ﬂ Sensors

Article

Dynamic Asynchronous Anti Poisoning Federated Deep
Learning with Blockchain-Based Reputation-Aware Solutions

Zunming Chen !, Hongyan Cui 2*, Ensen Wu 2 and Xi Yu 2

check for
updates

Citation: Chen, Z.; Cui, H.; Wu, E.;
Yu, X. Dynamic Asynchronous Anti
Poisoning Federated Deep Learning
with Blockchain-Based
Reputation-Aware Solutions. Sensors
2022, 22, 684. https://doi.org/
10.3390/522020684

Academic Editor: Roberto Teti

Received: 7 December 2021
Accepted: 11 January 2022
Published: 17 January 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

State Key Laboratory of Networking and Switching Technology,

Beijing University of Posts and Telecommunications, Beijing 100876, China; czm@bupt.edu.cn

School of Information and Communication Engineering, Beijing University of Posts and Telecommunications,
Beijing 100876, China; wuensen@bupt.edu.cn (E.W.); YUSY@bupt.edu.cn (X.Y.)

* Correspondence: cuihy@bupt.edu.cn

Abstract: As promising privacy-preserving machine learning technology, federated learning enables
multiple clients to train the joint global model via sharing model parameters. However, inefficiency
and vulnerability to poisoning attacks significantly reduce federated learning performance. To solve
the aforementioned issues, we propose a dynamic asynchronous anti poisoning federated deep learn-
ing framework to pursue both efficiency and security. This paper proposes a lightweight dynamic
asynchronous algorithm considering the averaging frequency control and parameter selection for
federated learning to speed up model averaging and improve efficiency, which enables federated
learning to adaptively remove the stragglers with low computing power, bad channel conditions,
or anomalous parameters. In addition, a novel local reliability mutual evaluation mechanism is
presented to enhance the security of poisoning attacks, which enables federated learning to detect the
anomalous parameter of poisoning attacks and adjust the weight proportion of in model aggregation
based on evaluation score. The experiment results on three datasets illustrate that our design can
reduce the training time by 30% and is robust to the representative poisoning attacks significantly,
confirming the applicability of our scheme.

Keywords: federated machine learning; security; privacy-preserving; asynchronous; poisoning attack

1. Introduction

Around the world, there are about 10 billion Internet of Things (IoT) devices with
increasingly advanced computing, communication, and sensors capabilities currently [1].
Coupled with the rapid development of deep learning, it opens up endless possibilities for
many applications, such as in vehicular networks and for industrial purposes. Traditional
cloud-centric machine learning methods require the personal information to be stored
in the data center or cloud-based server to perform model training, which results in
communication inefficiency and unacceptable latency. Therefore, Mobile Edge Computing
is proposed to bring intelligence close to edge networks. However, machine learning at the
edge still needs to share personal information with external parties such as edge servers.
Recently, Federated Learning (FL), a promising privacy-preserving technology, is proposed
to address the challenges of growing privacy concerns and stricter privacy legislation.
FL enables multiple clients to train the joint global model via sharing model parameters
instead of raw data. However, there are two limitations to reducing federated learning
performance, including inefficiency and vulnerability to poisoning attacks.

The first limitation is inefficiency. The existing federated learning parameter aggre-
gation approach includes synchronous algorithms and asynchronous algorithms. Syn-
chronous federated learning is inefficient because of the delay in waiting for all clients
to complete training before updating the global model. This paper proposes a dynamic
asynchronous algorithm considering the averaging frequency control and parameter selec-
tion for federated learning to speed up model averaging. The proposed algorithm enables

Sensors 2022, 22, 684. https:/ /doi.org/10.3390/522020684

https:/ /www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22020684
https://doi.org/10.3390/s22020684
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22020684
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22020684?type=check_update&version=1

Sensors 2022, 22, 684 20f17

federated learning to adaptively remove the stragglers with low computing power, bad
channel conditions.

e Another limitation is vulnerability to poisoning attacks. A poisoning attack means that
malicious clients can generate anomalous parameters to mislead the model decision.
Particularly, recent research works have illustrated that poisoned parameters can
mislead the federated learning model on the attacker-chosen poison subtask while
working well on the main task [2]. The limitations including inefficiency and vulnera-
bility to poisoning attacks of federated learning significantly reduce federated learning
performance, which motivates us to solve these problems. This paper proposes a novel
local reliability mutual evaluation mechanism to enhance the security of poisoning
attacks, where each parameter is evaluated over the local data of other parties. Ac-
cording to the evaluation scores, the server can adjust the weight proportion of model
aggregation. The local reliability mutual evaluation mechanism uses the local reliabil-
ity to detect poisoned parameters instead of statistical difference analysis enabling the
approach to work well in the case of small data samples. The main contributions of
this paper are as the following: We propose a dynamic asynchronous anti poisoning
federated deep learning framework to pursue both the efficiency and security of de-
fending against poisoning attacks. In particular, the dynamic asynchronous algorithm
considering the averaging frequency control and parameter selection for federated
learning is proposed to speed up model averaging. The proposed algorithm enables
federated learning to adaptively remove the stragglers with low computing power,
bad channel conditions.

e A novel local reliability mutual evaluation mechanism is presented to enhance the
security of poisoning attacks. The proposed mechanism enables federated learning to
detect the anomalous parameter of poisoning attacks and adjust the weight proportion
of model aggregation based on the evaluation result.

e The experiment results on three datasets illustrate that our design can reduce the
training time by 30% and is robust to representative poisoning attacks significantly
compared with other state-of-art methods, confirming the applicability of our scheme.

The remainder of this paper is organized as the following. In Section 3, we provide the
necessary background about federated deep learning and blockchain. Section 4 presents
the details of RAPFDL, a framework for dynamic asynchronous anti poisoning federated
deep learning, and analyzes its security. In Section 5, we illustrate the implementation
details of RPPFDL, followed by performance evaluation in Section 6. Finally, Section 7
concludes the paper with some future research directions.

2. Related Work
2.1. Efficient Federated Learning

The existing federated learning parameter aggregation approach includes synchronous
algorithms and asynchronous algorithms. Synchronous federated learning is inefficient
because of the delay in waiting for all clients to complete training before updating the
global model. For example, Mahan et al. proposed FedAvg [3] to perform local model
training in clients, wait for all clients to complete training, and parameter uploading to
aggregate the global model. To solve the problem, asynchronous algorithms have been
proposed. Meng et al. proposed FedAsync [4] where the model parameter from clients will
be immediately aggregated by a central server, and periodically the latest global model is
sent to clients. Compared to synchronous algorithms, asynchronous algorithms is more
efficient. However, there is a version gap problem of the asynchronous algorithm. Owing
to federated learning clients are heterogeneous with various resource constraints. Some
straggler clients with low computing power or bad channel condition still train the old
version global model while the global model has been updated with model parameters
from other fast clients. To solve the version gap problem, Rangwala et al. proposed the
penalizing strategy [5] to improve the local learning rate of slow nodes and reduce the
training learning rate of fast nodes. Jaehyun et al. proposed the strategy of allocating

Sensors 2022, 22, 684

30f17

transmit power [6] to allocate more power to bad channel condition nodes carrying huge
data and reduce the transmit power of good channel condition nodes carrying small data.
Sanmi et al. proposed the weight of version gap [7], when the version gap between the
local model of client and federated global model is small, the weight of version gap should
be increased, and when the version gap is large, the weight of version gap should be
reduced. The above works alleviate the problem of the version gap but fail to solve the
problem of data volume skewing and model bias convergence. Slow nodes may have
higher uploading delay due to large data volume, but their contribution is relatively higher.
Frequent uploading parameters of fast nodes lead to the deviation of federated models
from the convergence direction of models on other slow nodes.

2.2. Defenses against Poisoning Attack on Federated Learning

To solve the poisoning attacks problem, there are three approaches including cluster
detection, distance detection, and similarity detection. Tople et al. has proposed Auror [8]
which detects the anomalous parameter via clustering algorithm to measure the difference
in the distribution of benign and anomalous parameter if malicious clients upload poisoned
parameters continually. Blanchard et al. has proposed Krum [9] where parameters far
from an average distance are removed to improve the robustness to poisoning attacks.
However, these two methods cannot defend against the single-round attack and are not
suitable for different data distribution scenarios. Recently, Yoon et al. has proposed
FoolsGold [10] where anomalous parameters from malicious clients are identified via
calculating similarities between various parameters from clients to defend against the
poisoning attacks. Yet, it is hard to defend the attack from a single malicious client.

3. Background

The dynamic asynchronous anti poisoning federated deep learning is based on two
key technology including federated deep learning and blockchain. This section provides
necessary background knowledge about them.

3.1. Federated Deep Learning

A traditional deep learning model usually includes the input layer, one or more hidden
layers, and the output layer. Each hidden layer has a certain number of neurons, which
have multiple inputs and a single output [11,12]. Neurons between two adjacent layers
are connected by weight parameters w. Each neuron i also has a bias b_i. The model
parameters (denoted as (w, b)) require to be learned during model training. The goal of
the deep learning algorithm is to find the optimal model parameters which reflect the
relationship between the inputs and outputs so as to obtain the model which takes a sample
X in the forms of a matrix or vector consisting of a real number as input and outputs
the predicted result i’ close to its real labels. In order to find optimal parameters, the
training algorithms try to minimize the loss function L(D, w) = ‘%‘ZDI'G p L(D,w), Where
D represents the training set, and w is the model parameters.

Stochastic Gradient Descent is a famous approach to minimize the loss function, which
iteratively finds the optimal parameters, i.e.,

Wt = wl — yVL(D/, w) 1)

where w/ represents the model parameters after the j-th iteration. VL(D/,w/) denotes the
partial derivative of the parameter w/ on the set D/. 7 corresponds to the learning rate
which controls the step of gradient descending. Because loss function is used for estimating
the gap between model output and the target value, Equation (1) is able to be divided into
two phases including forward propagation which calculates the predicted result of input
X, and backward propagation which aims to calculate the parameter update.

In federated learning, assuming that each user n € N has a local data set D". To
run the stochastic gradient descent algorithm, each user n computes the local gradi-

Sensors 2022, 22, 684

40f17

ents via x, :’D{;’VL(D{;,M) at j-th iteration [13,14]. Thus, the loss gradient can be

rewritten as below,
. 1 .
VL(D/,w!) = o Y.«)

Then, each user can update its local model with w/*! returned by the cloud server. The
training process repeats until the model output reaches the predetermined pre-specified
precision thresholds.

3.2. Blockchain Technology

Blockchain is the first technology that has drawn a great deal of attention in both
the academic community and industry [15,16], which is a promising technology as a de-
centralized, reliable, time-order ledger. The key fundamental concepts characterizing
blockchain include distributed ledger, consensus algorithms, smart contracts, and cryptog-
raphy. Blockchain is a distributed ledger composed of devices or nodes. Each node has a
copy of the ledger, and each copy is updated individually. Nodes vote on every update
on blockchain to agree on the same conclusion, and the modifications are recorded by the
nodes. In a blockchain, an entity called a worker generates blocks and links them one by
one to build an immutable ledger. Each block includes multiple transactions created by
participants, which can record the data for a specific application. Sophisticated consensus
mechanisms such as the proof of work (PoW) and the practical byzantine fault tolerance
(PBFT) are needed to ensure the trans-actions consistency in the new block. Blockchain is
not controlled by one entity and does not have a point where something can fail, making
this technology safe and robust. The blockchain can be divided into two types, namely
permissioned blockchain and permissionless blockchain. In the permissionless blockchain
like Ethereum, parties can join and leave easily. In the permissioned blockchain such as
Hyperledger Fabric, the set of parties are predefined and parties require permissions to join
or leave. In addition, pro-developing Blockchain technologies introducing smart contract
support Turing-complete programmabilities, such as Ethereum and Hyperledger. We adopt
the Hyperledger blockchain platform as our experimental testbed.

Smart contracts of the blockchain, are the executable programs that enable running
programs on the blockchain platform. It can get credible results by leveraging the security
guarantee of blockchain. Currently, there are numerous pro-developing blockchain plat-
forms supporting smart contracts (e.g., Hyperledger Fabric, Ethereum). Smart contracts
deployed on the blockchain will be executed automatically once invoked by participants,
enabling participants to reach a consensus (e.g., incentives mechanism, selection of optimal
parameters updates) without depending on the centralized servers vulnerable to power-
ful adversaries. In a nutshell, blockchain can offer the following properties to RAPFDL,
including trusted records and reliability evaluation.

Distributed ledger technologies are the digital approach for registering transactions
and other similar data in multiple nodes with different locations simultaneously. There is
no central administration component in distributed ledgers, thus it will not suffer from
single-point failure, making this technology safe and robust. Several distributed ledger
technologies are available, including Blockchain and Tangle technologies. Blockchain is a
promising technology as a decentralized, reliable, time-order ledger. Tangle technologies
are essentially a directed acyclic graph that can hold transactions. By running nodes in
Tangle, decentralization is developed. Blockchain can be categorized into three types for
use cases, namely public blockchain, consortium blockchain, and private blockchain. The
comparison of three types of blockchain is listed in Table 1. A public blockchain is open
to the world. The consortium blockchain is restricted, where parties require permission
to join or leave. And it could be applied to many business applications. There are several
consortium blockchains available such as Hyperledger, Ethereum, and Corda. As for
private blockchain, it suits the centralized cases pursuing efficiency and auditability.

Sensors 2022, 22, 684 50f17
Table 1. Comparison of three types of blockchain.
Property Public Blockchain Consortium Blockchain Private Blockchain
Read Permission Public Restricted Restricted
Immutability Nearly impossible Could be tampered Could be tampered
Efficiency Low High High
Centralized No Partial Yes

4. The RAPFDL Framework

This section presents the dynamic asynchronous and anti poisoning federated learning
(RAPFDL) framework in technical details as follows: reliability evaluation, blockchain
decentralized architecture, local model training, federated model aggregation.

Before introducing RAPFDL, we define the related components and concepts
in RAPFDL.

e Reliability evaluation: One of our key insights is delegating anomaly detection tasks to
clients which is able to detect anomalous parameters via evaluating the local reliability
of model parameter updates with its private dataset. Put simply, the central server
sends model parameters updates to the selected clients which evaluate the accuracy
performance of the parameter updates with local data according to the predefined
rule. The server can adjust the weight proportion of model aggregation based on the
matrix of received evaluation scores.

e Blockchain decentralized architecture: Most existing FL frameworks rely on a central
server to aggregate model parameter updates of parties involved in FL. Compared
with centralized architectures, RAPFDL inherits the blockchain architecture, which
enables every party to remain modular when interacting with other parties. Rather
than ceding control to central servers, every party maintains full control of private data.
In addition, blockchain enables federated learning with the native ability to coordinate
the entry and exit of parties automatically, further guaranteeing the auditability of the
training process of the FL. Robustness can also benefit from the blockchain because of
no single point of failure.

e Local model training: Every party performs local model training independently. After
completing the training process, the party generates a contract to trade its local model
parameter updates by attaching its local model parameters to the contract.

e Federated model aggregation: Parties of a cooperative group train a deep learning
model collaboratively. The model is trained in an iterative manner after deciding on
the same deep learning model and parameter initialization. All parties trade their
parameter updates, and workers download the contracts to process the parameter
updates in each iteration. The processed parameter updates are then sent out via
smart contract namely the processing contract of blockchain. The correctly processed
parameter updates are used to update the federated global model by the leader selected
from workers. Each party downloads the federated model to update its local model
accordingly. After that, the next iteration of federated learning begins.

RAPFDL combines federated learning and blockchain techniques to achieve dynamic
asynchronous anti poisoning federated learning. Figure 1 presents an overview of the
RAPFDL scheme. Assuming that parties might be unwilling to share raw data when
joint training the global model without the privacy preservation promise. In RAPFDL,
parties utilize differentially private GAN (DPGAN) to release artificial private data samples
confidentially for reliability evaluations rather than share the model parameters or original
data. Then, the shared parameter updates are encrypted by the enhanced additively homo-
morphic encryption algorithm to prevent privacy disclosure during the federated learning
training process. Considering that one of our focuses is on distributing different versions
of the federated model variants to parties according to their contributions. Especially,

Sensors 2022, 22, 684

60of 17

fairness is quantified via the correlation coefficient between the final model accuracy and
contributions by different parties. We propose the local reliability evaluation mechanism to
enhance robustness against poison attacks and enforce fairness for RAPFDL, where each
party’s trade model parameter updates with its points. The local reliability and points are
initialized in the initial phase and updated via joint model training and local reliability
mutual evaluation mechanism.

Blockchain Federated Learning
e e <2 o e
I Block Data Smart 1! Gradients P lizati Secure :
! Contract 1! Updat ShalEaRen Aggregation
1 Prev Hash onirac || pdates ggreg !
1
1 i. Homomorphic 1 ! ; ; . : n ;
Merkle | . Wi i i Lyri| p2yyi n !
- et [eton ke W W] W W W R — .
1 Consensus ii. Local Credibility | 1
! agreement I ! -7 vV_.v /' ’ 1
1BlockChain BlockChain BlockChain L-29reement | _1 ¥ P . / » W' =W+ Fhwe i
| Node Node Node o ” 4 / . t ' toR i
| -2 JJ’ s ‘_/ \ neP\i
————————————————————————— i mm e ey e ==
g . / ‘\
-7 - 7’ ’ ! l/ \\
-7 /,’ // \
/
< ! Reliability
’ e
7 ’ Cross-validation .
. z Evaluation
Data Data ~1 cn
[Owner i l [Owner n] ! L_ll -
! C3 cy
: : 2 2
) % c} cr
Local A .
e ; for} ch
Training i
SGD e

®
®

Local
Dataset

The parties train the model locally and upload it to the server

The smart contract collects thel local credibility and computes
penalizing coefficients for all parties

| ——— e — I ———
Local Local Local
Dataset Dataset Dataset

@ The parties evaluate the local dataset and generate local credibility

@ The smart contract aggregates the global model
Figure 1. The system overview.

The fundamental idea is each party is able to earn points by contributing its local
model parameter updates to another party. The earned points can be used to trade with
other parties. Therefore, each party is motivated to send more private data samples or
parameter updates to gain more reward points in the range of the sharing level, and
download more parameter updates from the others parties using these points. All the
trades are recorded in the blockchain as immutable information, providing auditability
and transparency. Particularly, RAPFDL ensures collaborative fairness during upload and
download processes as the following:

e Upload Process: Once receives download request for local parameter updates, the
party can determine the number of local parameter updates to send back according to
the download request and its own sharing level.

e Download Process: Since the contribution of each party is different for various parties,

the party reliability may be various from the view of different parties. Thus, every
party maintains a local reliability list for other parties to record their reliability. The
higher the reliability of the party k in the private reliability list of a party, the more
likely it is the party will download model parameter updates from it, and thus, more
points will be awarded to the party k.

5. Implementation of RAPFDL
5.1. System Initialization
This section introduces the details of the implementation of the RAPFDL to enhance

the efficiency and security of poisoning attacks. The two-stage implementation includes
initialization of local reliability values, reward points, and sharing levels, an update of the

Sensors 2022, 22, 684

7 of 17

local reliability lists and reward points in federated model training, and the quantification
of fairness.

5.1.1. Initial Evaluation Algorithm

The goal of the initial evaluation algorithm is to access the local data quality of the
party through evaluation on artificial private data samples instead of the raw data before
federated learning training. Full algorithm flow is as the following: each party trains
the DPGAN using local data to generate private data samples, where no true sensitive
examples, as well as the distribution of data, will be disclosed, but only some implicit
density estimation used in DPGAN. Each party releases its individual generated artificial
private data samples according to the local sharing level. The other parties generate the
prediction for the artificial private data samples via its local model and return predicted
results to parties that released these artificial data samples. There are two prime objectives
for sharing artificial DPGAN samples, which are as follows:

e To gain prior information about the performance of models before federated learning.
If the training data of the party is not enough to generate an excellent model, the
party will perform poorly in the evaluation algorithm. Thus, other parties shall be
more cautious when sharing parameters updates with it, taking into account the
evaluation results.

e To gain the preliminary estimate of the data distribution. Only when the data distribu-
tion is different but there is some overlap, can two parties mutually benefit. Assume
that two parties P; and P, have released artificial samples with high similarity, which
means its local data distributions are nearly the same. Under the circumstances, pa-
rameter updates from P, are less likely to improve the model accuracy performance
of P;. Thus, P; and P; shall avoid sharing parameter updates from each other during
the subsequent model training. And other parties should not download the model
parameter updates from both P; and P,, but from either. Contrarily, assume that two
parties have published completely different data distribution artificial samples. Hence,
the parameter updates from P, have a negligible enhancement effect on the accuracy
of the model of P;. Furthermore, suppose that the data distribution of party P; differs
from that of all the other parties. Therefore, it is reasonable for other parties to assign
low reliability to P; and avoid downloading parameter updates from P; based on pre-
vious assumptions. Algorithm 1 presents the detailed procedures of initial evaluation,
including local reliability evaluation, sharing level, and reward points initialization
and differentially private data samples generation.

Algorithm 1 Anomalous Model Parameter Detection

01. Server Executes:

02. the global model parameter initialization: w
03. for iteration round f = 1 to I do

04. Ct < Randomly choose N clients

05. for client n in C; do

06. Ly, | < ClientUpdate(n, wt)

07. end for

08. Client Detection

09. for each client performing the detection task do
10. 7t Return the evaluation results matrix
11. end for

12. fori =1tosdo

13. Calculate the penalty coefficient ftl 1

14. end for

15. W1 < {5 fi®i

16. end for

Sensors 2022, 22, 684

8of 17

5.1.2. Local Reliability Initialization

As to local reliability evaluation, the majority votes of all combined labels are used
to compare with predicted labels of one specific party to evaluate the reliability of that
party, which takes into account the fact that the predicted labels of the specific party just
reflect its outcome, while the majority votes of the combined labels reflect the outcome of
majority parties. For instance, party P; releases the DPGAN artificial data samples to the
other parties. The other parties label the artificial data samples utilizing its local model,
and return predicted labels to party P; for updating the local reliability list. In addition,
the party P; labels the data samples via the local model and combines all labels as the
cross-validation matrix, in which every column corresponds to the predicted labels of a

party. The local reliability of the party j can be initialized as fl] = Z—;, in which s; corresponds

to the number of DPGAN artificial private data samples from party i, and u; denotes the
number of matches between majority voting labels and predicted labels of party j. In

addition, f/ will be normalized in the range of 0 to 1. Once the local reliability of one party
is validated to be lower than the threshold f;; by the majority of the parties, the party will
be banned from all reliability lists owing to potentially low contribution. In RAPFDL, fy,
is utilized to detect the anomalous party. The low-contribution parties may bypass the
detection and access federated learning if the fy, is too small. Conversely, most parties may
be banned from federated learning. In RAPFDL, a party is likely to download less, even
ignoring model parameter updates released by less credible parties, while downloading
more those from credible participants.

5.1.3. Sharing Level and Reward Points Initialization

Sharing level corresponds to the upper bound of the artificial private data samples the
party can share (i.e., the higher the sharing level is, the more data samples one party can
share). According to the number of private data samples s; that party i broadcasts before
model training, the sharing level can be initialized as §; = %i,-r in which L; is the size of the
local dataset. Thus, reward points of party i can be denoted as:

ri = i * |wi| x (N —1) 3)

in which ¢; is the sharing level, N is the number of parties, and |w;| is the number of model
parameter updates. The reward points obtained from the initial evaluation can pay for
downloading model parameters during the subsequent federated learning training process.
The number of model parameters that allow download depends on both the sharing level
and local reliability of the requested party.

5.2. Differentially Private Data Samples Generation

Although every party just publishes a few unlabeled data samples, it might disclose
local data privacy during the initial evaluation phase. To solve the problem, this paper pro-
poses a novel algorithm for generating data samples with a generative adversarial network
under differential privacy. Under RAPFDL, the Differentially Private GAN (DPGAN) is
trained via adding custom noise to model parameter updates during GAN learning.

Due to the discriminator of GAN is the only component that can access local private
data. Thus, it is reasonable to only train the discriminator of GAN with differential
privacy, which guarantees the entire GAN since the generator computations are simply
post-processing of the discriminator. Its core consideration follows the post-processing
feature of differential privacy technology.

To solve the scalability and stability problem of DPGAN training, multi-fold opti-
mization strategies are adopted, including clustering, warm starting, and weight adaptive
clipping, which can significantly improve training utility and stability [17,18]. A differ-
ential privacy generator is able to generate an infinite number of private data samples
and rigorously guarantee differential privacy of them for the intended analysis. We illus-
trate DPGAN in an enhanced WGAN framework [19] without loss of generality and let

Sensors 2022, 22, 684

90f17

every party generate 2000 artificial private data samples. As presented in the research
work [20,21], DPGAN is capable of synthesizing RGB and grey images close to artificial
private data samples which are generated via the classic GAN without privacy protection.

In addition, the greater amount of data would cause less privacy loss, enabling more
iterations in the range of a moderate privacy budget [22,23]. Data augmentation technology
is utilized to expand the data size of parties to 100 times and enables DPGAN to generate
more artificial data samples in the range of a moderate privacy budget. Particularly, we
augment original data with a height and width shift range of 0.01, and a rotation range
of 1. In this paper, we apply moments accountant presented in the research work [24] to
solve the privacy spent during model training. It should be noted that every party is able to
train the DPGAN and generate artificial private data samples offline individually without
affecting federated learning.

5.3. Anti Poisoning Privacy-Preserving Federated Learning

The details of the anti poisoning privacy-preserving federated learning are shown
in Algorithm 2, including how to preserve privacy during model parameter updates via
homomorphic encryption followed by local reliability update, how to update the reward
points based on per upload/download, and reliable parties set maintenance via blockchains.
Particularly, the download budget for model parameter updates of party i, namely b;, is
relevant to reward points r; of party 7 at every round. To be specific, b; should not exceed ;,
because reward points are not enough for downloading model parameter updates from
other parties. Furthermore, b; is able to be assigned according to the existing reward
points r; dynamically. For the sake of simplicity, we initialize b; as r; at every round.
However, the number of model parameter updates allowed to download depends on
sharing levels of requested parties and the local reliability of the requester. Next, we will
focus on key technical details about homomorphic encryption, model parameter updates,
and local reliability updates.

5.3.1. Federated Learning Model Training with Homomorphic Encryption

Sharing model parameter updates of federated learning prevent direct exposure of
raw data. However, it might disclose sensitive information indirectly. In order to prevent
the exposure of privacy during federated learning, we adopt homomorphic encryption
in which parties involved in federated learning can only decrypt the weighted sum of
parameters rather than single encrypted model parameter updates. To be specific, the
Vernam cipher is mathematically proven to be completely secure given sufficient ciphertext
and time. Thus, we implement additive homomorphic encryption via provably secure
Vernam cipher to achieve secure aggregation of the encrypted data [25,26]. The basic idea
for Vernam cipher to form ciphertexts is to combine plaintext with keystream. The security
depends on the essential properties: (1) all the operation are modulo of the large integer M;
(2) the keystream vary from message to message.

If p = max(x;), M is denoted as M = 2d x In(p * n). Unless otherwise stated, all
subsequent computations are modulo M. The floating-point numbers should be mapped to
the field of integer through the SRU algorithm [27]. The pseudo-random function (PRF)
can generate pseudorandom keystream via the secure stream cipher, which is similar to
Trivium [28,29], keyed with keystream k; of each party and the unique message ID. The
secret keys need to be pre-computed via a trusted setting, which can be implemented via
the standard SMC protocol or trusted dealers.

For instance, trusted key management authorities are able to generate the keystream,
but the generated keystreams can not be used more than once in each communication
round. The trusted setting generates) _k; = 0, such that every party gains the keystream k;.
It should be noted that once the blockchain system removes the party i, the set of reliable
party C must be reconstructed.

Sensors 2022, 22, 684

10 of 17

Algorithm 2 Anti Poisoning Privacy-Perserving Federated Learning

01. Input: C, r,-,r]-,si,é]-,w,-, Aw;.
02. Output: updated reward points r}, rl’., parameters w;, and local reliability fz] .

03. 1: Trade gradients via sharing level, reward points and local reliability: At every
04. round, the goal of party i is to download s; = r; model parameter updates from

05. the other parties, while party j € C is able to provide about J;x

w]-’ model

06. parameter updates, one reward point is spent for every download and rewarded for
07. every upload. Parties update their model according to the model parameter updates
08. of party j € C as the following;:

09. forj € Cdo

10. sf = min(fl.] fs,’,é]- * ’ij

>,r} =7 +s£,rl/« =r;—] Aw = Awj, party j

11. first choose sf meaningful gradients from Aw; accordmg to largest values
12. criterion: sort gradients in ij. and choose top sf of them, and mask the
13. remaining ‘Aw}

14. end for

15. 2: Model parameter update: party i utilizes the secret key sk; to decrypt received
16. encrypted symmetric key as fsk, and utilizes it to decrypt the encrypted parameter
17. updates as ¢ = Enc (@;, kj> at the end decrypts the sum of model paramter updates
18. via homomorphic encryption and thus local model can be updated via integrating all
19. the plain paramter updat'es W; as w; = w; + Aw; + Dec (Zjec\i Enc (Aﬁ;, kj), fki) =
20. w;+ Aw; + ZjeC\i A@;
21. 3: Local reliability update: party i publishes s; artificial private data samples to
22. other party j for labeling. Mutual evaluation is utilized to compute the local
23. reliability of the party j as f] at current round. Thus party i updates party j
24. local reliability via integrating the historical rehablhty as f] =03 x* f] +0.7 % f’
i’

25. 4: Local reliability normalization: fl] =S 7

, Yiec fi
26. if f/ < fy, then
27. party i will report party j as the party with low contribution.
28. end if
29. 5: Set of reliable party: The reliable party set in blockchain will be reconstructed in
30. form of removing the low-contribution party reported by the majority of parties.

The model parameters are locally updated with gradients encrypted SGD at party i as
the following:
wi' = w; + Aw; + Y, Aw] (4)
jec

where w; is model parameters at the current round of party i, A@Z is encrypted model
parameter updates shared to the party i by the party j.

5.3.2. Local Reliability Update

During every round of federated learning, each party releases a subset of DPGAN
artificial private data samples randomly based on its sharing level and evaluates the local
reliability of the other parties according to their returned predicted labels, which are
calculated via the novel model with local data. The mutual cross-validation mechanism
follows the step in Algorithm 1. Eventually, following the same step 4 of Algorithm 2,
the local reliability list can be updated via integrating the historical reliability. The local
reliability list can be adaptively updated in this way, enabling one to reflect more accurately
how much a party contributes to the others parties in federated learning.

Sensors 2022, 22, 684

11 of 17

5.4. Dynamic Asynchronous Federated Learning

In this paper, we propose Dynamic Asynchronous Federated Learning (FedDAsync)
considering the averaging frequency control and parameter selection for federated learn-
ing to speed up model averaging, which effectively reduces version gap and maintains
scheduling flexibility. It enables federated learning to adaptively remove the stragglers
with low computing power and bad channel condition. We present the technical details of
FedDAsync and explain the key design idea, as shown in Algorithm 3.

A dynamic time window is introduced to control the averaging frequency and reduce
the version gap. The central server will wait for the parameters from clients for the next
time units (i.e., the window size) for the next aggregation after a complete global model
update. All parameters received during the window are utilized to aggregate the global
model. The KMeans algorithm is used to set the size of the time window, which clusters the
training time of clients to predict the high concurrency of parameter upload. In addition,
the weight of data volume is proposed to correct the weight of the version gap, which is
determined by the ratio of local data to total data.

Algorithm 3 Dynamic Asynchronous Federated Averaging (FedDasync)

01. Server Process:

02. Input: « € (0,1)

03. Initialize the global model: wy, a; < a, By <+ %
04. Scheduler Thread:

05. Scheduler periodically triggers some training tasks on some clients, and sents them
06. from the latest global model with time stamp.

07. Updater Thread:

08. foreachround t =1,2...do

09. 6 = KMeans(timeList, K)

10. loop for 6 dynamic seconds after receiving update
11. Receive the pair (X, T) from any client
12. timeListappend (t — T)
13. Yt < a x S(t—T) x B, S(+) is function of stateness
14. Xt = (1 - ')’t)xt—l + Yt Xnew
15. end loop
K

16. x;« Y Lak

k=1 "
17. end for

5.5. Quantification of Federated Learning Fairness

The fairness of federated learning should be quantified from the aspect of the entire
system [30]. We quantify federated learning fairness via the correlation coefficient between
the rewards (i.e., different final model accuracies performance) and contribution of a party
in this paper (i.e., sharing level reflecting the willingness of parties to share parameter
updates, and local model accuracy representing the learning capability on local data).

In particular, we take the contribution as the x-axis characterizing the contribution
of the parties involved in the federated learning. In settings 1 and 3, we characterize
the contribution of the party via local model accuracies performance, because the party
with better generalization local data contributes more empirically. In setting 2, we de-
note the contribution of parties via local model accuracies and sharing levels, because
the party whose local data with better generalization and the party who is less private
usually contributes more. Furthermore, the party empirically yields higher model accuracy
with larger local data in IID scenarios in setting 3. In brief, the x-axis is denoted as the
Equations (5) and (6), in which ¢ is the sharing level and u is the local model accuracy:

x = {unq,..., un, }setting 1&3 (5)

Sensors 2022, 22, 684

12 of 17

51 571 uy Uy
x={{—7..., {1

Similarly, we take rewards of parties (i.e., different final model accuracies performance)
as the y-axis, as denoted via the Equation (7), in which u is the final model accuracy:

}}setting 2 (6)

y=A{uy, ..., u} ?)

Since the y-axis evaluates the final model accuracy of different parties in federated
learning, which is expected to be correlated with the x-axis positively to provide better fair-
ness. Thus, we formally define the quantification of collaborative fairness via Equation (8):

o= B (= Y)(1imy)
Xy (n—1)sxsy (8)

in which s and sy are the correction of deviation, and X and y are the means of x and y.
Collaborative fairness is within [—1, 1], and higher values imply better fairness. On the
contrary, lower values imply poorer fairness.

6. Experimental Evaluation

This section evaluates the RAPFDL framework performance via implementing a
federated learning prototype and comparing it with the state of art on three benchmark
datasets: (1) MNIST; (2) Fashion-MNIST (F-MNIST); and (3) CIFAR-10. In our experiment
evaluation, these datasets are utilized to verify the effectiveness of the anomalous parameter
updates detection algorithm to poisoning attacks.

6.1. Datasets

We implemented experiments under three typical real datasets, which are MNIST,
Fashion-MNIST, and CIFAR-10. A brief summary of these datasets is illustrated in Table 1.
The MNIST dataset is used for handwritten digit recognition including 60,000 training
images and 10,000 test images. The grayscale of these images has been normalized to
28 x 28 pixels. Just like MNIST, the Fashion-MNIST dataset consists of ten classes of
images, including fashion items such as trousers, sandals, bags, et al. All 70,000 examples
are a 28 x 28 gray-level image. The CIFAR-10 dataset contains 60,000 images with
32 x 32 color pixies (50,000 for training and 10,000 for testing) in ten classes of images such
as racing cars, birds, and airplanes.

6.2. Experiment Setup

We build the federated learning environment with the PyTorch framework, Python
version 3.6.4, and Numpy version 1.14.0. All experiments are evaluated on the centos?
server with the NVidia P4000 GPU with 32GB RAM. For neural network models of ex-
periments, we construct a CNN model with a softmax output layer for the MNIST and
F-MNIST task, two convolutional layers with 32 and 64 channels respectively, and a fully
connected layer with 512 neurons. In total, it has about 1.6 million parameters. For the
CIFAR-10 task, the network structure is a lightweight ResNet18 model, which includes
17 convolution layers and a fully-connected layer and has about 2.7 million parameters in
total. The number of parties for MNIST, F-MNIST, and CIFAR-10 datasets is 12, 12, and
30 respectively. All benign clients train locally using the GradientDescentOptimizer with
default initial learning rate and batch size of 64. Each experiment runs 200 communication
rounds of federated learning. The scenarios of poisoning attacks include the single attacker
and multiple attackers, where one or more parties are assumed as the attacker while the rest
of the parties are benign. For the MNIST dataset, the label flipping attack is implemented
via changing all the labels from 1 to 5 on the data of malicious clients. For F-MNIST and
CIFAR-10 datasets, we mislabel 2% samples with the normal class in the same way as [2].
The backdoor attack is implemented like the prior work [3]. Examples of racing cars are
relabeled as birds. The dataset & exp setup details are provided in Table 2.

Sensors 2022, 22, 684

13 of 17

Table 2. Summary of datasets & exp setup used in our experiments.

Dataset Input Size Training Samples Testing Samples Structure
MNIST 28 x 28 x 1 60,000 10,000 CNN
F-MNIST 28 x 28 x 1 60,000 10,000 CNN
CIFAR-10 32x32x1 50,000 10,000 ResNet18

To enhance fairness, each party trains 20 epochs individually before federated learning
training. The local reliability threshold is set as cyjespord = INl%l * % through grid search

empirically in all experiments, where |N]| is the number of reliable parties. Furthermore, we
evaluate three settings as the following. Setting 1: Same data size, same sharing level: in
this situation, sharing level is set as 0.1 for each party, i.e., parties publish 10% meaningful
parameter updates during federated learning. Setting 2: Same data size, different sharing
level: sharing level is sampled from [0.2, 0.5) for each party randomly, and parties pub-
lish meaningful parameter updates as per private sharing level during federated learning.
Setting 3: Different data sizes, same sharing level: we simulate this case where different
parties have the same sharing level but different data sizes. Particularly, we partition total
{5000, 10,000, 20,000, 30,000} examples among {2, 4, 8, 12} parties respectively for MNIST
dataset. The sharing level is fixed to 0.1 for each party. It should be noted that our Setting 2
and Setting 3 are relatively conservative. RAPFDL can result in higher fairness via increasing
the contribution diversity in the parties, for instance, sampling sharing level from [0, 1] rather
than [0, 0.5] and partitioning data size in an imbalanced way among parties.

6.3. Experimental Results

Learning efficiency: The visualized performance is shown in Figure 2, FedDAsync
outperforms other baselines with the most rapid learning curves and reduces the training
time by 30%. As for the impacts of data heterogeneity, FedDAsync consistently performs
well when the data distributions are highly heterogeneous, as shown in Figure 3. Due to
the advantages induced from dynamic time window and weights correction, the gain of
FedDAsync is more significant in the case of data heterogeneity.

0.95
0.90 A1
>
O
o
-}
S 0.85 A
<
—— FedAvg
0.80 1 FedDAsync
—— FedProx
0.75 - —— FedAsync
0 50 100 150 200

Communication Rounds

Figure 2. Visualized performance.

Sensors 2022, 22, 684

14 of 17

0.90 1
- 0.85 A
(@]
o
>
9 0.80 -
<
FedAvg
0.757 —— FedDAsync
—— FedProx
0.70 - —— FedAsync
0 50 100 150 200

Communication Rounds

Figure 3. Visualized performance in case of data heterogeneity.

The accuracy over rounds. We demonstrate that the more party involved in federated
learning the higher accuracy of the model. We implemented 1, 2, 3,4, 5, 6,7, 8,9, 10, 11, 12 parties
involved in the federated learning separately. Each party trains its model with the local dataset
containing 5000 images. It is obvious that the more the party participates, the larger the size of the
total dataset (i.e., the size of the total dataset is 5000 x 12 for E12). We also implemented a baseline
party that only trains the local model on its dataset without federated learning. The training
accuracy in E12 is shown in Figure 4, which illustrates that the training accuracy in federated
training is higher than the accuracy obtained by the baseline party.

1 T T T T

I Aggregate model parameters
0.99 1 |\ IBaseline

0.98

o o

w w

[+>] ~
T T

Accuracy(%)
o
w
o

0.94
0931
0.92 1
091
0.9 -
1 2 3 4 5 6 7 8 9 10 11 12
Party

Figure 4. The accuracy over rounds.

Evaluating the penalizing coefficients. Once poisoned submodels are detected to be
anomalous, they will be penalized by the coefficient rather than excluded in aggregation.
Figure 5 presents the influence of the penalizing coefficient in aggregation. Assuming that
there are 9 normal submodels and a submodel completes the poisoning attack, the attack
will be considered successful when the poisoned submodel has not been reported. If any

Sensors 2022, 22, 684

15 of 17

client reports the poisoned submodel and the penalizing coefficient « are assigned to 0.75,
the poisoning attack will still work. When the penalizing coefficient is assigned to 0.5, the
subtask accuracy is about 15%, meaning the poisoning attack suffers a low success rate. It
is reasonable to initial the penalizing coefficient value as 0.5. In this case, the submodel still
can improve the global model accuracy even it is misclassified by clients.

B Main task accuracy
1F O Poisoning subtask accuracy

0.8 [1
0.4 r 1
02f 1

A . 1 | ul

a=0 a=0.25 a=0.5 a=0.75 a=1
The penalizing coefficient

Accuracy
o
[=2]

Figure 5. The accuracy of the global model vs. the penalized coefficient.

Defending against multiple attackers. Figure 6 illustrates the performance of the four
approaches defending multiple poisoners: a 1-7 poisoning attack is performed on an origi-
nal federated learning system namely baseline, Multi-Krum, FoolsGold, and our proposed
solution CtrbEval. Figure 6 presents the effectiveness of CtrbEval against FEDAVG which is
the fundamental federated learning aggregation framework, where clients locally perform
multiple iterations of training before sharing parameter updates with the central server.

100
g 80
2 .
= —— Baseline
§ 60 —— Multi-Krum
0 —o— FoolsGold
a 40
v —& CtrbEval
V]
220
q

0

0 1 2 3 4 5 6
Number of Poisoned Updates

Figure 6. The performance of approaches defending multiple attackers.

7. Conclusions

This paper proposes the federated learning framework with the robustness of the
poisoning attack and fairness considerations. We explore the poisoning attack and present
a novel local reliability mutual evaluation mechanism to effectively detect anomalous
updates without directly inspecting raw data. Rather than equipping servers, we propose
focusing on delegating the anomaly detection task to clients to cross-validation among

Sensors 2022, 22, 684 16 of 17

parties whose local data can help to evaluate the model performance. In addition, the
approach of differential privacy is integrated into the design to guarantee privacy during
the evaluation process. In addition, our design can achieve collaborative fairness, by
introducing the local reliability, sharing level, and transaction points. The experimental
results demonstrated that our scheme is robust to the existing various poisoning attacks and
achieves reasonably good fairness, confirming the applicability of our proposed scheme.

Author Contributions: Conceptualization, Z.C. and E.W.; methodology, Z.C.; software, Z.C.; valida-
tion, Z.C., EEW. and H.C,; formal analysis, Z.C.; investigation, Z.C. and X.Y.; resources, H.C.; data
curation, H.C. and X.Y.; writing—original draft preparation, Z.C.; writing—review and editing, H.C.;
visualization, Z.C. and E.W.; supervision, H.C.; project administration, H.C.; funding acquisition,
H.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Key R and D Program of China under
Grant No. 2020YFB1807805 and the National Natural Science Foundation of China under Grant
No. 62171049.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lueth, K. State of the Iot 2020: Number of Iot Devices Now at 7b-Market Accelerating. Available online: https:/ /iot-analytics.
com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/ (accessed on 1 December 2021).

2. Chen, M,; Yang, Z.; Saad, W.; Yin, C.; Poor, H.V.; Cui, S. A Joint Learning and Communications Framework for Federated Learning
over Wireless Networks. IEEE Trans. Wirel. Commun. 2021, 20, 269-283. [CrossRef]

3. Wang, S,; Tuor, T.; Salonidis, T.; Leung, K.K,; Makaya, C.; He, T.; Chan, K. Adaptive federated learning in resource constrained
edge computing systems. IEEE |. Sel. Areas Commun. 2020, 37, 1205-1221. [CrossRef]

4. Nishio, T; Yonetani, R. Client selection for federated learning with heterogeneous resources in mobile edge. In Proceedings of the
ICC 2019-2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20-24 May 2019; pp. 1-7.

5. Yang, Y,; Hong, Y.; Park, J. Efficient gradient updating strategies with adaptive power allocation for federated learning over
wireless backhaul. Sensors 2021, 21, 6791. [CrossRef] [PubMed]

6. Lu, Y;; Huang, X,; Dai, Y.; Maharjan, S.; Zhang, Y. Differentially private asynchronous federated learning for mobile edge
computing in urban informatics. IEEE Trans. Ind. Inform. 2019, 16, 2134-2143. [CrossRef]

7. Bagdasaryan, E.; Veit, A.; Hua, Y.; Estrin, D.; Shmatikov, V. How to backdoor federated learning. In Proceedings of the
International Conference on Artificial Intelligence and Statistics, Palermo, Italy, 3-5 June 2020; pp. 2938-2948.

8. Shen, S,; Tople, S.; Saxena, P. Auror: Defending against poisoning attacks in collaborative deep learning systems. In Proceedings
of the 32nd Annual Conference on Computer Security Applications, Los Angeles, CA, USA, 5-8 December 2016; pp. 508-519.

9. Fung, C,; Yoon, CJ.; Beschastnikh, I. Mitigating sybils in federated learning poisoning. arXiv 2020, arXiv:1808.04866.

10. Blanchard, P.; el Mhamdi, E.M.; Guerraoui, R.; Stainer,]. Machine learning with adversaries: Byzantine tolerant gradient descent.
In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4-9
December 2017; pp. 118-128.

11. Li, L.; Fan, Y,; Tse, M.; Lin, K.-Y. A review of applications in federated learning. Comput. Ind. Eng. 2020, 149, 106854. [CrossRef]

12. Wang, X.; Han, Y.; Wang, C.; Zhao, Q.; Chen, X.; Chen, M. In-edge ai: Intelligentizing mobile edge computing, caching and
communication by federated learning. IEEE Netw. 2019, 33, 156-165. [CrossRef]

13. Jeong, E.; Oh, S.; Kim, H.; Park,]J.; Bennis, M.; Kim, S.-L. Communication-efficient on-device machine learning: Federated
distillation and augmentation under non-iid private data. arXiv 2019, arXiv:1811.11479.

14. Caldas, S.; Kone¢ny, J.; McMahan, H.B.; Talwalkar, A. Expanding the reach of federated learning by reducing client resource
requirements. arXiv 2019, arXiv:1812.07210.

15. Yang, Q. Liu, Y;; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. (TIST)
2020, 10, 1-19. [CrossRef]

16. Li, T.; Sahu, A K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated optimization in heterogeneous networks. arXiv 2021,
arXiv:1812.06127.

17. Wang, H.; Yurochkin, M.; Sun, Y.; Papailiopoulos, D.; Khazaeni, Y. Federated learning with matched averaging. arXiv 2020,
arXiv:2002.06440.

18. Lian, X.; Zhang, W.; Zhang, C.; Liu,]. Asynchronous decentralized parallel stochastic gradient descent. In Proceedings of the 35th

International Conference on Machine Learning, Stockholm, Sweden, 10-15 July 2018; pp. 3043-3052.

https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
http://doi.org/10.1109/TWC.2020.3024629
http://doi.org/10.1109/JSAC.2019.2904348
http://doi.org/10.3390/s21206791
http://www.ncbi.nlm.nih.gov/pubmed/34696003
http://doi.org/10.1109/TII.2019.2942179
http://doi.org/10.1016/j.cie.2020.106854
http://doi.org/10.1109/MNET.2019.1800286
http://doi.org/10.1145/3298981

Sensors 2022, 22, 684 17 of 17

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Zheng, S.; Meng, Q.; Wang, T.; Chen, W.; Yu, N.; Ma, Z.-M,; Liu, T.-Y. Asynchronous stochastic gradient descent with delay
compensation. In Proceedings of the 34th International Conference on Machine Learning, Sydney, NSW, Australia, 6-11 August
2017; pp. 4120-4129.

Xie, C.; Koyejo, S.; Gupta, I. Asynchronous federated optimization. arXiv 2020, arXiv:1903.03934.

Xu, G.; Li, H;; Ren, H.,; Yang, K.; Deng, R.H. Data security issues in deep learning: Attacks, countermeasures, and opportunities.
IEEE Commun. Mag. 2021, 57, 116-122. [CrossRef]

Mohassel, P.; Zhang, Y. Secureml: A system for scalable privacy-preserving machine learning. In Proceedings of the 2017 IEEE
Symposium on Security and Privacy (SP), San Jose, CA, USA, 22-26 May 2017; pp. 19-38.

Aono, Y.; Hayashi, T.; Wang, L.; Moriai, S. Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans.
Inf. Forensics Secur. 2020, 13, 1333-1345.

Jayaraman, B.; Wang, L. Distributed learning without distress: Privacy-preserving empirical risk minimization. Adv. Neural Inf.
Process. Syst. 2021, 7, 33-49.

Zhao, L.; Wang, Q.; Zou, Q.; Zhang, Y.; Chen, Y. Privacy-preserving collaborative deep learning with unreliable participants. IEEE
Trans. Inf. Forensics Secur. 2019, 15, 1486-1500. [CrossRef]

Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A. Practical secure aggregation for privacy-preserving machine learning.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA,
30 October-3 November 2017; pp. 1175-1191.

Yu, D.; Zhang, H.; Chen, W.; Liu, T.-Y; Yin, J. Gradient perturbation is underrated for differentially private convex optimization.
arXiv 2020, arXiv:1911.11363.

Paillier, P. Public-key cryptosystems based on composite degree residuosity classes. In Proceedings of the International Con-
ference on the Theory and Applications of Cryptographic Techniques, Prague, Czech Republic, 2-6 May 1999; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 223-238.

Acs, G.; Castelluccia, C. I have a dream (differentially private smart metering). In International Workshop on Information Hiding;
Springer: Berlin/Heidelberg, Germany, 2018; pp. 118-132.

Goryczka, S.; Xiong, L. A comprehensive comparison of multiparty secure additions with differential privacy. IEEE Trans.
Dependable Secur. Comput. 2019, 14, 463-477. [CrossRef] [PubMed]

http://doi.org/10.1109/MCOM.001.1900091
http://doi.org/10.1109/TIFS.2019.2939713
http://doi.org/10.1109/TDSC.2015.2484326
http://www.ncbi.nlm.nih.gov/pubmed/28919841

	Introduction
	Related Work
	Efficient Federated Learning
	Defenses against Poisoning Attack on Federated Learning

	Background
	Federated Deep Learning
	Blockchain Technology

	The RAPFDL Framework
	Implementation of RAPFDL
	System Initialization
	Initial Evaluation Algorithm
	Local Reliability Initialization
	Sharing Level and Reward Points Initialization

	Differentially Private Data Samples Generation
	Anti Poisoning Privacy-Preserving Federated Learning
	Federated Learning Model Training with Homomorphic Encryption
	Local Reliability Update

	Dynamic Asynchronous Federated Learning
	Quantification of Federated Learning Fairness

	Experimental Evaluation
	Datasets
	Experiment Setup
	Experimental Results

	Conclusions
	References

