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Abstract: Cameras are widely used in the detection and tracking of moving targets. Compared
to target visual tracking using a single camera, cooperative tracking based on multiple cameras
has advantages including wider visual field, higher tracking reliability, higher precision of target
positioning and higher possibility of multiple-target visual tracking. With vast ocean and sea surfaces,
it is a challenge using multiple cameras to work together to achieve specific target tracking and
detection, and it will have a wide range of application prospects. According to the characteristics
of sea-surface moving targets and visual images, this study proposed and designed a sea-surface
moving-target visual detection and tracking system with a multi-camera cooperation approach. In
the system, the technologies of moving target detection, tracking, and matching are studied, and the
strategy to coordinate multi-camera cooperation is proposed. The comprehensive experiments of
cooperative sea-surface moving-target visual tracking show that the method used in this study has
improved performance compared with contrapositive methods, and the proposed system can meet
the needs of multi-camera cooperative visual tracking of moving targets on the sea surface.

Keywords: multi-camera cooperation; sea-surface moving target; visual tracking system; visual detection

1. Introduction

In recent years, with the continuous progress of computer and image processing
technology, computer vision has been widely used in intelligent monitoring, visual navi-
gation, industrial vision systems, and other fields in which visual detection and tracking
are particularly valued by researchers [1]. Visual detection and tracking are to extract
and analyze the key information in the video stream through various image-processing
algorithms, and then react according to the analysis results, so as to achieve target segmen-
tation and tracking. Visual tracking systems have broad application prospects in the field
of artificial intelligence such as multi-robot cooperation, video surveillance, video-based
human–computer interaction, and unmanned driving.

This paper mainly studies the tracking and detection of moving targets on the sea
surface. Due to the maneuvering characteristics of sea-surface moving equipment and the
influence of the marine environment, compared with land-target tracking and detection, the
visual signal processing of sea moving targets has the following difficulties: (a) The relative
position and attitude of the tracked target changes abruptly, which will lead to blur or
dance of the video image, and the difference between two adjacent frames of the image
becomes too large, or even deviate from the target field of view; (b) The tracked target
appears and disappears between the waves, so the size and shape of the captured target
will change frequently, which increases the difficulty of dynamic image matching; (c) Each
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camera installed on a vehicle moves dynamically and rolls back and forth heavily, which
will affect the public viewing area of each camera in real time [2]. If there is no coordination
between the cameras, there will be a big error in target tracking.

To solve the above difficulties, this paper studies the related technologies based
on multi-dimension visual information, and a multi-camera cooperative visual tracking
system for sea-surface moving targets is designed. The system can be deployed on a
variety of mobile carriers, such as unmanned surface vehicles (USVs), and then realize the
autonomous tracking and monitoring of sea-surface targets by multi-USV [3].

1.1. Related Works

At present, cameras implemented in different surveillance systems generally work
independently of each other. In this tracking mode, the viewing angle is limited and the
dynamic adaptability is poor, so it is difficult to achieve expected accuracy and reliability.
In the scenario of target tracking using multiple cameras, if the image and pose information
of cameras could be shared with each other. In other words, if cooperation among cameras
is realized, the scope of video surveillance can be expanded and sustainable ability of target
tracking can be improved. Moreover, the target is monitored from different observation
directions of multiple cameras, which can effectively avoid the target being blocked or lost
from the observation scope of a single camera [4–6].

Compared with single cameras, target detection and tracking with multi-camera
cooperation has unique advantages in many aspects. Therefore, related technologies have
attracted more and more researchers’ interest [7]. Khan SM and Shah M studied a method
of multiple points of view, where all cameras obtain a sequence of images collected in a
collaborative framework, and at the same time multiple prospects of likelihood information
fuse together, using two-dimensional structure positioning to track a moving object in
the scene, to solve the problem of shade and improve robustness [8]. Yan WL proposed a
tracking algorithm based on an interactive multi-model particle filter for moving targets
in the sky environment on the basis of dual-camera co-tracking [9]. Ighrayene M et al.
proposed a Bayesian tracking matching and coordination strategy based on binary robust
invariant scalable Key point (BRISK) based on the existing features, search mechanism, and
generalization of target representation to solve obstacles such as occlusion and transience
that are often encountered in target tracking [10]. In this method, a Bayesian tracker is
used as the main tracker and a fast-matching method is adopted to retrieve the lost target.
Zheng Y et al. proposed using topology structure to allocate multiple cameras for moving-
target tracking [11]. Wang T et al. proposed a collaborative relay tracking algorithm
based on multiple cameras, which used a genetic algorithm to shorten the total moving
distance of cameras in the tracking process [12]. Zhang GF et al. studied a multi-camera
visual-positioning technology, which combined KNN-based background segmentation
algorithm and a KCF algorithm with a feature-matching algorithm to achieve continuous
and reliable target tracking. The technology can obtain real-time position of personnel in
a fixed scene [13]. To solve the problem of poor robustness caused by occlusion and fast
movement in multi-target tracking, Yao SS et al. proposed an opt-based attitude correlation
algorithm, where local attitude matching is used to solve the occlusion problem and optical
flow is used to reduce the influence caused by fast motion [14]. Multiple cameras can be
used to track multiple different targets at the same time and the target trajectory under
multiple cameras can be generated automatically. Neehar P et al. proposed a multi-camera
vehicle tracking and re-identification system [15]. The system introduces an unsupervised
excitation layer to enhance learning to solve the task of vehicle recognition, and uses
re-identification feature extraction to calculate the distance matrix and obtain the multi-
camera vehicle track after clustering. The method achieves the best results on the vehicle
identification dataset Vehicle-ID. In 2021, Srigrarom et al. proposed a real-time multi-
camera system. The system can realize target recognition by fusing the target trajectory and
relative position information of the target between each camera. It can simultaneously track
and locate multiple targets in three-dimensional space [16]. Although positive results are



Sensors 2022, 22, 693 3 of 23

reported, sea-surface targets are not the subjects in this research. Therefore, what motivates
us is to develop a novel visual tracking system for sea-surface targets with a multi-camera
cooperation approach.

1.2. Multi-Camera Cooperative Moving-Target Visual Tracking System

The moving- target visual tracking (MTVT) system with multi-camera cooperation
is proposed as shown in Figure 1. This system consists of multiple target-tracking units
and a human–machine interface (HMI). Each unit is composed of a pan–tilt camera and
a small-sized industrial computer with a wireless communication module. Every unit is
able to track an allocated target independently while exchanging image and coordination
information through a communication module. The HMI gathers and fuses information
from every unit, and coordinates all units to track the target cooperatively through the
specified strategy. In the whole system, only a single unit acts as the master tracking unit
(MTU), and other units in the system assist the MTU. When the MTU loses the target, the
MTU will be re-selected. Since the camera is the basic component of each unit, we also use
‘camera’ to refer to the target-tracking unit.
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Figure 1. Diagram of the MTVT system with multi-camera cooperation.

In order to overcome the problems of sea-surface application and improve the target-
tracking capability of each unit, technologies for target detection, matching, and tracking
are studied. Regarding target detection, an improved target-detection algorithm based
on the Three Frame Difference method (TFD) and Mixed Gaussian Background modeling
(MGBM) method is proposed to obtain a more complete moving-target contour and more
accurate position. As for target tracking, an improved target-tracking method based on a
multi-domain convolutional neural network (MDNet) is researched to improve stability
and robustness of target tracking. Meanwhile, in the motion-control process, each camera’s
pan-and-tilt attitude is controlled to lock and track the moving target synchronously. As
for target matching, an improved target-matching method based on a Speeded Up Robust
Features (SURF) algorithm and RANdom SAmpling Consensus (RANSAC) algorithm is
implemented to reduce the false-matching rate and improve the matching effect.

To coordinate all tracking units to work together, coordination strategies are researched,
including pan-and-tilt control, MTU selection, the unit behavior state model, and coopera-
tive tracking strategy.

This paper is organized as follows. The technologies of target detection, tracking, and
matching methods are studied in Section 2. The coordination strategy are introduced in
Section 3. Experimental results are shown and analyzed in Section 4. Finally, conclusions
and prospects are given in Section 5.
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2. Technologies of Moving-Target Visual Detection, Tracking, and Matching
2.1. Moving-Target-Detection Algorithm Based on Mixed Gaussian Background Modeling and
Three-Frame Difference Method

Target-detection technology is the basis of multi-camera cooperative target tracking,
and the accuracy of target detection directly affects the matching and tracking of the same
target between multiple cameras.

In this paper, the background difference method and background modeling method
are mainly referenced as moving-target-detection methods. In the background difference
method, the difference in image between the current frame and the corresponding back-
ground model is calculated, and foreground region in the image can be obtained. This
algorithm is mainly applicable to known background. TFD is a typical background dif-
ference method. In TFD, two differential images can be obtained using three successive
frames, and logical “and” operation is performed on the differential images to extract a
complete moving-target contour [17,18]. However, in this algorithm, hollow phenomena
easily appear when detecting moving targets, resulting in target-information loss. Back-
ground modeling converts the problem of moving-target detection in video into a binary
classification problem according to the current background estimation [19,20]. MGBM is a
multi-modal model of the background modeling method which is based on a weighted av-
erage of multiple Gaussian probability density functions to achieve smooth approximation
of the density distribution function under any state, so that it can adapt to changes of each
point in dynamic background and integrate interference into the background. However,
the moving-target image extracted in this method has few edge pixels and lacks contour
information of the target.

A camera in motion will cause new problems. According to whether the camera is in
motion, moving-target visual-detection problems can be divided into two categories: one is
target detection, where the camera is stationary and most of the scene in the camera field
is stationary; the other is target detection when the camera is in motion, which will cause
background change in its video frame [21–23]. In this study, we consider the applications
where the cameras are installed on movable vehicles and the background changes dynami-
cally. In this condition, the foreground segment and the detection results obtained by using
a single, traditional, moving-target-detection algorithm are not satisfactory.

In order to combine the advantages of MGBM and TFD, an improved moving-target
visual-detection algorithm is proposed and used to improve accuracy in the sea-surface
environment. The flowchart of the algorithm is shown in Figure 2.
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The algorithm mainly consists of three steps:

(1). The acquired image sequences are preprocessed frame by frame, including graying,
filtering, and global-motion compensation. The purpose of this step is to weaken noise,
enhance image details, and improve efficiency of effective information extraction.

(2). MGBM and TFD are used for target detection, respectively.
(3). The processed image is binarized, and the mass center of the moving target processed

by MGBM is used as the center, and then the logical “and” operation is carried out
with the foreground region extracted by TFD. Then, image shape is processed and the
final moving-target image is obtained.

In step (3), the process of obtaining the mass center of the moving foreground is as
follows: the appropriate threshold is obtained by the Otsu algorithm; the target contour is
retrieved; finally, the mass center is calculated through the gray centroid method, in which
the gray value of each pixel in the image is regarded as the “mass” of that point, and the
center of the region can be calculated as follows:

u =
∑(u,v)∈Ω u× f (u, v)

∑(u,v)∈Ω f (u, v)
(1)

v =
∑(u,v)∈Ω v× f (u, v)

∑(u,v)∈Ω f (u, v)
(2)

where u and v are pixel coordinate values and f (u, v) is the gray value of a pixel with the
given coordinates.

2.2. Moving-Target-Tracking Method Based on MDNet

The essence of moving-target tracking is to find out the position of a target in an image
according to characteristics of texture, color, brightness, and so on [24,25]. The target-tracking
performance with a single camera is the basis of a multi-camera cooperative tracking system.
In recent years, many scholars have tried to integrate neural networks into target-tracking
algorithm, hoping to improve long-term stability and the ability to adapt to environment
and target changes [26,27]. Among them, Deep Learning Trackers (DLT) integrate Deep
Learning into a tracking algorithm for single target [28]. After that, new methods have
emerged and used for target features extraction, online tracking, and so on [29,30].

A convolutional neural network (CNN) has great advantages in representing visual
data compared with traditional model-based and feature-based tracking algorithms, and
they have been widely used in various computer vision tasks, such as image classification,
semantic segmentation, and so on [31–34]. However, it is not easily applicable in visual
tracking, since it is difficult to obtain useful datasets including diverse combination of
targets and backgrounds with different appearance, and motion modes of different cat-
egories of targets in different video sequences. To make CNN adapt to inconsistency of
targets between video sequences, Nam H and Han B proposed a multi-domain network
(MDNet) architecture [35]. They regard each video as a separate domain, and the multi-
domain network learns commonness of a target from multiple annotated video sequences,
so that a target can be tracked in each video. Compared with some new algorithms, such
as the Siamese regional proposal subnetwork (SiameseRPN) [36], accurate tracking by
overlap maximization (ATOM) [37], and discriminant model prediction (DiMP) for track-
ing [38], MDNet is not the most outstanding in every aspect of tracking performance,
however, its tracking accuracy is satisfactory, and it also has good results in application of
target tracking.

The architecture of MDNet used in this paper is shown in the purple dashed box in
Figure 3. The MDNet has five shared layers, including three convolution layers and two
full-connection layers. In convolution layers Conv 1–3, features are extracted adaptively
with VGG-M network structure. Fully connected layers FC 4–6 are used to abstract feature-
map representation into a one-dimensional vector. Full-connection layer FC6 will contain
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multiple branches. If there are K training video sequences, FC6 at the end of the network
has K branches correspondingly. Every branch of FC6 is actually a binary classification layer.
The network parameters of shared layers in MDNet are updated during training using all
videos, while the parameters of full-connection layer FC6 iteratively update only during
training with its corresponding video sequence. Finally, MDNet outputs the confidence of
the target and background of the image.
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The MDNet should be pretrained before it is used for tracking. In this study, the
pretraining process included two stages: training of the first frame and training of the
subsequent frames, as shown in Figure 3.

For the first-frame image with a moving target, the boundary box of the target will be
initiated using the target-detection algorithm in Section 2.1 firstly. Secondly, based on the
initial bounding box, 1000 positive samples, whose intersection over union (IoU) are not
less than 0.6, are generated and input into MDNet, so the feature graph representation after
convolutional layers processing can be obtained. Thirdly, after dimensional transformation,
the obtained features are all used to train the bounding box regression model together with
the true boundary box of the target. Meanwhile, the positive and negative samples of the
first frame and features obtained by three convolutional layers are extracted and retained.
To fine-tune full-connection layers, the network is trained 30 times iteratively. In every
iteration, 32 positive samples and 1024 negative samples of convolution layer features are
selected randomly and used as inputs to the training network, and their scores and forward
propagation losses are calculated, respectively.

For the subsequent frame training, 256 candidate samples based on the target bounding
box of the previous frame are generated as an input of the network, and the score of each
candidate is calculated. Then, the average region of the top five samples is taken as the
target bounding box of the current frame. If the average score of the top five is bigger than
the threshold, it is determined that the network tracked the target, and then these steps
will be followed: (1) generate 50 positive samples with IoU no less than 0.7 according to the
currently predicted target box; (2) save the features of the convolution layers by processing
these positive samples; (3) update the positive and negative samples of the latest 20 frames.
Otherwise, the target box of the previous frame will be copied as the target-tracking result
of the current frame while expanding area and researching once, and then positive and
negative samples of the latest 20 frames will be used to train the network iteratively.

When MDNet is used for tracking targets online, a new network is constructed by
combining shared layers in pretrained networks with a new, online, updating binary
classification layer FC6. Online tracking will be performed by evaluating a candidate box
randomly sampled around the target image in the previous frame. Meanwhile, robustness
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and adaptability of network are updated according to long-term and short-term appearance
changes of the target, respectively.

During online tracking, N candidate boxes around the last frame, x1, . . . . . . , xN ,
are selected randomly and used to evaluate the target probability f+

(
xi) or background

probability f−
(

xi), select the one with the highest f+
(

xi) value as the best candidate of
target, and the corresponding x∗ is regarded as the target box of the current frame.

x∗ = arg max
xi

f+
(

xi
)

(3)

In addition, since a visual platform is composed of multiple units, when one unit
detects a moving target, the video frame with target information of the camera is pre-
trained, and the pre-training result is applied to the multi-domain convolutional neural
network of other units for subsequent tracking.

2.3. Moving-Target-Matching Method for a Multi-Camera System

As we know, even for the same target in the same scene, color and shape of the target
and position in the image field will be different for each camera from a different view
angle. Therefore, the premise of cooperative tracking is to match the same moving target in
field of view of multiple cameras. The purpose of target matching is to judge whether the
tracked target in each camera is the same target, so as to lock the common moving target
for multi-camera cooperative tracking.

Among many target-matching algorithms, the Speeded Up Robust Features (SURF)
algorithm optimizes feature point extraction and feature vector description based on a
Scale Invariant Feature Transform (SIFT) algorithm, which not only maintains the good
performance of the SIFT algorithm, but also improves the calculation efficiency [39–41].

However, due to highly dynamic changes in sea-surface targets and moving view angles
of multiple cameras, there will be many mismatching points in target matching using only a
SURF algorithm. As a data-screening method, the RANdom SAmpling Consensus (RANSAC)
algorithm has good performance when screening out mismatched points-pairs [42]. In
RANSAC, it is assumed that the input data include normal data and abnormal data. Normal
data can be described by a mathematical model with some parameters which can be obtained
by iteratively selecting a group of random subsets from the data. Abnormal data cannot be
described by a model, and their value is not within the range of correct data.

In order to match the true feature points of moving targets detected by different cameras,
an improved target-matching method combining SURF and RANSAC algorithms is proposed
in this paper, as shown in Figure 4. In this method, the RANSAC algorithm is applied to check
the feature points-pairs and descriptors obtained by the SURF algorithm, and the regions with
the largest number of matching pairs are regarded as of the moving target.
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Sensors 2022, 22, 693 8 of 23

3. Coordination Strategies

As mentioned in Figure 1, the coordinate controller is a key part of the cooperative
MTVT system, in which coordination strategy plays a decisive role. Coordination strategy
includes strategy of selection of the MTU, the behavior state alternation model of cameras,
and cooperative tracking strategy of considering complex perspective relationship.

3.1. Pan-and-Tilt Control

Pan-and-tilt (PT) control is necessary for moving-target visual tracking. In order to
control cameras tracking a moving target smoothly, both tracking speed and position are
taken into consideration. The rotation speed of a camera has eight levels from slowest
speed 1 to fastest speed 8. The view field or the picture of camera is divided to nine regions
by a central circle and range of angles, as shown in Figure 5. According to the coordinate
system, the circle has a center C(W/2, H/2) and radium R. If the center of the target image
is T(x,y), then the vector r can be obtained by:

r = (x − W/2)î + (y − H/2) ĵ (4)
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Therefore, the PT direction of the camera could be given as shown in Table 1. It can be
seen that start- and stop-rotation depend on the relationship between vector r and radius R
of the center area of the camera field of view. Furthermore, the problem of solving start and
end time of the PT is transferred to calculation of rotation-direction parameters. The PT
speed-control strategy of the target-tracking system studied in this section is as follows:

(1). Initialize partition of camera view field and set PT rotation speed to 1.
(2). Adaptively adjust control parameters of PT. If the target is not in the central partition

of the camera, rotate camera PT according to Table 1. Meanwhile, the position offset
of target in two adjacent frames is calculated. According to the obtained offset, the
rotation speed of PT is adjusted to keep the motion of the camera and target as
consistent as possible, and to keep the target always placed in the center of the field
of view.

(3). Correct PT rotation parameters dynamically according to the position offset of the
target in two adjacent frames. Calculate r frame by frame. If |r| > R, maintain rotation
of PT, and adjust rotation speed in real time according to the rotation result of the next
frame until the moving target can be tracked smoothly.
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Table 1. Pan-and-tilt direction of camera.

Target Area Range of Target Location Pan-and-Tilt Direction

1 |r| ≥ R,
→
r ∈ (9π/8, 11π/8] Upper left

2 |r| ≥ R,
→
r ∈ (11π/8, 13π/8] Upper

3 |r| ≥ R,
→
r ∈ (13π/8, 15π/8] Upper right

4 |r| ≥ R,
→
r ∈ (7π/8, 9π/8] Left

5 |r| < R Stop
6 |r| ≥ R,

→
r ∈ (15π/8, 2π)∪[0, π/8] Right

7 |r| ≥ R,
→
r ∈ (5π/8, 7π/8] Lower left

8 |r| ≥ R,
→
r ∈ (3π/8, 5π/8] Lower

9 |r| ≥ R,
→
r ∈ (π/8, 3π/8] Lower right

3.2. The MTU Selection

In our MTVT system, each tracking unit can track targets not only independently, but
also cooperatively through sharing information [43,44]. There is one MTU in the system,
and the other cameras act as slave tracking cameras (STCs). The target being tracked by the
MTU is regarded as the current common tracked target for each STC. The MTU is selected
through following policies:

(1). The tracking unit that captures the moving target first is selected as the MTU.
(2). If two or more cameras detect the moving target at the same time, the camera whose

current target image is more centered in the window, and target size in the picture is
larger than the threshold is chosen, as the MTU.

(3). If the detected targets are all near the center of image of multiple cameras, the camera
with a larger size of the target image is chosen as the MTU.

(4). When the center of gravity of the target is out of the view field of the MTU, or half
of the target image is outside the MTU view window, or the MTU loses the target,
selection of the MTU from the others cameras occurs according to (1)–(3).

3.3. Unit Behavior-State Model

In order to coordinate multiple cameras for moving-target tracking, a behavior state
model based on a finite state machine is designed. In this model, any tracking unit at any
time will be in one of following four states as shown in Figure 6:

(1). Waiting state. When a tracking unit loses communication with the host controller or
computer, the unit will be in this state. Once communication is set up, the unit will
change to detecting state.

(2). Detecting state. In this state, the target is out of the range of view of the unit, so
the target will be detected by using shared information from other units, meanwhile
adjusting the PT of the camera under control of the host. Once the target is detected
and matched, the unit will change to tracking state.

(3). Tracking status. In this state, the moving target will be tracked continuously by
adjusting the PT of the camera using the control strategy in Section 3.1. If the target is
out of lock temporarily, while the target is still in the field of view of camera, the unit
will change to the state of out of lock. If the target is out of viewing field, the unit will
switch to detecting state.

(4). Out-of-lock state. In this state, the target is out of lock, the camera will stop rotating
and begin to search for a moving target in the field of view. If the target is relocked,
the unit will revert to tracking state, otherwise switching to detecting state.

The state information of each unit will be shared with each other to guide all units to
track the moving target.
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3.4. Cooperative Tracking Strategy

In our MTVT system, each unit has an independent view field which is related to
position and viewing angle of the unit, so combinations of the view fields of all units
are complex, and the view relationship among cameras will have an impact on target-
tracking effects and target positioning. For our system, there are three typical pose relations
among cameras and targets as shown in Figure 7, and coordination strategies are proposed
as follows:

(1). Pose relation of tracking beginning. As shown in Figure 7a, the system begins to
detect the target, and the target is tracked by no more than one unit. The first unit
finding the target acts as the MTU. Other units in detecting state control and rotate PT
to detect and match the target from the view field of the MTU to save detecting time.

(2). Pose relation of partial cooperation. As shown in Figure 7b, there are at least two units
tracking the target, and they are in partial-cooperation pose relation, and the axes of
view of cameras have at least one intersection point near the target. By calculating and
sharing the position information of these intersection points, the units in detecting
state or in out-of-lock state will be guided to find the target more quickly.

(3). Pose relation of full cooperation. All units cooperate to track the target and their
view field is superimposed. In this pose relation, the position of the target could be
estimated by calculating the average value of the intersection points of view axes of
cameras, as green points and circles show in Figure 7c.
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By using the above strategy and analyzing the pose layout and the state of the cameras
in tracking process, the target can be tracked continuously even if some cameras fail to
track the target temporarily, and the unit losing the target will relock quickly.

The proposed coordination policy is essentially a rule-based policy. It is easy to
understand and implement with high operation stability, and it also can be improved
combining with new scheduling algorithms [45,46]. It should be pointed out that this
system can only coordinate and track a single target at present. When it is extended to
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multi-target tracking in the future, coordination and communication efficiency among
tracking units need to be improved, and individually inferred communication [47] will be
potential supporting technology.

4. Experiment Results
4.1. Target-Detection Experiments

To verify the effectiveness of our target-detection algorithm, a video from the East
China Sea is selected as a test sample. In the experiment, TFD, MGBM, and our improved
algorithm were used to detect a moving target, respectively. The processing results of
frame 100, frame 200, and frame 500 using different methods were compared as shown
in Figure 8.
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Figure 8. The target detection results: (a) Grayscale image of the original video image; (b) Result of
TFD; (c) Result of MGBM; (d) Result of the improved algorithm.

The results using TFD are listed in Figure 8b. We can see that the contour of the moving
target is extracted, and the contour of the dynamically changing background, namely, water
ripple and coast, is introduced, which will cause a part of the background to be mistakenly
included in the range of the moving target in subsequent extraction of the moving target.
As shown in Figure 8c, when using MGBM only, the main part of the moving target in
the image is detected. However, as the result of frame 500 shows, there is a hollow area
in the extracted target. As the target extracted by MGBM is incomplete, only a part of the
moving target can be extracted in subsequent processing of the moving-target contour.
The improved algorithm can effectively solve the above problems. Figure 8d shows that
the moving-target contour detected by our algorithm is more complete, and the position of
the target is more accurate. Furthermore, the improved algorithm can adapt to a dynamic
background, detect moving-target contour correctly, and extract moving-target effectively.

In addition, the average IoU, average recognition rate, and average false-detection rate
obtained by the three algorithms are statistically analyzed for the whole image sequence.
The statistical results are shown in Table 2.
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Table 2. Detection statistical data of the three algorithms.

Algorithms Average IoU (%) Average Recognition Rate (%) Average False-Detection Rate (%)

TFD 32.68 54.17 23.49
MGBM 47.19 62.35 15.29

Our algorithm 67.52 78.61 7.32

As can be seen from Table 2, performance of the improved algorithm has been greatly
improved in terms of average IoU, average recognition rate, and average false-detection
rate. The average IoU of the proposed algorithm reaches 67.52%, which is much higher
than that of MGBM and TFD. The average recognition rate of the proposed algorithm is
78.61%, while average false-detection rate is only 7.32%. Therefore, the improved moving-
target-detection algorithm can effectively complete target-detection tasks with a dynamic
background, and has better accuracy and robustness.

4.2. Target-Tracking Experiments

The dataset used in this paper includes an open-source dataset, Marine Obstacle
Detection Dataset (MODD), and the dataset collected by our team. Each frame of the
objects in the dataset is relabeled. There are 5070 pictures in the dataset. The proportion of
the training, validation, and test sets is 6:2:2.

To test performance, our visual target-tracking method based on MDNet is compared
with the appearance-model-based method in [31] and color-feature-based method in [33].
Figure 9 shows tracking results of frame 100, 300, 400, and 500 from MODD with pixels
480 × 640, in which the ship was driven to camera straightly and steadily. The red box
in the image is the estimated boundary of the target using different methods, and blue
rectangles represent the ground truth boundary box.
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As shown in Figure 9, as the moving target in the video gradually approaches the
camera, the target continues to grow in the picture. When using a tracking method based
on the appearance model, the estimated target boundary box cannot position the target
accurately, and will lose more and more features of the target. Similarly, results are not
satisfactory either when using a color-feature-based method. At frame 500, the range
of the estimated target frame is less than 1/3 of the actual size of the target. However,
in testing of the method based on MDNet, the estimated target boundary box does not
have a large deviation with longer tracking time, and the estimated target boundary
box can completely include the moving target and accurately locate the position of the
moving target.

Figure 10 shows the tracking results of frame 250, 450, 600, 650, 700, and 800 from a
video of a fast-moving ship with pixels 480 × 700. Figure 10c shows that the estimated
target boundary box does not drift significantly with tracking time using our method, and
the obtained target position is still consistent with the actual position of the target when the
ship turns at frames 650 and 700. Experimental results show that, when using our method
based on MDNet, tracking error is smaller, and stability and robustness are significantly
higher than that of compared methods, even for a fast-rotation target.
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Figure 10. Visual target-tracking results of a sea-surface moving target with horizonal rotation motion.
(a) Results of the appearance-model-based method. (b) Results of the color-feature-based method.
(c) Results of our method.

Location error and overlap (Intersection over Union, IoU) are used as analysis in-
dexes to evaluate the performance of each method. Overlap rate represents the IoU of the
estimated boundary box and ground truth boundary box, and location error represents Eu-
clidean distance between the center position of the two boxes. If the frame overlap is greater
and location error is smaller than corresponding thresholds, it is determined that prediction
is accurate. The success rate is the ratio of video frames in which target is accurately tracked
to all video frames. The results obtained from the test on the dataset are visualized as shown
in Figure 11. It can be seen that the MDNet-based target-tracking method in this study
has greater advantages in accuracy and success rate than the appearance-model-based and
color-feature-based methods.
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4.3. Target-Matching Experiments

To verify the proposed improved target-matching method, we use images of a USV
in the same scene obtained by different cameras from different view angles, as well as
images of three different USVs as input test samples. The SURF algorithm and our method
combining SURF and RANSAC are used to match the targets.

Figure 12 shows matching results for different targets. Figure 12a shows there are
11, 13, and 12 pairs of feature points for three groups of USVs, respectively, using only
the SURF algorithm. Since results are for different targets, all these are wrong-matched
pairs of points. When using our method, all the mismatched pairs of points in Group 1
and Group 3 are screened out, and mismatched pairs of points in Group 2 are decreased to
two, as shown in Figure 12b. The results show that our method can effectively decrease
mismatching of moving targets.

We also have tests for the same moving target captured by different cameras from
different view angles as shown in Figure 13. Figure 14 shows the corresponding data
statistics of six groups of results in Figure 13.
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From Figures 13 and 14, it can be seen that, when matching the same moving target
from different perspectives, if only SURF is used, the matching result contains a large
number of false matching pairs of points, and the ratio of false matching points exceeds
40%, even up to 74.4%. The ratio of mismatched pairs of points decreased greatly when the
mismatched points were screened with the RANSAC algorithm. It can be seen from the sta-
tistical line chart in Figure 13 that the trend of mismatching point-pairs rate remains below
20% on the whole. Experimental results show that the proposed target-matching algorithm
combining the SURF algorithm and RANSAC algorithm has a better matching accuracy
when it is used to deal with the same moving target under different viewing angles.

4.4. Field Experiments

In this paper, MTVT experiments were carried out in an area of Bohai Sea near
Jinzhou City, Liaoning Province, China. There is a harbor enclosed by breakwaters and
wave walls. The USV cruises into sea out of the harbor. We install tracking units on
the top of the wave walls in north of the harbor with equal distance of 100 m, and USV
with size of 6.5 × 2.0 × 1.5 m is taken as the target for tracking, as shown in Figure 15.
Our system in the experiments is composed of three tracking units. Each unit consists
of a Hikvision DS-2DC4223IW series PTZ camera, and an industrial control computer
RK3288 with Ubuntu operation system and WIFI as shown in Figure 15c, tested Wi-Fi
communication bandwidth is 90 Mbps, and average delay is 150 ms in our experiment
condition. The resolution of each camera is set to 1280 × 720, and the image-acquisition
frame rate is 25 fps. In the experiments, the USV cruises along the predefined path through
its control system at a speed of around 10 knots.
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In the first experiment, the initial optimal axes of the cameras are parallel with axis Y
before the system begins tracking, as shown in the right of Figure 15. When the tracking
system is started, each tracking unit detects the target USV from the environment automati-
cally. Since the target is in the camera’s view field of Unit 3, it found the target first. Unit 3
acts as the MTU and turned to tracking state, as shown in the first row of Figure 16. At the
same time, Unit 1 and Unit 2 rotate the PT to right and detect the moving target.
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After 2 s, Unit 3 still acts as the MTU and tracks the moving target normally. At this
time, Unit 1 and Unit 2 successfully complete detection and matching of the moving target
and enter tracking state. The acquired image is shown in the second row of Figure 16.
The three units dynamically adjust rotation direction of the camera PT according to the
position of the target, aiming to adjust the target to the center of the camera’s field of
view. By dynamically adjusting the angle, after 10 s, the three cameras all locate the target
near to the center of the field of view, and realize smooth tracking of the moving target.
The acquired images are shown in the third row of Figure 16.

During the experiment, angles of cameras’ optical axes are dynamically adjusted.
Figure 17 depicts the process of camera angle change (clockwise is positive, counterclock-
wise is negative, and positive direction of the Y axis in Figure 15 is 0◦).

As can be seen from Figure 17, after Unit 3 detects the moving target, it quickly adjusts
angle to lock the moving target. Starting from 3 s, camera angle fluctuation gradually
decreases, and the direction trend coincides with actual movement of the target, indicating
that Unit 3 has implemented smooth tracking of the target. Similarly, cameras’ view angles
of Unit 2 and Unit 1 are adjusted continuously and automatically, and changes of camera
angles are consistent with the movement trend of the target.

In the second experiment, we test coordination performance of our system in a situ-
ation of target loss by part of the units. Target loss by part of the units easily happens in
many scenarios. In this experiment, after the target sailed for 5 s, in the state shown in row
1 of Figure 18, we control Unit 3 to rotate about 50 degrees manually to make the target
disappear in its field of view, while Unit 1 and Unit 2 track the moving target normally. At
this time, Unit 3 turns into “out of lock” state, and images acquired by each camera are
shown in row 2 of Figure 18. Unit 3 stops rotating for about 1 s, searches for moving targets
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in the field of view, and then turns to detection state, and patrols and looks for moving
targets according to shared target information. After less than 3 s, as shown in row 3 of
Figure 18, Unit 3 successfully retrieved tracking the target.
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Table 3 shows, from 5 to 9 s, the number of frames that the target was tracked by three
units during the process of retrieving the target. Unit 2 tracked the target in all frames
of the 4 s. There are six frames where Unit 1 failed to lock target, but the unit retrieved
target by itself in several frames. For Unit 3, because view angle was changed manually, in
the process of PT rotation, there are 19 frames of image in which target the appeared, and
target was detected, matched, and tracked in about 0.3 s. From Table 3, it can be seen that
our MTVT system with multi-camera cooperation can keep tracking and help unit loss of
targets to retrieve the target quickly.
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Table 3. The number of frames of the target in each unit.

Unit 1 Unit 2 Unit 3

The number of frames correctly tracked 94 100 11
The number of frames in which the target appears 100 100 19

In the third field experiment, we test the system when units have random initial view
angles (as shown in Figure 19) and target moving speed changed. At the beginning of
experiment, because each camera fails to detect a moving target, it rotates horizontally to
search for the target. Unit 2 locks the target first in 2 s and then enters tracking state, acting
as the MTU. Then, according to feedback results of Unit 2 and coordination strategies of
the MTVT system, Units 1 and 3 rotate PT towards the direction of the target rapidly, and
lock the target for tracking in 3 s, as shown in Figure 20. The view-angle adjusting process
of the three units is shown in Figure 21a, and the speed of the target in the experiment is
shown in Figure 21b. It can be seen that, when Unit 2 detected a moving target, the system
could quickly respond and regulate other units to turn to the target to be tracked, and the
system could still have good tracking results for a target whose moving speed changed.
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To sum up, the MTVT system with multi-camera cooperation proposed in this paper
can coordinate all tracking units to jointly perform tracking tasks when some units detect
a moving target, and has high stability and continuity in the tracking process. When any
unit loses a target, it can quickly retrieve the moving target according to tracking status of
other units and shared target information. Compared with a tracking system with a single
camera, it further expands monitoring range and effectively improves reliability, accuracy,
and stability of visual tracking.

5. Conclusions and Prospects

Due to highly dynamic conditions, it is a challenge to track sea-surface visual targets.
In this paper, a visual detection and tracking system for sea-surface moving targets based
on multi-camera cooperation was proposed and designed, and key technologies including
moving-target visual detection, tracking, matching among multiple cameras, and coordina-
tion strategies are studied, respectively. Experiments show that the study of multi-camera
cooperative visual tracking for sea-surface targets in this paper not only expands moni-
toring range, but also realizes continuous tracking of targets among cameras, effectively
improves the reliability and continuity of visual tracking, and achieves expected results.

Although comprehensive research about the sea-surface target tracking system was
reported in this paper, there are still some aspects that need further study: (1) In the
experiments, we test the system with three units and obtain expected results, however
there is room for improvement in information interaction and communication efficiency,
especially when the number of tracking units increases a lot in the system. (2) Due to the
limitation of our test condition, we did not test the system when the tracking units were
installed on mobile platforms such as USVs, so the performances of the system in a bumped
and tossed environment should be further studied. Furthermore, it will also be important
research work to use technology of transfer learning [48,49] to improve generalization
ability of the system for applications in various environments. (3) The technologies of multi-
camera cooperative tracking in this paper are researched for single-target tracking, but for
multiple-target tracking problems in a complex scene, novel approaches are required.

It is believed that, in the near future, USVs will gradually become the backbone of
maritime operations. They can carry a variety of equipment and perform a variety of
military and civilian missions in sea for long time, such as maritime search-and-rescue and
navigation, reconnaissance and patrol, counter-terrorism, and so on. The multi-camera
cooperative tracking system proposed in this paper has good portability, and is expected to
be deployed on mobile platforms such as USVs, so as to realize the multi-USV cooperative
all-round sustainable tracking of moving targets on the sea surface.
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