscle at the
front of the thigh, and it plays a vital role in extending the knee, flexing the hip and main-
taining an upright position. Leg flexion and extension is a strength training exercise that can
effectively enhance the quadriceps, so the research of related equipment has also attracted
much attention. The American Harley Company proposed a rehabilitation device X-10,
which uses variable pressure technology to reduce the pain in the patient’s treatment and
improve the patient’s joint mobility [14]; Another similar device is a sitting rehabilitation
device developed by King Wangut University of Technology, which is suitable for home
training but only has one free rotation and a small range of motion [15]. They all belong to
the same type of rehabilitation equipment using a moving platform. They send the terminal
force and joint torque into the control feedback loop to ensure the safety of training respec-
tively, but the training effect on the hip joint is not obvious. The University of Tsukuba and
a partner company developed an exoskeleton robot called HAL, which can directly provide
active or passive lower limb flexion and extension training to bedridden patients. The
range of motion and the walking ability of the patients is improved after training, but the
strength of the quadriceps femoris does not change significantly [16,17]. Italy and Poland
developed a new 3-DOF bionic exoskeleton, which can be used for rehabilitation after joint
surgery, ligament, and cartilage injuries [18].

In robot-assist active training fields, the robot needs to be able to extract the patient’s
motion intention according to the interaction information and assist the patient to complete
the training action. The effectiveness of impedance control and force-position hybrid con-
trol have been verified on the rehabilitation machine LOKOMAT, and these methods have
improved the interactivity of human–machine cooperative training [19]. Wu et al. devel-
oped an admittance control strategy induces the active participation of patients [20]; an
optimization method based on admittance control was proposed to compensate the weight
and friction of the exoskeleton [21]. A lower rehabilitation robot called LOPES II allows
different active training intensities through admittance control [22]. Impedance controllers
are also applied in robot-assist active training for joint or lower limb rehabilitation [23,24].
Some researchers use sEMG (surface electromyography) or EEG (electroencephalography)
signals for guiding rehabilitation robots to complete active training [25–27]. Courtney et al
developed an algorithm for adjusting functional electrical stimulation to help patients
taking active training [28].

Including the research mentioned above and other we can find, none have mentioned
the protection of the knee soft tissue. However, the physiological functions of the elderly
gradually degenerate, and soft tissues such as the meniscus, cartilage and ligaments are
relatively fragile [29,30]. For the main user groups of rehabilitation therapy, it is necessary to
avoid damage to their joint soft tissues during rehabilitation strength training. The National
Strength and Conditioning Association has studied knee joint biomechanics during the
human squat and pointed out the conclusion. That is, the tibiofemoral compressive force
will peak at 130 degrees of knee flexion, and the menisci and articular cartilage bear
significant amounts of stress [31]. Soft tissue such as ligaments are at great risk of injury at
this moment [32]. Patellofemoral compressive force, tibiofemoral compressive force and
tibiofemoral shear force will gradually decrease with knee extension, while quadriceps
muscle activity will peak at approximately 80 to 90 degrees of knee flexion and remain
relatively stable thereafter [33,34]. In the human–machine cooperative leg flexion and
extension training, it is necessary to timely control the interaction force depending on the
knee joint angle in order to reduce the possibility of joint soft tissue injury.

In this paper, a human–machine cooperative leg flexion and extension training based
on a robust admittance control strategy is proposed, which fully considers the protection of
knee soft tissue based on biomechanics. The performance device is the sitting and lying
lower limb rehabilitation robot (LLR-II) developed by our team. In this training, LLR-II
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responds according to the interaction force and assists the patient performs a full lower
limb flexion and extension similar to a leg press. Compared with single knee flexion and
extension training, this training can maintain and improve the mobility of each joint of
the lower limbs, and can effectively exercise the muscles of the hips, knees and ankles.
Firstly, according to the biomechanics of the knee joint, the change law of the stiffness of
the main admittance model is designed, and the flexibility of the training is increased by
the subsidiary admittance control. The controller will adjust the model stiffness according
to the joint angle during the training, and it could avoid excessive compressive force on
the soft tissue and increase the stimulation of the quadriceps. Then, the joint tracking
performance is improved by two-input robust motion control by compensating the motion
control disturbances caused by model uncertainty, interactive forces, and external noise.
Finally, the testing experiment of this human–machine cooperative leg flexion and extension
training is conducted.

2. LLR-II Rehabilitation Robot

The LLR-II is an intelligent robotic system that can intervene early and provide a variety of
rehabilitation training and more details can be found in our published papers [35,36]. LLR-II
can be divided into four modules which include two symmetrical training modules, a seat
module and an electric control module, as shown in Figure 1. The LLR-II is assembled by
connecting the underframe of each module and each module can be moved independently
for installation and transportation. The right training module is equipped with a touch
display and an emergency stop button and the width between the two training modules can
be adjusted according to the user’s body shape. The height of the seat module is adjustable
and it can help medical staff transfer patients. In addition, in order to adapt to different
people, the length of the upper and lower mechanical legs can be adjusted through the
internal electric linear actuator.
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Figure 1. Structure of LLR-II.

2.1. Structural Design of LLR-II

The mechanical leg of LLR-II is a three joint series mechanical mechanism, and the
three joints correspond to the hip, knee and ankle joints of the human body, respectively.
Its joint drive train is composed of flange structures, as shown in Figure 2. The high torque
motors of the hip and knee joints adjust the fixed positions through timing belts, which
are located at the bottom of the training module and the rear end of the mechanical leg
respectively. Hip and knee joint transmission structures are similar, and both of them are
consist of a synchronous pulley, a reducer and a torque sensor (Figure 2a). The ankle joint
equips with a frameless motor, and the integration of the ankle joint is effectively improved
by directly connecting the motor and the reducer (Figure 2b).
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Figure 2. Section view of joint drivetrain: (a) knee joint and (b) ankle joint.

The electric control system of LLR-II can be divided into four parts as follows: central
control section, drive control section, sensor feedback section and human–robot interaction
section (Figure 3). The central control section mainly includes the host computer and
related data acquisition equipment, which is responsible for the advanced operations
and coordinates other parts. The drive control section is mainly composed of the joint
motor, the electric linear actuator and the related communication control equipment. The
sensor feedback section mainly includes the torque sensor, the angle sensor of the joint, the
six-dimensional force sensor and the potentiometer. The interaction operation is mainly
realized through a touch display screen. In addition, the LLR-II also has multimedia
functions such as virtual reality and voice control.
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2.2. Mechanical Leg Model Analysis

The mechanical leg of LLR-II is a series manipulator working in the sagittal plane, and
its physical model can be simplified as a 3R structure, as shown in Figure 4.



Sensors 2022, 22, 7746 5 of 15Sensors 2022, 22, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 4. Mechanism model of the mechanical leg. 

Establish a global coordinate system {O-X0Y0Z0} at the hip joint rotation center point 
A. B and C represent the rotation centers of the knee and ankle joints respectively. q1, q2 
and q3 are the joint variables of the three rotating joints, l1, l2 and l3 respectively represent 
the distance between the rotating joints, l0 represents the distance between the counter-
weight mess center and the hip rotating joint; R1, R2 and R3 represent the distance between 
the link mass center and the rotation center, respectively. The kinematic model of LLR-II 
is the same as the standard 3R mechanism, and its kinematics forward and inverse solu-
tions can be calculated by the D-H method and geometric method. The results are shown 
in Equations (1) and (2) below:  

123 123 3 123 2 12 1 1

123 123 3 123 2 12 1 1

cos sin 0 cos cos cos
sin cos 0 sin sin sin

=
0 0 1 0

0 0 0 1 0 0 0 1

x x x x

y y y y

z z z z

n o a p q q l q l q l q
n o a p q q l q l q l q

T
n o a p

− + +   
   + +   =
   
   
   

, (1)

2
1

2 1 1 1 1 1

3 1 2

Atan2( , 1 ) tan2( , )
Atan2( sin , cos )
Atan2( , )y x

q K K A A B
q B l q A l q q
q n n q q

= ± − −
= − − −
= − −

,  (2)

where 

3

3

2 2 2 2
1 2

2 2
1

1... 1

2
...

x x

y y

i i

A p l n
B p l n

A B l lK
l A B

q q q

= −
= −

+ + −
=

+
= + +

. 

The dynamic equation of the mechanism can be obtained through the Lagrangian 
equation, and the controlled system model of the robot can be obtained as follows: 

T( ) ( , ) ( ) ( )+ + + =  M q q C q q q g q J q F u ,  (3)

where ( )M q  is a diagonal matrix consisting of the inertia matrix and drive train inertia. 
( , )C q q  represents the matrix of Coriolis and centrifugal forces and ( )g q  represents the 

gravitational vector. q , q and q  are the joint acceleration, velocity and position vectors. 

( )J q  is the Jacobian matrix of the mechanism and F  represents the human–robot in-
teraction force. u  is the control input vector. 

Unlike the standard 3R structure, this mechanism has a counterweight used for light-
ening the motor load, as the yellow line shown in Figure 4. The leg length adjustment 
function is adjusting the position of the rotation center point A and it means that the rela-
tive position of the link mass center point R1 in the global coordinate system will change 

Figure 4. Mechanism model of the mechanical leg.

Establish a global coordinate system {O-X0Y0Z0} at the hip joint rotation center point
A. B and C represent the rotation centers of the knee and ankle joints respectively. q1, q2 and
q3 are the joint variables of the three rotating joints, l1, l2 and l3 respectively represent the
distance between the rotating joints, l0 represents the distance between the counterweight
mess center and the hip rotating joint; R1, R2 and R3 represent the distance between the
link mass center and the rotation center, respectively. The kinematic model of LLR-II is
the same as the standard 3R mechanism, and its kinematics forward and inverse solutions
can be calculated by the D-H method and geometric method. The results are shown in
Equations (1) and (2) below:

T =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 =


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q1 = Atan2(K, ±
√

1− K2)− Atan 2(A, B)
q2 = Atan2(B− l1 sin q1, A− l1 cos q1)− q1

q3 = Atan2(ny, nx)− q1 − q2

, (2)

where
A = px − l3nx
B = py − l3ny

K =
A2+B2+l2

1−l2
2

2l1
√

A2+B2

q1...i = q1 + . . . + qi

.

The dynamic equation of the mechanism can be obtained through the Lagrangian
equation, and the controlled system model of the robot can be obtained as follows:

M(q)
..
q + C(q,

.
q)

.
q + g(q) + JT(q)F = u, (3)

where M(q) is a diagonal matrix consisting of the inertia matrix and drive train inertia.
C(q,

.
q) represents the matrix of Coriolis and centrifugal forces and g(q) represents the

gravitational vector.
..
q,

.
q and q are the joint acceleration, velocity and position vectors. J(q)

is the Jacobian matrix of the mechanism and F represents the human–robot interaction
force. u is the control input vector.

Unlike the standard 3R structure, this mechanism has a counterweight used for light-
ening the motor load, as the yellow line shown in Figure 4. The leg length adjustment
function is adjusting the position of the rotation center point A and it means that the relative
position of the link mass center point R1 in the global coordinate system will change under
the influence of the counterweight and the leg length change. The Lagrangian quantity
change caused by the mass center position change will exacerbate the system uncertainty
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in the dynamic control. Therefore, it is necessary to calculate the mass center position of
the link l1, as shown in Equation (4) below:

R1 =
m(l1 − l0)− 2m0l0

2m + 2m0
, (4)

where m0 is the mass of the counterweight and m is the mass of the first link (without
counterweight). In Lagrangian dynamics, the change of the mass center position will
directly change the translational kinetic energy and gravitational potential energy of the
first link, and the moment of inertia in the angular kinetic energy term also needs to be
recalculated according to Equation (4) after length adjustment.

3. Robust Admittance Control Strategy

The control strategy of the rehabilitation robot is different from the general industrial
robot; it needs to fully consider human–robot interactions to ensure the safety of patients.
Rehabilitation robots should be able to respond to different levels of interaction and maxi-
mize the movement potential of patients. Biomechanical research has shown that pushing
force should be avoided when the knee is flexed at a wide angle, and there is also an efficient
training range for the quadriceps. In addition, due to the large interactive force of the active
training, it has high requirements for the robustness of the control algorithm. Therefore,
a robust admittance control strategy for lower limb strength training is proposed, which
combines robust control and admittance control. The strategy block diagram is shown
in Figure 5. This strategy indirectly controls the user’s force through variable stiffness
admittance control, and it can avoid excessive compressive force on the joint soft tissue and
increase muscle group stimulation. Dual input robust control adds an error compensation
term that can be used for compensating force interference, and it improves the tracking
performance of the machine joints.
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3.1. Variable Stiffness Admittance Control

Admittance control is a control strategy that describes the relationship between force
and motion through a spring damping model, and both admittance control and impedance
control use the same model. The input and output of admittance control are force and
position, respectively. The end force of the series robot can be easily obtained by force
sensors, so this method is often used in human–robot interactions. The admittance control
strategy proposed in this paper includes two control laws, and its function is shown in
Figure 6. The effect of the main control law is changing the model stiffness according to the
knee joint angle; it can protect the knee joint and increase the stimulation of the quadriceps
muscle (the stiffness change is plotted on a trajectory with color mapping in Figure 6, the
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bright part indicates high stiffness). The subsidiary control law allows a small deviation
of the training trajectory, which increases the flexibility of the training action. When the
user’s vertical force will lead to a large deviation of the trajectory, the subsidiary control
law will ensure the trajectory by resisting the user’s force (as arrows shown in Figure 6).
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The input of the subsidiary admittance control is the interaction force Fy(s) in the
vertical direction, and the output is the end position Py(s) in the vertical direction. Its
transfer function is shown in Equation (5):

G(s) =
Py(s)
Fy(s)

=
1

Mdys2 + Bdys + Kdy
, (5)

where Mdy, Bdy and Kdy represent inertia, damping and stiffness. The system will compare
the expected position with the set offset threshold. If output exceeds the set allowable offset,
the excess part will be limited. Two outputs of the subsidiary control and main control will
be sent to the trajectory generator, and the generator will obtain the actual end position
based on vector calculation before inverse kinematics. With smaller model parameters, the
compliant and constrained training trajectory can be achieved.

The model of main admittance control is a second-order model with varying stiffness
along the motion trajectory and the output

..
P is the desired end acceleration. When receiving

an interaction force exceeding the threshold, the end of the machine will accelerate. When
the interaction force is deficient, the end of the machine will decelerate to stop according to
the admittance parameters. Its control law is designed as follows:

Mdx
..
P + Bdx‖

.
X‖2 + Kvar(q2)D = Fx, (6)

where Fx is the extracted effective interaction force; D is a constant with the same dimension
as the end position;

.
X represents the end velocity vector of the robot. Mdx and Bdx are the

inertia and damping of the model and the model stiffness Kvar is a piecewise function of
the knee joint angle, designed as follows:

Kvar =


k1 +

(k2−k1)[L(q2)−L0]
2

[L1−L0]
2 − 120

◦ ≤ q2 < −100
◦

k2+k3
2 − k3−k2

2 cos(π L(q2)−L1
L2−L1

) − 100
◦ ≤ q2 < −90

◦

k3 − k4 exp
[
k5

L(q2)−L
L−L2

]
− 90

◦ ≤ q2 ≤ 0
◦

.

L(q2) is a function of the knee joint angle and leg length; it represents the end position
of the robot. L0, L1 and L2 represent the end position scalars of the robot when the knee joint
is at −120◦, −100◦ and −90◦; L represents the total length of the training trajectory. The
constant coefficients ki (i = 1, 2 . . . ) are all parameters of this function and the amplitude of
stiffness can be adjusted by changing these parameters.

In this training process, the motion range of the knee joint is −120◦ to 0◦, which covers
80% normal motion range of the human body. The purpose of this design is to stretch the
muscles of the knee joint and maintain joint mobility. In addition, the controller will adjust
the model stiffness in real-time according to the knee joint, and this can protect the knee
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soft tissue and increase the stimulation effect on the quadriceps. At the beginning of the
training (120◦ of knee flexion), the model stiffness is set at a low level. This is because,
in this angle range, it will put greater stress on the knee soft tissue when the leg extends
with resistance forces. Training in this situation for a long time might cause damage to the
knee joint. When the knee joint is flexed to 100◦, the model stiffness begins to rise rapidly.
When the knee joint is flexed to 90◦, the stiffness reaches the highest level, which marks the
training entering the strong stimulation phase. At this stage, the force of the lower limbs
mainly depends on the contraction of the quadriceps femoris, and the training effect can be
improved by correctly exerting force in this stage. In the final stage, the stiffness decreases
slowly with a negative exponential trend. Considering the lower limb is not easy to exert
force when it is close to full extension, this design can extend the stimulation movement
and ensure that the user can complete the leg extension.

3.2. Dual Input Robust Control

Robot dynamics control needs to solve the tracking error problem caused by external
disturbance or model inaccuracy. For most of the series robots, the model inaccuracy
mainly comes from the uncertainty of the dynamic parameters (the deviation between the
theoretical reference model and the actual model). This uncertainty is generally changeless
and can be reduced by optimizing parameters through classical algorithms. The model
structure of the LLR-II is rather special as the first link mass center position becomes a
variable under the influence of the counterweight structure and the length adjustment.
Therefore, the parameters of the dynamic model will change greatly after the mechanical
leg length adjustment because the mass center change will lead to the change of Lagrangian
variables. That is to say, the parameter uncertainty of the LLR-II model is also a variable.
Although the reference model will be updated according to Equation (4), there is still a
deviation from the actual model. Adding to the influence of the large fluctuation interaction
force, common classical algorithms cannot adapt to such variable parameter systems.

This paper proposes a dual input robust control considering the s interactive force
effect, and it is used for reducing the influence of model uncertainty, noise interference and
the impact of interactive forces on machine tracking performance. The design control law
is as follows:

u = M̂(q)a + Ĉ(q,
.
q)v + ĝ(q) + ĴT

(q)F̂−Kr, (7)

where M̂, Ĉ, ĝ and Ĵ are estimated values defined by the corresponding symbols (theoretical
reference value); K and Λ are two constant positive gain matrices; v, a and r are defined
as follows: 

v =
.
qd −Λe

a =
.
v =

..
qd −Λ

.
e

r =
.
q− v =

.
e + Λe

.

Another simplified form of the control input can be obtained by linearizing the param-
eters of Equation (4):

u = Y(q,
.
q, a, v)θ̂+ Z(q)π̂ −Kr, (8)

where the functions Y and Z are the regressors of the first three terms and the fourth terms
on the left side of Equation (4). θ̂ and π̂ are the parameter vectors of the corresponding
estimated model (two control inputs). Substituting Equation (8) into Equation (4) and
linearizing the parameters, the designed closed-loop system equation can be obtained:

M(q)
.
r + C(q,

.
q)r + Kr = Y(θ̂− θ) + Z(π̂ −π). (9)

As mentioned above, considering the uncertainty of model parameters, the following
design is made:

θ̂ = θ0 + δθ; π̂ = π0 + δπ, (10)

where θ0 and π0 are the constant vectors of the corresponding parameter vectors (the theo-
retical calculation values); δθ and δπ are two design control terms used for compensating
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the disturbance caused by uncertainty. For the above uncertainty (the difference between
the actual value and the calculated value), it can be expressed as:

‖θ̃‖ = ‖θ− θ0‖ ≤ ρ; ‖π̃‖ = ‖π −π0‖ ≤ σ, (11)

where θ̃ represents the parameter uncertainty of the dynamic model and π̃ represents the
uncertainty of the link length and the interaction force. Selecting the upper bound constants
σ and ρ. The designs of δθ and δπ are as follows:

δθ =

 −ρ YTr
‖YTr‖ ‖YTr‖ > ε

−ρ YTr
ε ‖YTr‖ ≤ ε

, (12)

δπ =

 −σ ZTr
‖ZTr‖ ‖ZTr‖ > η

−σ ZTr
η ‖ZTr‖ ≤ η

, (13)

where ε and η are two positive constants used to ensure the continuity of the design term.
In order to analyze the stability of the designed closed-loop system by the Lyapunov

second method, the following Lyapunov function is selected:

V =
1
2

rTM(q)r + eTΛKe. (14)

Taking the derivative of Equation (14) along the system (9):

.
V = − .

eTK
.
e− eTΛTKΛe + rTY(θ̃+ δθ) + rTZ(π̃ + δπ). (15)

According to the Lyapunov second method, if a Lyapunov function derivative along
the system direction is strictly negative definite, it can be determined that the system is
asymptotically stable. No matter what state the system starts from, the error will eventually
converge to zero. However, in order to ensure Equation (15) is negative definite, additional
constraints need to be found. First, rewrite Equation (15) into the following form:

.
V = −ATQA + rTY(θ̃+ δθ) + rTZ(π̃ + δπ), (16)

where AT = [eT ,
.
eT
], Q = diag[ΛTKΛ, K]. Although the first term of Equation (16) can be

determined to be semi-negative definite, there are four possible combinations of the last
two terms. Since the structures of these two items are similar, the last item is used as an
example for analysis. First, when ‖ZTr‖ > η, according to the Cauchy-Schwartz inequality
we can obtain:

(ZTr)
T
(π̃ + δπ) = (ZTr)

T
(π̃ − σ

ZTr
‖ZTr‖

) ≤ ‖ZTr‖(‖π̃‖ − σ) < 0. (17)

When ‖ZTr‖ ≤ η, we can be obtained:

(ZTr)
T
(π̃ + δπ) ≤ (ZTr)

T
(σ

ZTr
‖ZTr‖

− σ
ZTr

η
) = −σ

η
‖ZTr‖2

+ σ‖ZTr‖. (18)

When the designed item is in the state of Equation (17), the judgment condition is
satisfied. When the design item is in the state of Equation (18), Equation (18) can be
regarded as a quadratic function about ‖ZTr‖. Its maximum value ση/2 at ‖ZTr‖ = η/2
can be obtained, and then the conditions for guaranteeing the Equation (15) is negative
definite can be obtained.

According to the designed terms δθ and δπ, two maximum values ση/2 and ρε/2 can
be obtained respectively. It is not difficult to find that if ATQA is always greater than the
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sum of these two maximum values, Equation (16) is less than zero forever in all cases (four
combinations). In other words, when Equation (19) is satisfied:

ATQA > (ση + ρε)/2. (19)

Using the matrix eigenvalue relation ATQA ≥ λmin‖A‖2 (where λmin is the minimum
eigenvalue of the matrix Q), the constraints that guarantee Equation (15) is negative definite
could be obtained:

‖A‖ > [(ση + ρε)/2λmin]
1/2. (20)

When Equation (20) is satisfied,
.
V can be guaranteed to be less than zero. Therefore,

according to Lyapunov second method, the tracking error of system (9) under the designed
control law is uniformly ultimately bounded. That is to say, selecting appropriate coef-
ficients in Equations (12) and (13) can ensure that the error continuously approaches a
sufficiently small upper error bound, and a good tracking performance could be obtained.

4. Experiment

In order to verify the function, feasibility and effectiveness of the proposed lower limb
flexion and extension strength training, eight stroke survivors were selected to participate
in the test experiment using LLR-II. Every subject confirmed the protocol of the experiment,
and research was carried out following the principles of the Declaration of Helsinki. All ex-
periments were conducted under the premise of ensuring the subject’s safety, and sufficient
time was given to familiarize the subjects with LLR-II before the formal experiment. The
training trajectory is a straight line passing through the hip joint and parallel to the ground,
and its starting point and length are determined according to the user’s leg length and knee
joint rotation range. The knee joint angle range of all training trajectories in experiments
was consistent. Due to the height difference of subjects, the horizontal position coordinates
of the training trajectory are also different. For normalized analysis, the horizontal position
in this part is represented by percentage of total track length.

To test the controller performance on guiding users to generate the force, the training
interaction force was recorded through the six-dimensional force sensor. In the experiment,
each subject was required to maintain higher training speed in three groups of training.
Figure 7 shows the changes in knee joint angle q2, model stiffness Kvar and effective
interaction force Fx during training. In the experiment, the adjustment constant coefficients
ki (i = 1, 2 . . . ) of Kvar are set to 0.3, 0.8, 2.5, 1.5, 6. The average of the end interaction force
was calculated, and error bars were plotted based on its standard deviation, as the red line
and the orange area shown in the figure. With the stiffness change based on the knee joint
angle, the interaction force also displayed a similar trend. Although the strength levels of
different subjects were inconsistent, the data results show that the controller has achieved
the function of guiding the user to make forces.

To analyze the tracking performance of the dual input robust controller, joint angle
data in training were recorded as shown in Figure 8. Observing average error curves, it
can be found that the absolute values of each joint steady-state error are close to about 0.5◦.
The result shows that the controller has good tracking ability, and it is in line with the final
boundedness proved before. Moreover, it can be found that the two joint errors (orange
and purple lines) and error bars (yellow and green areas) appear to be fluctuations in the
half of the trajectory. The maximum standard deviation of the hip joint is 0.29◦, while the
knee joint is 0.16◦. This is due to the rapid force increase when the subject tries to adapt to
the model stiffness change. The interaction force influence is different to two joints, but the
controller can make adjustments to adapt to different sudden interference. It shows that
the designed robust controller has strong robustness.



Sensors 2022, 22, 7746 11 of 15

Sensors 2022, 22, x FOR PEER REVIEW 11 of 15 
 

 

force was calculated, and error bars were plotted based on its standard deviation, as the 
red line and the orange area shown in the figure. With the stiffness change based on the 
knee joint angle, the interaction force also displayed a similar trend. Although the strength 
levels of different subjects were inconsistent, the data results show that the controller has 
achieved the function of guiding the user to make forces.  

 
Figure 7. Performance testing of admittance control. 

To analyze the tracking performance of the dual input robust controller, joint angle 
data in training were recorded as shown in Figure 8. Observing average error curves, it 
can be found that the absolute values of each joint steady-state error are close to about 
0.5°. The result shows that the controller has good tracking ability, and it is in line with 
the final boundedness proved before. Moreover, it can be found that the two joint errors 
(orange and purple lines) and error bars (yellow and green areas) appear to be fluctuations 
in the half of the trajectory. The maximum standard deviation of the hip joint is 0.29°, 
while the knee joint is 0.16°. This is due to the rapid force increase when the subject tries 
to adapt to the model stiffness change. The interaction force influence is different to two 
joints, but the controller can make adjustments to adapt to different sudden interference. 
It shows that the designed robust controller has strong robustness. 

 
Figure 8. Joint tracking performance. 

The EMG signal is a physiological indicator that can directly reflect neuromuscular 
activity [37–39]. This experiment verifies the effectiveness of this strength training by col-
lecting the quadriceps EMG signal during training. The quadriceps femoris is divided into 

0

1

2

3 Model stiffness coefficient
 Knee joint angle
 Interaction force

 

-120

-100

-80

-60

-40

-20

-90

A
ng

le
/D

eg

0% 25% 50% 75% 100%
0

100

200

Fo
rc

e/
N

Distance passed in horizontal position (Percentage of total track length)

10

20

30

40

50

60
A

ng
le

/D
eg

-120

-100

-80

-60

-40

-20

A
ng

le
/D

eg

0% 17% 33% 50% 67% 83% 100%

-1.6

-1.2

-0.8

-0.4

0.4

0.8

1.2

Er
ro

r/D
eg

 Hip joint error
 Hip joint angle

 Knee joint error
 Knee joint angle

Distance passed in horizontal position (Percentage of total track length)

Figure 7. Performance testing of admittance control.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 15 
 

 

force was calculated, and error bars were plotted based on its standard deviation, as the 
red line and the orange area shown in the figure. With the stiffness change based on the 
knee joint angle, the interaction force also displayed a similar trend. Although the strength 
levels of different subjects were inconsistent, the data results show that the controller has 
achieved the function of guiding the user to make forces.  

 
Figure 7. Performance testing of admittance control. 

To analyze the tracking performance of the dual input robust controller, joint angle 
data in training were recorded as shown in Figure 8. Observing average error curves, it 
can be found that the absolute values of each joint steady-state error are close to about 
0.5°. The result shows that the controller has good tracking ability, and it is in line with 
the final boundedness proved before. Moreover, it can be found that the two joint errors 
(orange and purple lines) and error bars (yellow and green areas) appear to be fluctuations 
in the half of the trajectory. The maximum standard deviation of the hip joint is 0.29°, 
while the knee joint is 0.16°. This is due to the rapid force increase when the subject tries 
to adapt to the model stiffness change. The interaction force influence is different to two 
joints, but the controller can make adjustments to adapt to different sudden interference. 
It shows that the designed robust controller has strong robustness. 

 
Figure 8. Joint tracking performance. 

The EMG signal is a physiological indicator that can directly reflect neuromuscular 
activity [37–39]. This experiment verifies the effectiveness of this strength training by col-
lecting the quadriceps EMG signal during training. The quadriceps femoris is divided into 

0

1

2

3 Model stiffness coefficient
 Knee joint angle
 Interaction force

 

-120

-100

-80

-60

-40

-20

-90

A
ng

le
/D

eg

0% 25% 50% 75% 100%
0

100

200

Fo
rc

e/
N

Distance passed in horizontal position (Percentage of total track length)

10

20

30

40

50

60

A
ng

le
/D

eg

-120

-100

-80

-60

-40

-20

A
ng

le
/D

eg

0% 17% 33% 50% 67% 83% 100%

-1.6

-1.2

-0.8

-0.4

0.4

0.8

1.2

Er
ro

r/D
eg

 Hip joint error
 Hip joint angle

 Knee joint error
 Knee joint angle

Distance passed in horizontal position (Percentage of total track length)

Figure 8. Joint tracking performance.

The EMG signal is a physiological indicator that can directly reflect neuromuscular
activity [37–39]. This experiment verifies the effectiveness of this strength training by
collecting the quadriceps EMG signal during training. The quadriceps femoris is divided
into rectus femoris, vastus medialis, vastus lateralis and vastus intermedius. Since the
vastus intermedius is located in the deep part of the muscle group, only the EMG signals of
the other three muscles were collected in this experiment. EMG device information and
electrode patch positions are shown in Figure 9. The positions of the electrode patches are
selected under the doctor’s guidance.
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Figure 10 shows the changes in the EMG signals and terminal interaction force of each
muscle during a 10-min training. In order to extract the features of EMG signals, the original
data was processed by high and low-pass filtering, absolute value taking and smoothing,
respectively. The interaction force collected by the force sensor was also plotted in the
figure. It can be found that all the data in the training action area are significantly higher.
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5. Discussion

The model stiffness of the admittance controller can be adjusted in real-time according
to the knee joint angle during training, thereby avoiding excessive compressive force
on the knee joint soft tissue and enhancing the muscle stimulation. Through the result
of the controller performance experiment, it can be found that the model stiffness Kvar
changes strictly depending on the knee joint angle according to the designed function
during training, as the blue line shown in Figure 7. Under the effect of stiffness adjustment,
the subject only needs about 90 N to maintain the target training speed when the knee
joint flexes more than 90◦. This shows that this controller successfully guides users to
avoid making forces in the posture that soft tissue is the main bearing object. Meanwhile,
the quadriceps femoris enter the most active area when the knee extends to about 90◦,
and all subjects reported that the training speed at this stage was significantly slowed
down. This is due to the change in stiffness, which led to the reduction of the model
output acceleration. In order to maintain the training speed, the average interaction force
of subjects can reach around 200 N. The results above show that designing a variable
stiffness admittance model can indirectly control the terminal interaction force, and it can
reduce the possibility of joint soft tissue injury and enhance exertion force in the effective
training range. Moreover, the designed robust admittance control can ensure joint tracking
performance even under the strong influence of interaction force, and it makes the robot
meet the task requirements of this active strength training. In experiments, the peak value
of the terminal interaction force was basically above 200 N. The EMG peak value of the
vastus lateralis muscle was around 150 uV; the peak value of the vastus medialis muscle
was around 75 uV; the peak value of the rectus femoris muscle is around 45 uV. The signal
performance of these muscles is consistent with the results of related lower body training
studies [33], and obvious signal increase means that the quadriceps femoris is in an active
state. These prove that the target muscle group has received effective stimulations under
this active strength training method.
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There are some limitations in this study and they need to be further studied. Firstly, we
design a robust admittance controller strategy to guide users to generate the force correctly
during training, and it can be regarded as a method of avoiding soft tissue bearing too much
stress under the biomechanics theory support. However, we are unable to provide accurate
data on the reduction of soft tissue stress or the actual contribution of this method so far. We
planned to conduct a controlled experiment, but it may put control group subjects at risk
of injury. We believe that we still need to find a non-invasive method for measuring joint
stress to provide strong proof for our work. On the other hand, we selected eight stroke
survivors for testing under the recommendation of doctors, and we obtained the result
that this training provides effective stimulation to the target muscle group through the
sEMG information. Obviously, the sample data are not enough to conclude stronger results,
and we ignored to study of the intervention of this training to different types of stroke
survivors. Although we believe that the training efficiency can be increased (compared
to other same type training) by guiding users to generate forces intensively in an efficient
range, there is still a lack of clinical trial data that can quantify the rehabilitation effect
of this strength training. We have to recognize that the work shown in the paper is still
preliminary research, and more testing experiments need to be carried out later.

We think the rehabilitation robot research should not only consider the training effect
but ignore the potential hidden dangers, especially for the elderly group of stroke survivors.
In the robot-assist rehabilitation field, few researchers have focused on knee joint protection.
This research presents a solution as an attempt to this research gap, but its clinical effect
needs a long-term follow-up observation. However, this research still proposes a new
point to robot-assisted training: potential negative factors should be considered in order to
provide better rehabilitation medical devices for the elderly.

6. Conclusions

In order to avoid an excessive compressive force on the joint soft tissues and increase
the stimulation to the target muscle during the leg flexion and extension training, this
paper proposes a human–robot cooperative lower limb active strength training based on a
robust admittance control strategy. The robust admittance control strategy mainly includes
variable stiffness admittance control and dual input robust control. The variation law of
admittance model stiffness is designed according to the knee joint biomechanics. The main
controller can adjust the stiffness of the model in real-time according to the angle of the
knee joint and indirectly control the exertion force of users; the subsidiary admittance
control can increase the training flexibility and compliance. Dual input robust control can
improve joint tracking performance under the influence of the disturbance caused by the
model uncertainty, interactive forces, and external noise. The experiment results show that
the designed controller can effectively reduce the possibility of joint soft tissue injury and
enhance the stimulation of the quadriceps, and this active training method is effective for
exercising the quadriceps. In order to evaluate the efficacy of this strategy, it will be applied
to more clinical experiments in future works.
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