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Abstract: Speech is a commonly used interaction-recognition technique in edutainment-based sys-
tems and is a key technology for smooth educational learning and user–system interaction. However,
its application to real environments is limited owing to the various noise disruptions in real envi-
ronments. In this study, an audio and visual information-based multimode interaction system is
proposed that enables virtual aquarium systems that use speech to interact to be robust to ambient
noise. For audio-based speech recognition, a list of words recognized by a speech API is expressed as
word vectors using a pretrained model. Meanwhile, vision-based speech recognition uses a composite
end-to-end deep neural network. Subsequently, the vectors derived from the API and vision are
classified after concatenation. The signal-to-noise ratio of the proposed system was determined
based on data from four types of noise environments. Furthermore, it was tested for accuracy and
efficiency against existing single-mode strategies for extracting visual features and audio speech
recognition. Its average recognition rate was 91.42% when only speech was used, and improved by
6.7% to 98.12% when audio and visual information were combined. This method can be helpful in
various real-world settings where speech recognition is regularly utilized, such as cafés, museums,
music halls, and kiosks.

Keywords: deep learning; audiovisual speech recognition; lipreading; multimodal interaction;
edutainment; virtual aquarium

1. Introduction

Recently, with the rapid development of deep learning, the educational, experiential,
and auxiliary situations in which various deep learning technologies are applied have in-
creased [1–4]. In particular, in terms of edutainment, various recognition technologies based
on deep learning are being developed to recognize interactions such as speech, gestures,
eye and head tracking, and even physical objects. The term edutainment, a portmanteau of
education and entertainment, is an approach designed to be simultaneously educational
and fun, and is widely used in robot platforms, museums, science centers, and aquari-
ums [5–7]. Edutainment techniques that simultaneously provide both education and fun
reportedly have an effect on learning outcomes, and numerous systems have consequently
been developed [3,8–10]. They are also useful for interacting with the elderly [1].

Speech is one of the most commonly used interaction-recognition techniques in
edutainment-based systems, and is a key technology for smooth educational learning
and interaction between the system and the user [10–14]. Speech involves the perception of
both auditory and visual information and is the most commonly used human engagement
and communication mode. Janowski et al. [15] compared gestures and speech experimen-
tally for four separate interaction tasks (navigation, selection, dialogue, and manipulation)
in a virtual environment. They reported that in object manipulation, both speech and
gestures were preferred. However, despite the increasing preference for interaction using
speech, the application of interaction using speech to real environments is quite limited
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owing to the various noise disruptions that can occur in real environments. Therefore, core
technology that is robust to difficult acoustic scenarios and various noises in real environ-
ments is essential. Consequently, in this study, an audio and visual information-based
multimode interaction system is proposed that enables virtual aquarium systems that use
speech to interact to be robust to ambient noise. Figure 1 gives a conceptual overview of
the proposed system being utilized for interaction via speech in a virtual aquarium.
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Multisensory integration has an important effect on human communication, and each
sensory organ transmits specific sensory information [16]. The human nervous system
is organized into multiple nonoverlapping sensory organs and uniquely processes the
received input, which enables it to sense very reliably. Depending on the received input
information, information from different senses can be connected to each other, thereby
synergistically enhancing the ability to recognize and evaluate [17,18].

People can improve their ability to understand speech in noisy environments or where
it is otherwise difficult to understand speech by detecting the movements of the tongue
and teeth and the area around the speaker’s lips. In other words, when the speech signal
is not clear, visual speech information has a significant positive effect on speech compre-
hension [18–23]. As such, humans tend to process visual information first when visual and
auditory information are received simultaneously. This phenomenon is called “synesthesia”
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or the “McGurk effect” in cognitive psychology [24]. Therefore, we judge many things
visually to the extent that the sound we hear depends on what we see. For example, if
people see a person’s face expressing “ba” and hear the sound “ga,” many of them will
infer the third sound “da” that combines the two. The fusion approach can contribute to
robust recognition of speech interactions in real life and overcome the problem of auditory
and visual ambiguity of words with similar pronunciation in noisy environments.

This work offers a noise-robust system for use in virtual aquariums by integrating a
deep neural network-based end-to-end visual speech recognition architecture with an open
cloud speech recognition (OCSR) API system (Figure 1). The performance of this system is
superior to that of single-mode systems that use either audio or visual speech recognition
technologies. For audio-based speech recognition, a pretrained model is used to express
word vectors for a list of words that have been identified by the speech API. Meanwhile,
vision-based speech recognition uses a new deep neural network-based lipreading archi-
tecture consisting of end-to-end neural subnetworks. We consecutively combined three
3D convolutional neural networks (CNNs) for feature sequence extraction, shortening
the training time by reducing the number of parameters, and referring to the existing 2D
DenseNet [25] to suppress overfitting. The 3D densely connected CNN is composed of the
components of a multichannel 3D CNN to extract the multichannel features of different
levels. A bidirectional gated recurrent unit (GRU) followed by a linear layer is used to
overcome the scarce visual information caused by the time-series input data and to obtain
specific image features. A vector matrix is formed by connecting the word and feature vec-
tor output to the audio- and visual-based model. By inserting a SoftMax layer at each time
step and then applying the connectionist temporal classification (CTC) loss function [26] to
all time steps, the concatenated vector matrix is trained to acquire predictive words.

We also compared the accuracy and efficiency of the proposed system with existing
single-mode techniques for extracting visual features and multiple OCSR APIs from the
collected dataset. The results of extensive evaluations verified that the proposed system
achieved faster convergence speed, higher computational efficiency, and superior per-
formance. Thus, our system, which integrates the existing OCSR API system with an
end-to-end lipreading architecture using visual information, is widely utilizable for diverse
speech-based interaction settings such as cafés, music halls, and virtual aquariums.

The main contributions of this paper are as follows:

• We propose a novel audiovisual speech recognition system using multimode interac-
tion for virtual aquarium applications that is robust to ambient noise;

• We compare the accuracy and efficiency of the proposed system with those of existing
single-mode techniques for extracting visual features and multiple OCSR APIs from a
collected dataset;

• We show that the proposed system provides faster convergence speed, higher com-
putational efficiency, and superior performance compared with the existing OCSR
API system.

The remainder of this paper is organized as follows. Section 2 of this paper gives an
overview of research related to this study. Section 3 provides the details of each element of
the proposed system. Section 4 provides information on the datasets collected, data aug-
mentation techniques, and experimental setup. Section 5 presents the training procedure,
convergence rate, optimization, and performance evaluation results of the proposed sys-
tem. Sections 6 and 7 discuss the experimental results according to the research objectives,
suggest directions for future research, and provide our conclusions.

2. Related Work

Google has released an open cloud-based speech API [27] along with various func-
tions and application scenarios for finance, automobiles, and hospitals. It has advanced
capabilities such as distinct speaker identification, automated speech language detection,
data logging, and speech-to-text conversion with multiple channels, as well as support
for over 125 languages. IBM’s Watson AI service [28] supports 11 languages and provides
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services such as dialogue dialing of the speaker and word extraction and filtering, along
with the ability to customize specific volume conditions by applying the system according
to the usage environment. However, to use the pretrained language model, there is also
a difficulty, in that it needs to be tuned to the customer management domain, and this
requires adding a new corpus. In addition, Microsoft offers the speech-to-text capabilities
of the Speech Service, part of Azure Cognitive Services [29], as a cloud service package.
According to the official website, the Speech Service includes real-time speech synthesis,
asynchronous synthesis of long audio, prebuilt neural network speech, and viseme technol-
ogy. Xiong et al. [30] reported that it achieved human-level accuracy for the first time in a
switchboard test in 2017. Amazon Alexa [31] is an artificial intelligence (AI) smart personal
assistant with a speech-activated platform that enables voice interaction and Q&A. Alexa
has various other capabilities, including the ability to play music, set alarms, and obtain
weather information. It can also be used to operate smart home technology devices.

Owing to rapid improvements in the field, deep learning has lately delivered good
performance in various applications in diverse research domains, including VSR systems.
Deep learning-based algorithms outperform traditional prediction methods. For example,
the systems proposed by Ji et al. [32] and Petridis and Pantic [33] distinguish different
visemes by integrating the traditional approach with a CNN, and add time information after
obtaining the CNN output using the hidden Markov model framework. Wand et al. [34] and
Cooke et al. [35] integrated histograms of oriented gradients (HoG) with long short-term
memory (LSTM) to evaluate a GRID benchmark dataset consisting of short phrases. In ad-
dition, the LSTM classifier was trained on the OuluVS and AVLetters datasets [35] using the
discrete cosine transform, and word prediction evaluation was performed. Noda et al. [36]
applied the sequence-to-sequence (seq2seq) model to lipreading. The model has a deep
speech recognition architecture capable of recognizing and predicting the output of full
input sequences. In addition, performance evaluation was performed on a benchmark
dataset composed of real words by integrating all the audiovisual information.

Assael et al. [37] introduced LipNet, an end-to-end deep learning model, and it was
trained and its performance evaluated on the GRID corpus, a sentence-level dataset. The
GRID corpus was divided into overlapped and unseen-speaker database structures, and it
achieved word error rates of 4.8% and 11.4%, respectively. However, the evaluation was
performed with the same database, and the experienced human lip reader had a low success
rate of 47.7%. Fenghour et al. [38] presented a deep learning network model for viseme-
to-word translation that used an attention-based GRU and enhanced the performance of
predicting spoken sentences by reaching a word accuracy of 79.6%. Li et al. [39] proposed
an efficient two-stream model for learning dynamic information. The model extracts
static characteristics from a single frame and dynamic information between multiple
frame sequences using two distinct channel capacity CNN streams. Utilizing a more
effective convolutional structure for each component in the front-end model yielded an 8%
improvement. Xu et al. [40] implemented and evaluated a digit sequence prediction and an
architecture similar to the CTC cascaded model on audiovisual datasets. Deep learning-
based approaches are more resilient to huge data and visual ambiguity than conventional
information-extraction techniques, and they can extract more precise, detailed, and accurate
information from audiovisual data.

The evaluation and comparison of the recognition performance of previously available
OCSR APIs have been the focus of several studies [41–43]. Contrastingly, the goal of this
study is to enhance the interactive performance in a virtual aquarium by incorporating
visual information into the already-existing OCSR API system. Compared with the tradi-
tional OCSR API system, the method performs better recognition and reduces the error
rates in noisy environments. Consequently, in this work, we present an interaction model
that, in contrast to the current interaction approach that only utilizes auditory information,
employs audiovisual information based on deep learning and uses a system with a low
error rate even in noisy environments.
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3. Architecture of the Proposed System

Our proposed deep learning audiovisual speech recognition interaction system, which
is integrated with the open cloud-based speech API, is shown in Figure 1. As shown
in Figure 1b, human speech is input and the recognized words are converted into word
vectors using a pretrained word embedding model. Simultaneously, as shown in Figure 1c,
a face video matching the human speech is received and extracted as a sequence feature
vector. Subsequently, the audiovisual module (Figure 1d) predicts a word or sentence
by integrating the word and sequence feature vectors output from the audio and visual
modules (Figure 1b,c).

3.1. Audio Module

In the audio speech recognition module, the speech API receives the user’s speech via
a microphone and sends it to an open cloud-based recognition system. The open cloud-
based speech recognition API is a publicly available API for developing applied speech
recognition systems. It has a speech recognition engine created by collecting large amounts
of speech data via a cloud computing service and learning on large amounts of data with
high-performance computing. Cloud firms provide these speech recognition engines so
that anyone can use them without difficulty via the voice recognition Open API, saving
significant amounts of development time, effort, and expense.

Figure 2 is a block diagram of the proposed audio speech recognition module; it utilizes
two general algorithms. The human speech is input via a local device such as a microphone,
and the recorded speech is delivered to an open cloud server provided by a commercial
engine, Microsoft Azure, for further processing [44]. Through speech recognition by the
OCSR API, which is closed-source, it is possible to quickly implement a user-optimized
speech recognition system and has the usability advantage of being immediately applicable
to various fields. Therefore, developers using application speech recognition systems
should choose the appropriate OCSR API based on the capabilities of the system. In
addition, the performance of the OCSR API is constantly updated by many companies
that provide API services, and it depends on the study date and the type of training data.
Therefore, we used the Microsoft Azure API, which has been proven to be superior in the
results of previous studies [45]. In addition, the existing speech API can be replaced if
another speech API with better performance is released and is not affected by performance
changes over time. The word lists output through the OSCR API are output as individual
word vectors using Google’s pretrained Word2Vec embedding model. These word vector
representations may have hundreds of dimensions in the Word2Vec model, also known
as word embeddings [46,47]. For academic use, Google offers a Word2Vec model that has
been pretrained on 100 billion words from the Google News corpus, producing 3 million
300-dimensional word embeddings. Therefore, a list of words is output, transformed into a
300-dimensional vector, and concatenated into a single vector.

3.2. Visual Module

Figure 3 is a detailed schematic of the proposed visual speech recognition module. It
consists of three modules: feature extraction, sequence processing, and transcription. The
feature extraction module consists of three CNNs: 3D CNN to extract fine motion around
the lip, 3D dense connection CNN to reduce model parameters and prevent overfitting,
and multiscale 3D CNN to extract rich features with different level features. The sequence-
processing module uses Bi-GRU to comprehend a wide sequential feature context, and the
transcription module combines the local self-attention mechanism in a cascaded approach
to compensate for the shortcomings of the CTC loss function, focusing only on local
information in the nearby frame.

3.2.1. Feature Extraction Module

Figure 4a shows that the 2D CNN collects encoded information about single-image
data and transforms the information into a 2D feature map to calculate spatial-dimensional
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features. However, a 2D CNN cannot extract motion information in consecutive frames
extracted from video.
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As shown in Figure 4b, we need a 3D CNN that can simultaneously calculate spatial
and temporal dimensional features to detect various peripheral information such as tongue
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and tooth movement information around the lips. The 3D CNN is a widely used technique
to detect spatial and temporal information in time-series sequence data and has been proven
to be effective in extracting spatial and temporal information in numerous studies [32,37].
In this study, CNN layers comprising 64 3D kernels of size 3 × 7 × 7 were constructed to
extract and encode visual feature information into input sequential lip data, and combined
with the batch normalization layer and ReLU. Subsequently, the spatial scale of the 3D
feature map was reduced by connecting the max-pooling 3D layer (Figure 3a). The details
of the proposed model hyperparameters are presented in Table A1.

Following the 3D CNN, a 3D dense-connection CNN is used to reduce the parameters
of the model to save processing resources and effectively prevent overfitting. With this
method, relationships between several linked layers are generated, facilitating network
depth, vanishing gradients, and full functional utilization (Figure 5). We extend the 3D
volumetric feature extraction task by referring to the existing 2D densely connected CNN
structure composed of the l-th layer of the nonlinear transformation Hl . The output of
the l-th layer of the existing 2D structure can be represented by xl (Equation (1)), where
x0, x1, . . . , x1−1 are generated in the previous layer and [. . .] denotes the concatenation
operation [24].

xl = Hl([x0, x1, . . . , x1−1]) (1)
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This approach utilizes two modules: a 3D transition layer module and a 3D dense block
module. The feature maps processed in the 3D CNN are reduced by the bottleneck layers
(Figure 5b) and then multichannel feature volumes are integrated. As the previous feature
information still exists, subsequent layers are applied only to a few feature volumes, and the
hyperparameter ta controlling the degree of compression is also included in the transition
layer (Figure 5a) to increase compressibility. Thus, reduced growth rates can be achieved
by using bottlenecks and transition layer tiers in succession. The dense block structure
is doubly connected in the following order: batch normalization (BN) layer, activation
function (ReLU), and 3D convolutional layer (Figure 5b). The transition layer connected
after the dense block structure has the same structure as the dense block structure, and
an average-pooling 3D layer of 2 × 2 × 2 is additionally connected (Figure 5a). The 3D
convolutional layer used for the dense block structure is 3 × 1 × 1, and is composed of
3 × 3 × 3 3D convolutional layers of the transition layer.

By implementing them in various sizes and depths, we coupled multiscale 3D CNNs
to extract various layers of spatial and visual information. In the multiscale 3D CNN,
multiple convolutional layers of different level sizes can generate different level features
based on different depths and filters, and this strategy can be used to extract richer feature
information with a layered approach (Figure 3c). The proposed multiscale 3D CNN
architecture is shown in Figure 6; it is divided into four structures. The three modules are
composed of different kernel sizes based on the structure of Figure 6b. The first module,
Figure 6b, connects to a 3D convolution layer with a 3D kernel size of 32 in order of batch
normalization and activation functions (ReLU). The second module (Figure 6c) and third
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module (Figure 6d) add standard and spatial dropouts with 3D convolution layers of
different 3D kernel sizes of 64 and 96, and then add activation functionality (ReLU).
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The function of the standard dropout is to prevent strongly correlated activations
in the image feature map by randomly dropping pixels, thereby preventing overfitting
and overtraining, which affect the CNN performance improvement. Therefore, it plays
an important role in small benchmark datasets compared to large datasets such as image
classification datasets [48]. The spatial dropout of the third module outperforms and
performs in strongly spatially correlated image classification by dropping the corresponding
channel rather than pixels [49,50]. It is particularly effective in extracting the fine motion
features of the lips, teeth, and tongue with strong spatial correlation. Additionally, to focus
on the location of the information section and complement the attention channel, all three
modules are combined with spatial attention modules of the same structure (Figure 6a).
The spatial attention module focuses on utilizing interspace interactions to better select the
most identifiable and useful portions of the input image [51]. It initially runs max-pooling
and average-pooling operations along the channel axis and then connects them to create an
efficient feature descriptor that calculates spatial attention. Therefore, the output of each
multiscale 3D CNN and spatial attention module is merged and concatenated.

3.2.2. Sequence Processing Module

Because the feature extraction module extracts only fixed short viseme-level features,
it is difficult to distinguish the longer context information of random-length time-series
input data. We use a GRU that learns to propagate and control the flow of time-series data
information using update and reset gates [52]. The GRU is derived from the LSTM unit that
determines which information should be conveyed and which should be ignored, allowing
for the use of update and reset gates to solve the gradient loss problem. A bidirectional GRU
is configured with the feature sequence of the feature extraction module as input to provide
forward and backward information so that both networks can obtain rich information.

3.2.3. Transcription Module

We use the CTC method, which does not require end-to-end alignment of deep neural
networks and parameterizes the distribution of a label token sequence using a loss function.
The marginal distributions created at each time step of the temporal module are condition-
ally independent of CTC. This is because it restricts the use of autoregressive connections
to handle the inter-time-step dependencies of the label sequence. When the probabilities
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of the language model are ambiguous, the CTC models are decoded using a beam search
approach to restore label temporal dependency.

4. Experimental Evaluation
4.1. Dataset, Data Preprocessing, and Augmentation

To evaluate the proposed model, we constructed a new dataset for the interaction
of the virtual aquarium by referring to the Word Choice part of the most used speech
recognition commands in IoT or real life in Google Speech Command Dataset V2 [53].
Currently, because most benchmark datasets are audio-based or consist of datasets used in
real-world applications, datasets for the interaction of virtual aquariums are insufficient.
Therefore, we constructed the dataset ourselves to evaluate the proposed model (Table 1).

Table 1. Collected speech commands datasets: (a) control commands; (b) marine life; (c) numbers;
(d) emotions.

(a) Control Commands (20)

front back side over under
inside outside top center bottom
right left on off up
down go start pause stop

(b) Marine Life (15)

turtle fish shark crab dolphin
jellyfish octopus whale starfish shrimp

coral squid otter lobster

(c) Numbers (11)

one two three four five
six seven eight nine ten

zero

(d) Emotions (8)

anger fear anticipation surprise joy
sadness trust disgust

To perform aquarium interaction in a virtual environment, data were collected by
dividing them into two categories—an operation command to manipulate the system and
a command to control objects in the virtual environment. As the unit for operating the
system is not a complete sentence but a word or a short phrase, the collected words are
generally useful as commands for automobile and robot applications [53].

For data collection, 40 participants (20 males and 20 females; average age: 29.14 years)
who were familiar with speech recognition equipment were recruited and ultimately
compensated with gift certificates worth USD 20. To ensure balance in the data, 10 males
and 10 females were native English speakers, and the other 10 males and 10 females were
bilingual advanced English-speaking participants. The participants wore a head-mounted
device that combined a webcam with a camera and microphone (Figure 7). Each participant
stared at the display (Figure 8b) located in front and repeated the 54 keyword lists 100 times
at 2 s intervals in sequence.

The collected video underwent frame extraction and was output as shown in Figure 8c.
We collected a total of 216,000 video clips for audio and video information. We used a
Logitech webcam (C920 HD PRO WEBCAM) with the following specifications for data
collection: video resolution of 1920 × 1080 (FHD), frame rate of 30 fps, and a stereo
microphone. The face-facing webcam fixture was made with a 3D printer. The video data
were recorded for 2 s with a resolution of 640 × 480 pixels at 30 fps, and the audio was
stereo with a sample rate of 44,100 Hz.
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We trained the proposed model on data fired 100 times per class and divided the data
into training and validation sets in a 7:3 ratio. During the data collection process, there were
participants whose pronunciation became weaker as the number of experiments increased
because of the repetitive speech. Therefore, to prevent training overfitting from the problem
of poor pronunciation, we used the most focused early (20–30) utterances, middle (50–60)
utterances, and finally some of the utterances when concentration was lowest among the
100 utterances for validation. The utterances were selected and divided into training and
validation sets in a 7:3 ratio. Specifically, the training dataset comprised utterances 1–9,
10–20, 31–50, 61–80, and 91–100, and the validation dataset comprised utterances 21–30,
51–60, and 81–90.

We used the Dlib [54] face detector with a HoG feature-based linear classifier to
search the target region as a preliminary step for extracting human lip information in
the data preprocessing step. The Dlib library, which can utilize image processing and
different machine learning methods, is a general-purpose cross-platform software library
developed in C++ that can use HoG features or a trained CNN model for face recognition.
To create a bounding box around the mouth, the detected output was presented as (x, y)
diagonal edge coordinates. Then, 68 landmarks and the same lip point as the data obtained
from the training dataset with the online Kalman filter iBug [55] program were extracted.
Using affine transformation, we extracted pictures with a size of 100 × 50 pixels from the
target face region that was extracted in relation to the mouth’s center region. We then
normalized the RGB channels of the entire training set so that the mean and unit variance
were both zero. Furthermore, because—unlike other image classification data—overfitting
may occur owing to the small amount of data, data augmentation was performed to prevent
overfitting [41]. All models were trained and assessed using the same dataset pretreatment
and augmentation approaches, and normal and horizontally mirrored image sequences
were used for data augmentation throughout the training phase.

4.2. Implementation

The diagram on the left side of Figure 8 is a schematic of the overall system for
processing the respective audio and visual information. Figure 8a shows a participant
interacting with a virtual aquarium through speech commands. The participant wears a
device that combines a wireless microphone and a small camera, as shown in Figure 8b,
and controls the target object (e.g., a shark) via speech commands. A single-channel
wireless head microphone is used to acquire the experimenter’s voice information, which is
wirelessly transmitted to a remote computer. Simultaneously, visual information is acquired
using a camera module attached to the wireless head microphone, and the connected single-
board computer, Raspberry Pi, uses the robot operating system (ROS) to wirelessly transmit
the visual information to the remote computer.

We used the CTC decoder with the beam search method to evaluate the character
accuracy rate (CAR) of the proposed model. The evaluation environment consisted of
an Intel® CoreTM i7-7700K CPU running the Linux Ubuntu 18.04 LTS operating system,
with 32 GB RAM, and an NVIDIA GeForce RTX 2080-Ti GPU. In addition, Keras based
on the TensorFlow backend was used to evaluate the performance of the CTC decoder.
Table A1 provides information on the architecture utilized for the evaluation. The specific
requirements for each layer of the proposed model are listed as hyperparameters.

For model optimization during training, three evaluations were performed: optimization,
batch size, and learning rate. To perform model optimization, AdaDelta [56], AdaGrad [57],
adaptive moment estimation (Adam) [58], stochastic gradient descent (SGD) [59], RMSprop [55],
AdaMax, and Nadam [59] were evaluated with a mini-batch of four and a learning rate
of 0.0001. After performing model optimization, the model was executed to determine
the optimal mini-batch size (0.1, 0.001, 0.000.1, 0.00001, or 0.000001) and learning rate (4,
8, 16, 32, or 64). A maximum batch size of 64 was used because of the limitations of our
GPU memory.
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We performed data collection and performance evaluation while considering factors
such as lighting that could have a detrimental effect on the proposed system. The per-
formance evaluation was conducted in an environment different from the conventional
data collection environment, and for the evaluation, participants used a head-mounted
webcam device (Figure 8). The performance evaluation environment was a natural en-
vironment without any controls, i.e., an environment with natural light and noise. The
examination was separated into three sections: audio only, visual only, and combined
auditory and visual information. Furthermore, none of the individuals that engaged in
data collection during the performance evaluation stage participated in the generalized
performance evaluation.

While taking into account external elements impacting the accuracy, such as illumi-
nation, the proposed system was assessed in an environment that differed from the data
gathering setting. The participants used a head-mounted device with a webcam and did
the evaluation while standing 1.5 m away from the virtual aquarium screen during the
performance evaluation stage (Figure 8). In the experiment room, it was performed with
normal lighting and noise, and only participants who had not taken part in the data collec-
tion were selected. The multimodal technique used in this investigation was divided into
three categories: audio-only, visual-only, and audiovisual speech.

4.3. Performance Evaluation Metrics

We examined the learning loss, batch size, and optimization to assess the learning
state throughout the proposed model’s training process, and we utilized the character
error rate to assess the accuracy. Specifically, we converted the error rate measure to a
percentage by calculating the total edit distance and compared the predicted text with the
original text. In addition, we used a confusion matrix approach for visualization of the
predicted data. The CAR for accuracy evaluation consists of five variables (C, S, D, I, N).
They signify the characters (C), false prediction characters (S), number of deleted characters
(D), unselected characters (I), and total number of correct characters (N). The proposed
model is a maximum-probability prediction method that performs the CTC beam search
technique. The CAR equation is expressed as follows:

CAR (%) = 100 −
(

CS + CD + CI

CN

)
× 100 (2)

To visualize and analyze the predicted data after learning, we used a confusion
matrix, which is commonly used to summarize the performance of a classification model.
The matrix compares the real findings with the test data to the number of properly and
incorrectly categorized samples. Using the confusion matrix as a tool for evaluation
provides the benefit of allowing a more thorough analysis in the event that the dataset is
imbalanced, as opposed to depending solely on the fraction of correctly recognized samples
(which could cause misleading conclusions). In Table 2, the confusion matrix for two classes
is presented.

Table 2. Confusion matrix for two classes.

Predicted Class

Actual Positive Actual Negative

Actual
Class

Predictive Positive True Positive (TP) False Positive (FP)
Predictive Negative False Negative (FN) True Negative (TN)

The true-positive, false-positive, true-negative, and false-negative values in the con-
fusion matrix served as the basis for the algorithms’ performance parameters. Precision,
recall, and F1-score were among the metrics computed. Classwise accuracy, recall, and
F1-score were used to assess the classification models. These performance metrics were
calculated using the following formulas.
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Precision denotes the outcome of a scenario that is thought to be positive:

Precision =
TP

(TP + FP)
(3)

Recall reveals the estimation of the success of positive situations:

Recall =
TP

(TP + FN)
(4)

The F1-score, which represents the overall classification accuracy, is calculated as the
harmonic average of recall and precision:

F1 − score =
2 × Precision × Recall
(Precision + Recall)

(5)

Additionally, noise was generated with a signal-to-noise ratio (SNR) approach using
the gathered source data to assess the trained model’s quantitative performance. Both
the commonplace noise found in daily life and the multichannel acoustic noise database
(DEMAND) served as the source of noise data for the noise-generation process. DEMAND
comprises different types of noise from eight environments (parks, corridors, restaurants,
stations, cafés, plazas, cars, living) and ambient noise (Table 3).

Table 3. Noise database structure: categories and recordings conducted in each category.

Category Place Environment

(a) Office Hallway
Hallway inside an office building, with
individuals and groups passing
by occasionally

(b)
Public

Cafeteria Busy office cafeteria

(c) Station Main transfer area of a busy
subway station

(d) Street Cafe Terrace of a cafe at a public square

5. Results
5.1. Training Procedure and Convergence Rate

Figure 9 compares the learning loss and convergence rates for different batch sizes and
learning rates, respectively. Batch size and learning rate are important hyperparameters in
model training, and various studies related to the effect of batch size and learning rate on
model training have been conducted [60–62]. Masters and Luschi [60] showed that higher
test accuracy can be obtained with a small batch size by changing the batch size while fixing
the learning rate. In addition, the results of fixing the batch size and changing the learning
rate showed that when a small batch is used, stable learning is possible over a wider range
of learning rates. In addition, Keskar et al. [63] showed that the use of a large batch size
increases the likelihood of convergence to a sharp minimum of the training function, which
lowers the generalization performance. Therefore, we evaluated the optimal batch size and
learning rate to optimize the proposed model.

Figure 9a–c show the evaluation of different batch sizes, and Figure 9d–f show the
evaluation of different learning rates. In training and validation loss, as the batch size
increased, the convergence speed became slower, and when the batch size was four, it
showed the fastest convergence speed. A moving average strategy was used to better
discern the visualization as smooth. Figure 9 illustrates how the smoothed value was
displayed as a curve and the real value was expressed as the shadow portion of the image
for the proposed model’s training. The uneven fluctuation of the real value caused by
the small batch size was also addressed, and smoothing was performed to improve the
understanding of the curve. In the case of learning rate, there was no training at 0.1 and
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0.001, and 0.1 showed a tendency to diverge. On the other hand, among the remaining
three learning rates, the 0.0001 value resulted in the fastest convergence speed. Thus, the
proposed model exhibits the fastest convergence rate for the collected dataset, with a batch
size of four and a learning rate of 0.0001.
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5.2. Optimization

Hyperparameters that affect training are typically used to determine optimal model
updates (e.g., batch size and learning rate). Prior to decreasing the error or loss function
caused by the difference between the actual and predicted values, the optimizer must
update the weight parameters repeatedly with different weights. However, selecting the
right optimizer for the best model training might be challenging. To increase the prediction
accuracy and learning rate, training an ideal model is crucial. To determine the model
that fits the data the best, we employed the optimization models SGD, RMSprop, Adam,
Nesterov-accelerated Adam (Nadam), AdaMax, AdaGrad, and AdaDelta, which are the
models most often used for deep learning neural network training.

In comparison to other deep learning neural networks, the SGD [59] optimization
strategy is quicker and simpler to train because it eliminates duplication by performing
one update at a time. The objective function has considerable fluctuations when the
frequent update method with high variance is used, and these fluctuations then have the
ability to shift the parameters to new and improved local minima. Because of the ongoing
overshooting of SGD, convergence to an accurate minimum is challenging. AdaGrad [57]
is a gradient-based optimization approach that adjusts the learning rate of parameters
to perform larger updates on repeatedly occurring parameters, while performing fewer
updates on less frequently occurring parameters. This approach is suitable for processing
sparse data and significantly improves the robustness of SDG optimization [59]. The
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AdaDelta [56] optimization approach is an extended version of AdaGrad optimization that
reduces the learning rate aggressively and monotonically, with parameters varying the
learning rates and the learning process stopping after a particular point. The RMSprop [55]
optimization approach was developed to overcome the rapidly decreasing learning rate of
AdaGrad. It is an adaptive learning rate method, and uses variable learning rates that vary
with the results for each sample of each iteration. The Adam [58] optimization approach
was developed based on SDG, AdaDelta, and RMSprop. It dynamically calculates the
learning rate for each sample of the dataset based on parameters to be used as adaptive
optimization approaches with limited memory. The optimization strategy used by Nadam
is almost identical to that used by Adam, with the slight difference being that Adam’s and
Nesterov’s momentums are combined in Nadam to replace the flat momentum, which
greatly improves its performance. The AdaMax [59] optimization approach is an extended
approach to Adam optimization that consists of a simpler constraint than the parameter
update size of Adam optimization, resulting in stable weight update rules.

We compared the training results using a Bi-GRU classifier for the optimization
approach of the proposed model. Figure 10 shows the loss curve of learning and validation
of the optimization approach. Among the seven optimization techniques, Adam shows
the fastest learning process and convergence rate, which means that Bi-GRU classifiers
were trained more successfully than other optimization approaches. Conversely, the
AdaDelta optimization approach exhibits the lowest learning rate. Consequently, in the
optimization approach following batch size and learning rate, Adam was adopted as the
optimal approach best suited for training lip-based classification by the proposed model.
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5.3. Performance and Accuracy

The performance evaluation results of the proposed model are presented in Figure 11
and Table 4. The proposed model obtained the best results, with a CAR of 98.698% at four,
the smallest size among different batch sizes, and the CAR decreased as the batch size
increased (Figure 11a,b and Table 4). At different learning rates, 0.0001 yielded the best per-
formance, and the remaining 0.01 and 0.0001 yielded similar performances (Figure 11c,d).
However, at 0.1 and 0.001, they were excluded from the performance evaluation owing to
divergence in the process of training the model. Among the seven optimization approaches,
Adam optimization yielded the highest results, followed by Nadam and RMSprop with
similar performance (Figure 11e,f). In addition, SGD and AdaMax showed good perfor-
mance in that order, and AdaGrad showed low performance at 46.392%. AdaDelta was
excluded from the performance evaluation because it diverged during the training process
of the model. Thus, the proposed model exhibited the best performance when trained with
a batch size of four, a learning rate of 0.0001, and the Adam optimization approach.
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Figure 11. Training steps for character accuracy rate (CAR) comparing different batch sizes, learning
rates, and optimizers: (a) Different batch sizes; (b) different batch sizes using moving average;
(c) different learning rates; (d) different learning rates using moving average; (e) different optimizers;
(f) different optimizers using moving average.

Table 4. Performance of different batch sizes, learning rates, and optimizers on the collected dataset.

Batch Size Top-1 CAR (%) Learning Rate Top-1 CAR (%) Optimizer Top-1 CAR (%)

4 98.698 0.1 - SGD 94.867
8 97.663 0.01 97.301 Adam 98.698
16 97.657 0.001 - Nadam 97.500
32 96.972 0.0001 98.698 AdaMax 92.953
64 96.126 0.00001 97.095 AdaGrad 46.392

AdaDelta -
RMSprop 97.323
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5.4. Confusion Matrix

The performance of the proposed model was evaluated using 30% of the dataset as a
validation sample. The results are shown in Figures 12 and A1 as confusion matrices and
Figure 13 as a classification report. The average (mean) precision of each of the proposed
models was 0.9870%, recall was 0.9869%, and F1-score was 0.9869% (shown in Table A2). In
the classified recognition results, misclassification occurred in “go”, “on”, and “off”, where
the mouth was opened only to a small degree and the duration of utterance was shortest.
Further, a small misclassification occurred in “center” and “under”, and “fish”, “jellyfish”,
and “starfish”, which have similar utterance endings. As reported by Kaburagi et al. [1],
this is a problem that occurs because of the similar lip shape at the beginning and end of
speech, but it is not a factor that has a great influence on the overall performance evaluation.
Based on our evaluation of the proposed model, it is clear that it can help overcome
technical obstacles to practical implementation.
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commands; (b) marine life; (c) number; (d) emotion.

5.5. Performance and Accuracy

Figure 8 shows the actual experimental scene where participants interacted using their
speech in a virtual aquarium environment, and Figure 14 and Table A3 show the perfor-
mance of each recognizer at different SNR (dB) levels considering the case of four noises.
In Figure 14a, which was evaluated at different SNR levels considering the case of corridor
noise, it was 91.14% ± 1.24% in clean, and the highest accuracy was 90.88% ± 1.08% in
40 dB. The visual-only accuracy for various SNR levels was 88.79% ± 0.73%, and because
this value depends only on visual information, it is not affected by the clearance of the
audio signal or the SNR level. Participants who participated in the data collection stage did
not participate in the performance evaluation of the proposed model, and there were no
external factors such as lighting for clear data collection during data collection. In addition,
in order not to control external factors, the experiment was carried out naturally without
limitations of variables (such as mouth shape during pronunciation by participants or
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mouth shadow according to lighting). The multimodal approach using both auditory and
visual signals was 97.87% ± 0.62%, which improved recognition rates by 6.73% and 9.08%,
respectively, compared to recognition using only auditory and visual signals. As a result,
speech may be inferred even in the presence of background noise by utilizing a mix of
sound and visual information.
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Figure 14. Standard variation of the identification accuracy rate across four noise situations. Standard
deviation is shown by error bars. The audio recognition result is shown by the black (single-modal
recognition) line, the visual recognition result is represented by the blue (single-modal recognition)
line, and the audiovisual recognition result is represented by the red (multimodal recognition) line.
The identification outcome in a true experimental setting is called clean SNR.

Based on the previous results, different noises were synthesized and compared for the
three components. For the results in Figure 14b and Table A3b, the performance evaluation
was performed by synthesizing cafe noise at various SNR levels, and only audio was used
for recognition at the clean level in 92.90% ± 1.64% of cases. On the other hand, when
audio and visual information were used together for recognition, it was 98.17%± 0.52%,
an improvement of 5.27% compared to when only audio was used. Figure 14c,d consist
of noise from two different environments: a cafeteria and a subway station. The cafeteria
is a busy office cafeteria environment, and the subway is the noise of the main transit
area of a crowded subway station. When only audio is used, the recognition rates are
91.26% ± 1.69% and 90.37% ± 1.10%, respectively; and when audio and visual are used
together, the recognition rates are 98.60% ± 0.70% and 97.85% ± 0.51%, respectively. The
recognition rates were improved by 7.34% and 7.48%, respectively, compared to the case
where only audio was used.

The statistical significance of the three-group t-test for four noise settings is shown in
Figure 15 for each noise environment. In all the noise environments, the recognition rate
was improved by 6.04% on average in the case of using both audio and visual compared
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to the case of using only audio. On the other hand, the recognition rate was improved
by 9.33% compared to the case where only vision was used. Additionally, the standard
deviation was reduced when audio and visual information were used together, compared
to when only audio was used, and a similar recognition rate for repeated experiments was
also observed.
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Figure 15. Average recognition accuracy rates in four noisy scenarios. The error bars show the
standard deviation. t-tests with statistical significance between each group are indicated by asterisks
(* for p < 0.05, ** for p < 0.01, *** for p < 0.001). The gray (single-modal recognition), blue (single-modal
recognition), and red (multimodal recognition) boxes show the results of auditory-only, visual-only,
and audiovisual recognition, respectively.

6. Discussion

Recently, owing to the exponential increase in large-capacity data-processing capability,
speech recognition-based interactive edutainment systems have become more widespread.
Along with gesture interaction, speech interaction is used in various applications, and more
difficult acoustic scenarios have to be considered than in the past for extensive practical
applications, taking into account the challenging issue of adequate noise management
for varied settings. We conducted a study on speech interaction in a virtual aquarium
considering various scenarios.

In this study, an end-to-end visual speech recognition-based interaction system for
speech interaction in a virtual aquarium environment was proposed. Recognized words
were vectored by combining pretrained word embedding with Microsoft API, which
showed the best performance and dense dispersion in previous studies [45]. Feature vector-
ization was performed on the image sequence input through video via the visual processing
module, and word vectorization was combined to output the predicted word. For the
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optimization of the proposed model, the performance was evaluated using different batch
sizes, learning rates, and optimization approaches. In addition, performance evaluation
was performed by synthesizing the data used in the actual evaluation and four noise types
using different SNR levels.

The system performance in terms of SNR was evaluated using four sets of synthesized
data associated with four noise environments along with other evaluation data. Compared
to the speech recognition system using only audio, which has a large standard deviation in
the four noise environments, the system using visual information showed small standard
deviation and superior performance. Furthermore, in the case of clean, the average recogni-
tion rate was 91.42% when only speech was used in the four noise environments, whereas
when audio and visual information were used together, the recognition rate was improved
by 6.7% to 98.12%.

The utilization of multimodal interactions based on visual information is necessary
to develop antinoise automated speech recognition (ASR) systems. The proposed system
could help patients who have difficulty with noise during conversation. It can also provide
an opportunity for people with hearing problems to have a conversation. However, it is
difficult to apply this technique to real-world conversation recognition. Therefore, in future
studies, we will consider expanding the system’s ability to identify non-keyword-centric
phrases. Additionally, by displaying an actual virtual aquarium in a science museum, we
will assess the efficiency of the proposed model in a real environment and create a reliable
portable gadget for real-world usage.

7. Conclusions

By combining visual information with the existing speech interaction-based edutain-
ment system, a new visual information-based speech recognition system that is robust to
noise was applied to a virtual aquarium and demonstrated. The proposed system com-
bines audio and visual information, and for optimization, the performance was evaluated
considering three factors (batch size, learning rate, and optimization approach), and the
performance was further evaluated in four noise environments. It was shown that vi-
sual information contributed to the improvement of speech recognition by using visual
information, unlike the existing method that used only speech to interact. To achieve
consistent and high performance in diverse noise conditions, our technique blends visual
speech recognition, a technology that can enhance speech recognition systems, with current
cloud-based speech recognition systems. This method offers the potential for real-world
speech recognition applications in noisy locations. It can be utilized for speech interaction
in venues such as museums and scientific centers that have significant amounts of interior
noise and noise from visitors, and it also has the potential for use in diverse applications
that employ voice recognition in noise, such as IoT and robot applications.
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Appendix A

The following Tables A1–A3 and Figure A1 provide (1) the details of the hyperparam-
eters associated with the proposed architecture, (2) the confusion matrix of the proposed
model trained on 53 classes, (3) the average word accuracy and standard deviation of the
proposed system in four noise environments, and (4) the performance in terms of precision,
recall, and F1-score, respectively.

Table A1. Hyperparameters associated with the proposed architecture.

Layers Size/Stride/Pad
Visual Audio

Output Size

Input Layer - 40 × 100 × 50 × 3

3D Conv Layer [3 × 5 × 5]/(1, 2, 2)/(1, 2, 2) 40 × 50 × 25 × 64

1500

3D Max Pooling [1 × 2 × 2]/(1, 2, 2) 40 × 50 × 13 × 64

Densely Connected
3D CNN

[3 × 1 × 1] 3D Conv
(×6) 40 × 25 × 13 × 96

[3 × 3 × 3] 3D Conv

[3 × 1 × 1] 3D Conv
40 × 12 × 6 × 6

[1 × 2 × 2] average pool/(1 × 2 × 2)

[3 × 1 × 1] 3D Conv
(×12) 40 × 12 × 6 × 38

[3 × 3 × 3] 3D Conv

[3 × 1 × 1] 3D Conv
40 × 6 × 3 × 3

[1 × 2 × 2] average pool/(1 × 2 × 2)

[3 × 1 × 1] 3D Conv
(×24) 40 × 12 × 6 × 38

[3 × 3 × 3] 3D Conv

[3 × 1 × 1] 3D Conv
40 × 3 × 1 × 1

[1 × 2 × 2] average pool/(1 × 2 × 2)

[3 × 1 × 1] 3D Conv
(×16) 40 × 3 × 1 × 33

[3 × 3 × 3] 3D Conv

Multiscale 3D CNN (1) [3 × 5 × 5]/(1, 2, 2)/(1, 2, 2) 40 × 3 × 1 × 32

Multiscale 3D CNN (2) [3 × 5 × 5]/(1, 2, 2)/(1, 2, 2) 40 × 3 × 1 × 64

Multiscale 3D CNN (3) [3 × 5 × 5]/(1, 2, 2)/(1, 2, 2) 40 × 3 × 1 × 92

Spatial Attention (1)
[1 × 2 × 2] max pool/(1 × 2 × 2)

40 × 3 × 1 × 32[1 × 2 × 2] average pool/(1 × 2 × 2)
[3 × 7 × 7]/(1, 2, 2)/(1, 2, 2)

Spatial Attention (2)
[1 × 2 × 2] max pool/(1 × 2 × 2)

40 × 3 × 1 × 64[1 × 2 × 2] average pool/(1 × 2 × 2)
[3 × 7 × 7]/(1, 2, 2)/(1, 2, 2)

Spatial Attention (3)
[1 × 2 × 2] max pool/(1 × 2 × 2)

40 × 3 × 1 × 96[1 × 2 × 2] average pool/(1 × 2 × 2)
[3 × 7 × 7]/(1, 2, 2)/(1, 2, 2)

Bi-GRU (1) 256 40 × 512

Bi-GRU (2) 256 40 × 512
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Table A1. Cont.

Layers Size/Stride/Pad
Visual Audio

Output Size

Concatenation - 40 × 2012

Dense Layer 27 + blank 40 × 2012

Softmax 40 × 28
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Table A2. Average word accuracy and standard deviation of the proposed system in four
noise environments.

SNR (dB) −20 −10 0 10 20 30 40 Clean

(a) Hallway

A 1.84% ±
0.62%

21.98% ±
4.30%

56.26% ±
4.63%

78.01% ±
4.42%

88.60% ±
0.88%

90.59% ±
1.07%

90.88% ±
1.08%

91.14% ±
1.24%

V 88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

AV 88.84% ±
0.65%

89.27 ±
0.70%

92.33 ±
1.41%

95.19 ±
0.96%

96.84 ±
0.58%

97.20% ±
0.44%

97.58% ±
0.54%

97.87% ±
0.62%
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Table A2. Cont.

SNR (dB) −20 −10 0 10 20 30 40 Clean

(b) Cafe

A 1.99% ±
0.28%

19.05% ±
4.99%

55.77% ±
4.54%

74.42% ±
3.05%

89.34% ±
2.04%

92.04% ±
2.01%

92.23% ±
2.50%

92.90% ±
1.64%

V 88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

AV 87.70% ±
1.51%

88.17% ±
1.29%

91.16% ±
1.43%

94.70% ±
1.15%

96.48% ±
0.93%

98.02% ±
0.61%

98.10% ±
0.65%

98.17% ±
0.52%

(c) Cafeteria

A 1.44% ±
0.31%

25.74% ±
6.92%

57.30% ±
5.00%

79.23% ±
2.81%

84.06% ±
2.57%

89.90% ±
1.05%

91.76% ±
1.54%

91.26% ±
1.69%

V 88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

AV 88.92% ±
0.79%

89.94% ±
0.57%

90.07% ±
1.36%

92.05% ±
1.43%

94.13% ±
1.04%

96.63% ±
1.30%

98.17% ±
0.46%

98.60% ±
0.70%

(d) Station

A 2.08% ±
0.69%

19.49% ±
5.64%

48.84% ±
4.30%

68.79% ±
4.46%

78.61% ±
2.67%

86.31% ±
1.17%

88.23% ±
1.34%

90.37% ±
1.10%

V 88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

AV 88.57% ±
0.99%

90.64% ±
0.96%

93.10% ±
1.12%

95.34% ±
1.20%

96.34% ±
1.05%

97.06% ±
0.63%

97.67% ±
0.47%

97.85% ±
0.51%

Table A3. Precision, recall, and F1-score performance of in four noise environments. (a) control
commands; (b) marine life; (c) numbers; (d) emotions.

(a) Control Commands (b) Marine Life

Word Precision Recall F1-Score Word Precision Recall F1-Score

front 1.0000 1.0000 1.0000 turtle 0.9706 0.9900 0.9802
back 1.0000 1.0000 1.0000 fish 0.9500 0.9500 0.9500
side 1.0000 0.9800 0.9899 shark 1.0000 1.0000 1.0000
over 1.0000 1.0000 1.0000 crab 1.0000 0.9900 0.9950

under 0.9118 0.9300 0.9208 dolphin 1.0000 1.0000 1.0000
inside 1.0000 1.0000 1.0000 jellyfish 0.9388 0.9200 0.9293

outside 1.0000 0.9900 0.9950 octopus 1.0000 1.0000 1.0000
top 1.0000 0.9900 0.9950 whale 0.9901 1.0000 0.9950

center 0.9286 0.9100 0.9192 starfish 0.9697 0.9600 0.9648
bottom 1.0000 1.0000 1.0000 shrimp 1.0000 0.9900 0.9950

right 1.0000 1.0000 1.0000 coral 0.9804 1.0000 0.9901
left 1.0000 1.0000 1.0000 squid 1.0000 0.9900 0.9950
on 0.9479 0.9100 0.9286 otter 1.0000 1.0000 1.0000
off 0.8857 0.9300 0.9073 lobster 0.9709 1.0000 0.9852
up 0.9901 1.0000 0.9950

down 1.0000 1.0000 1.0000
go 0.9293 0.9200 0.9246

start 1.0000 1.0000 1.0000
pause 0.9901 1.0000 0.9950
stop 1.0000 1.0000 1.0000
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Table A3. Cont.

(c) Numbers (d) Emotions

Word Precision Recall F1-Score Word Precision Recall F1-Score

one 0.9900 0.9900 0.9900 anger 1.0000 1.0000 1.0000
two 1.0000 1.0000 1.0000 fear 0.9901 1.0000 0.9950

three 1.0000 0.9800 0.9899 anticipation 1.0000 1.0000 1.0000
four 1.0000 1.0000 1.0000 surprise 0.9802 0.9900 0.9851
five 1.0000 1.0000 1.0000 joy 1.0000 1.0000 1.0000
six 1.0000 1.0000 1.0000 sadness 1.0000 1.0000 1.0000

seven 1.0000 1.0000 1.0000 trust 1.0000 1.0000 1.0000
eight 1.0000 1.0000 1.0000 disgust 1.0000 1.0000 1.0000
nine 1.0000 1.0000 1.0000
ten 1.0000 1.0000 1.0000

zero 1.0000 1.0000 1.0000
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