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Abstract: Unsourced random access (URA) has emerged as a pragmatic framework for next-generation
distributed sensor networks. Within URA, concatenated coding structures are often employed to
ensure that the central base station can accurately recover the set of sent codewords during a given
transmission period. Many URA algorithms employ independent inner and outer decoders, which
can help reduce computational complexity at the expense of a decay in performance. In this article, an
enhanced decoding algorithm is presented for a concatenated coding structure consisting of a wide
range of inner codes and an outer tree-based code. It is shown that this algorithmic enhancement
has the potential to simultaneously improve error performance and decrease the computational
complexity of the decoder. This enhanced decoding algorithm is applied to two existing URA
algorithms, and the performance benefits of the algorithm are characterized. Findings are supported
by numerical simulations.

Keywords: concatenated codes; successive cancellation list decoding; coded compressed sensing;
unsourced random access

1. Introduction

Massive machine-type communication (mMTC) is a rapidly growing class of wireless
communications that aim to connect tens of billions of unattended devices to wireless net-
works. One significant application of mMTC is that of distributed sensing, which consists
of a large number of wireless sensors that gather data over time and transmit their data to
a central server. This server then interprets the received data to produce useful informa-
tion and/or make executive decisions. When combined with recent advances in machine
learning, such networks are expected to open a vast realm of economic and academic
opportunities. However, the large population of unattended devices within these networks
threatens to overwhelm existing wireless communication infrastructures by dramatically
increasing the number of network connections; it is expected that the number of machines
connected to wireless networks will soon exceed the population of the planet by at least an
order of magnitude. Additionally, the sporadic and bursty nature of sensor transmissions
makes them highly inefficient under current estimation/enrollment/scheduling procedures
typical of cellular networks [1,2]. The combination of these challenges necessitates the
design of novel physical and medium access control (MAC) layer protocols to efficiently
handle the demands of these wireless devices.

One recently proposed paradigm for efficiently handling the demands of unattended
devices is that of unsourced random access (URA), as described by Polyanskiy in 2017 [3].
URA captures many of the nuances of IoT devices by considering a network with an
exceedingly large number of uncoordinated devices, of which only a small percentage is
active at any given point in time. When a device/user is active, it encodes its short message
using a common codebook and then transmits its codeword over a regularly scheduled
time slot, as facilitated by a beacon. Furthermore, the power available to each user is strictly
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limited and assumed to be uniform across devices. The use of a common codebook is
characteristic of URA and has two important implications: First, the network does not need
to maintain a dictionary of active devices and their unique codebook information; second,
the receiver does not know which node transmitted a given message unless the message
itself contains a unique identifier. The receiver is then tasked with recovering an unordered
list of transmitted messages sent during each time slot by the collection of active devices.
The performance of URA schemes is evaluated with respect to the per-user probability of
error (PUPE), which is the probability that a user’s message is not present in the receiver’s
final list of decoded messages; this criterion is formally defined in (3). In [3], Polyanskiy
provides finite block length achievability bounds for short block lengths typical of URA
applications using random Gaussian coding and maximum likelihood (ML) decoding.
However, these bounds are derived in the absence of complexity constraints and, thus,
are impractical for deployment in real-world networks. Over the past few years, several
alternative URA schemes have been proposed that offer tractable complexity with minor
degradation in performance. For example, [4–9] exploit connections between URA and
compressed sensing (CS) to reduce decoding complexity. In [10–19], schemes are presented
that seek to separate user’s signals and recover them using single-user coding techniques.
These results are extended to multiple-input multiple-output (MIMO) scenarios in [20–25].

All of the aforementioned URA schemes employ concatenated channel codes to recover
messages sent by the collection of active users at the receiver. We note that the term
channel code is used broadly such that it includes spreading sequences and certain signal
dictionaries such as those commonly used for CS. Although it is conceptually simpler
to decode inner and outer codes separately, it is a well-known fact within coding theory
that dynamically sharing information between the inner and outer decoders will often
improve the performance of the system [26,27]. In this paper, we present a novel framework
for sharing information between a wide class of inner codes and a tree-based outer code.
This approach significantly improves PUPE performance and reduces the computational
complexity of the scheme. Specifically, our main contributions are as follows:

1. A general system model consisting of a wide class of inner codes and an outer tree
code is developed. An enhanced decoding algorithm is presented whereby the outer
tree code may guide the convergence of the inner code by restricting the search space
of the inner decoder to parity consistent paths.

2. The coded compressed sensing (CCS) scheme of Amalladinne et al. in [5] is considered
under this model. With the enhanced decoding algorithm, the Eb/N0 required to
achieve a fixed PUPE is reduced by nearly 1 dB when the number of users is low and
the number of columns in the sensing matrix is reduced by over 99% by the last slot,
thus significantly reducing decoding complexity.

3. The CCS for massive MIMO scheme of Fengler et al. in [21] is considered under this
model. With the enhanced decoding algorithm, the number of antennas required to
achieve a fixed PUPE is reduced by 23% in certain regimes, and the decoding runtime
is reduced by 70–90%.

2. System Model

Consider a URA scenario consisting of K-active devices, which are referred to by a
fixed but arbitrary label j ∈ [K]. Each of these users wishes to simultaneously transmit a
B-bit message wj to a central base station over a Gaussian multiple access channel (GMAC)
using a concatenated code consisting of an inner code C and an outer tree code T . This
inner code C has the crucial property that, given a linear combination of K ≤ δ codewords,
the constituent information messages may be individually recovered with high probability.
Furthermore, we assume that the probability that any two active users’ messages that are
identical is low, i.e., Pr(wi = wj) < ε whenever i 6= j.

We consider a scenario where it is either computationally intractable to inner en-
code/decode the entire message simultaneously or it is otherwise impractical to transmit
the entire inner codeword at once. Thus, each user must divide its information message
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into fragments and inner encode/decode each fragment individually. In order to ensure
that the message can be reconstructed from its fragments at the receiver, the information
fragments are first connected together by using the outer tree-based code T and then inner
encoded using code C. The resulting signal is transmitted over the channel. We elaborate
on this process below.

Each message wj is broken into L fragments where fragment ` has length m` and
∑`∈[L] m` = B. Notationally, wj is represented as the concatenation of fragments by
wj = wj(1)wj(2) . . . wj(L). The fragments are outer-encoded together by adding parity bits
to the end of each fragment, with the exception of the first fragment. This is accomplished
by taking random linear combinations of the information bits contained in previous sections.
The parity bits appended to the end of section ` are denoted by pj(`), and they collectively
have length l`. This outer-encoded vector is denoted by vj, where vj(`) = wj(`)pj(`). The
vector vj now assumes the form shown in Figure 1.

w(1) w(2) p(2) w(3) p(3) . . . w(L) p(L)

m1 m2 l2 m3 l3 mL lL

Figure 1. This figure illustrates the structure of a user’s outer encoded message, denoted by v.
Fragment ` consists of the concatenation of information bits, denoted by w(`), and parity bits,
denoted by p(`).

At this point, it may be instructive to explain our preference for the tree code over
possible alternatives such as LDPC codes, polar codes, and BCH codes. The main purpose of
the tree code is disambiguation, as opposed to error correction. It offers a principled method
to trade-off performance and complexity, as detailed in [5]. Furthermore, it provides optimal
asymptotic performances, as shown in [6]. It remains unclear how the aforementioned
alternative coding techniques would work in this current context. This situation acts as a
strong motivation for the development of the tree code in [5] and for its adoption in [4,6,21]
as well as within this manuscript.

After the outer-encoding process is complete, user j inner encodes each fragment vj(`)
individually using C and concatenates the encoded fragments to form signal xj. Each user
then simultaneously transmits its signal to the base station over a GMAC. The received
signal at the base station assumes the following form:

y = ∑
j∈[K]

dxj + z (1)

where z is a vector of Gaussian noise with independent standard normal components, and
d accounts for the transmit power.

Recall that the receiver is tasked with producing an unordered list of all transmitted
messages. A naive method to perform this is to have inner and outer decoders operate
independently of each other. That is, the inner decoder is first run independently on
each of the L sections in y. Since C has the property that, given a linear combination
of its codewords, the constituent input signals may be recovered with high probability,
the aggregate signal in every slot can be expanded into a list of K encoded fragments
{v̂j(`) : j ∈ [K]}. It may be helpful to remind the reader that v̂j(`) does not necessarily
correspond to the message sent by user j because the receiver has no way of connecting a
received message to an active user within URA. Therefore, at this stage, the receiver has L
unordered lists L1,L2, . . . ,LL, each with K outer-encoded fragments. From these lists, the
receiver wishes to recover K messages sent by the active devices during the frame. This is
performed by running the tree decoder on the L lists to find parity-consistent paths across
lists. Specifically, the tree decoder first selects a root fragment from list L1 and computes
the corresponding parity section p(2). The tree decoder then branches out to all fragments
in list L2, for which its parity sections match p(2); each match creates a parity-consistent
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partial path. This process repeats until the last list LL is processed. At this point, if there is
a single path from L1 to LL, the message created by that path is deemed valid and stored
for further processing. On the other hand, if there are multiple parity-consistent paths from
a given root fragment or no parity consistent paths from a given root fragment, a decoding
failure is declared. Figure 2 illustrates this scheme.

C−1 C−1 C−1· · ·

· · ·

· · ·

...
...

...

L1 L2 LL

Figure 2. This figure illustrates the operation of the tree decoder. The inner decoder C−1 produces
L lists of K messages each. The outer tree decoder then finds parity-consistent paths across lists to
extract valid messages.

While intuitive, this strategy is sub-optimal because information is not being shared by
the inner and outer decoders. If the inner and outer decoders were to operate concurrently,
the output of the outer decoder could be used to reduce the search space of the inner
decoder, thus guiding the convergence of the inner decoder to a parity-consistent solution.
This would also reduce the search space of the inner code, thus providing an avenue for
reducing decoding complexity [28,29]. Explicitly, assume that immediately after the inner
decoder produces list L`, the outer decoder finds all parity-consistent partial paths from the
root node to stage `. Each of these R parity-consistent partial paths has an associated parity
section pr(`+ 1). Furthermore, it is known that only those fragments in L`+1 that contain
one of the {pr(`+ 1) : r ∈ [R]} admissible parity sections may be part of K-transmitted
messages. Thus, when producing L`+1, the search space of the inner decoder may be
reduced drastically to only the subset for which fragments contain an admissible parity
section pr(`+ 1).

This algorithmic enhancement is a key contribution; it has the potential to simul-
taneously reduce decoding complexity and improve PUPE performance. Still, a precise
characterization of the benefits of this enhanced algorithm depends on the inner code
chosen. We now consider two situations in which this algorithm may be applied: coded
compressed sensing (CCS) [5] and CCS for massive MIMO [21]. For each of the con-
sidered schemes, complexity reduction and performance improvements are quantified.
We emphasize that this algorithmic enhancement is applicable to other scenarios beyond
those considered in this paper. One such example is the CHIRRUP scheme presented by
Calderbank and Thompson in [4]. This latter scheme uses an efficient CS solver based on a
second order Reed-Muller code concatenated with a tree outer code as the foundation for a
divide-and-conquer approach. The decoding process is performed by using a depth-first
search within inner blocks, followed by stitching. The depth-first search of later blocks
could potentially be informed by the type of search space pruning described herein. Details
are omitted due to space considerations.

3. Case Study 1: Coded Compressed Sensing

CCS has emerged as a practical scheme for URA that offers good performance with
low complexity [5–9]. We note briefly that some recent variants of CCS that employ an
LDPC outer code [7–9] are not compatible with the model presented in this paper. Thus,
we focus on the original version of the algorithm presented by Amalladinne et al. in [5].
At its core, CCS seeks to exploit a connection between URA and compressed sensing (CS).
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This connection may be understood by transforming a B-bit message w into a length 2B

index vector m, where the single non-zero entry is a one at location [w]2. The notation [w]2
denotes binary message w interpreted as a radix-10 integer. This bijection between w and m
is denoted by f (·). The vector m may then be compressed into signal x using sensing matrix
A, where A is an appropriately chosen CS matrix. We note that there is some flexibility in
the selection of A: Gaussian, Rademacher, and sub-sampled Hadamard/DFT matrices are
suitable choices. Additionally, LDPC-based or other structured sensing matrices may be
employed instead. Regardless of the choice of A, the columns of A must be normalized
such that E[A:,i] = 1 for every i in order to satisfy URA power constraints.

Each device then transmits its signal over the noisy multiple access channel, which
naturally adds the sent signals together. At the receiver, the original signals may be
recovered from y using standard CS recovery techniques such as non-negative least-squares
(NNLS) or least absolute shrinkage and selection operator (LASSO). However, for messages
of even modest lengths, the size of x is too large for standard CS solvers to handle. In order
to circumvent this challenge, a divide and conquer approach can be employed.

In CCS, inner code C consists of the CS encoder, and the outer tree code T is identical
to that presented in Section 2. Note that there is an additional step between T and C:
The outer-encoded message v is transformed into the inner code input m via the bijection
f (·) described above. Furthermore, we emphasize that C has the property that, given a
linear combination of K ≤ δ codewords, the corresponding set of K one-sparse constituent
inputs may be recovered with high probability. This, combined with the assumption that
Pr(wi = wj) < ε for i 6= j, makes CCS an eligible candidate for the enhanced decoding
algorithm described previously. We review below CCS encoding and decoding operations.

3.1. CCS Encoding

When user j wishes to transmit a message to the central base station, it encodes
its message in the following manner. First, it breaks its B-bit message into L fragments
and outer-encodes the L fragments using the tree code described in Section 2; this yields
outer codeword vj. Recall that fragment ` has m` information bits and l` parity bits. We
emphasize that m` + l` = v` is constant for all sections in CCS, but the ratio of m` to l`
is subject to change. Fragment vj(`) is then converted into length 2m`+l` index vector,
denoted by mj(`), and compressed using sensing matrix A into vector xj(`). Within the
next transmission frame, user j sends its encoded fragments across GMAC along with all
other active users. At the base station, the received vector associated with slot ` assumes
the following form:

y(`) = ∑
j∈[K]

dAmj(`) + z(`) = dA ∑
j∈[K]

mj(`) + z(`) (2)

where z(`) is a vector of Gaussian noise with standard normal components, and d reflects
the transmit power. This is a canonical form of a K-sparse compressed vector embedded in
Gaussian noise.

3.2. CCS Decoding

CCS decoding begins by running a standard CS solver such as NNLS or LASSO on
each section to produce L K-sparse vectors. The K indices in each of these L slots are
converted back to binary representations using f−1(·), and the tree decoder is run on
resultant L lists to produce estimates of transmitted messages.

This process may be improved by applying the proposed enhanced decoding algo-
rithm, which proceeds as follows for CCS. The inner CS solver first recovers section 1, and
then computes the set of possible parity patterns for section 2, denoted by P2. The columns
of A are then pruned dynamically to remove all columns associated with inadmissible
parity patterns in section 2. This reduces the number of columns of A from 2m1+l1 to
2m1 |P1| [28]. Section 2 is then recovered, and the process repeats itself until section L has
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been decoded. At this point, valid paths through the L lists are identified, and the list of
estimated transmitted messages is finalized. Figure 3 illustrates this process.

Slot 1 Slot 2 Slot 3

L1 L2 L3

co
lu

m
n

pr
un

in
g

co
lu

m
n

pr
un

in
g

co
lu

m
n

pr
un

in
g

Figure 3. This figure illustrates the enhanced decoding algorithm applied to CCS. After recovering
L`, the sensing matrix A is pruned so that list L`+1 only contains parity-consistent fragments.

3.3. Results

As previously mentioned, the algorithmic enhancement presented in this article has
the potential to improve both the performance and computational complexity of certain
concatenated coding schemes. Before quantifying the gains obtained by applying this
algorithmic enhancement to CCS, we define appropriate measures of performance and
computational complexity. Being a URA scheme, the performance of CCS is evaluated with
respect to the per-user probability of error (PUPE), which is given by the following:

Pe =
1
K ∑

j∈[K]
Pr
(
wj /∈ Ŵ(y)

)
(3)

where Ŵ(y) is the estimated list of transmitted messages, with at most K items. Since many
different CS solvers with varying computational complexities may be employed within the
CCS framework, the complexity reduction offered by the enhanced decoding algorithm is
quantified by counting the number of columns removed from A.

The column pruning operation has at least four major implications on the performance
and complexity of CCS. These implications are summarized below.

1. Many CS solvers rely on iterative methods or convex optimization solvers to recover
x from y = Ax. Decreasing the width of A will result in a reduction in computational
complexity, the exact size of which will depend on the CS solver employed.

2. When all message fragments have been correctly recovered for stages 1, 2, . . . , `, the
matrix A is pruned in such a way that is perfectly consistent with the true signal.
In this scenario, the search space for the CS solver is significantly reduced and the
performance will improve.

3. When an erroneous message fragment has been incorrectly identified as a true message
fragment by stage `, the column pruning operation will guide the CS solver to a list of
fragments that is more likely to contain additional erroneous fragments. This further
propagates the error and helps erroneous paths stay alive longer.

4. When a true fragment is mistakenly removed from a CS list, its associated parity
pattern may be discarded and disappear entirely. This results in the loss of a correct
message and additional structured noise, which may decrease the PUPE performance
of other valid messages.

Despite having positive and negative aspects, the net effect of the enhanced decoding
algorithm on the system’s PUPE performance is positive, as illustrated in Figure 4. This
figure was generated by simulating a CCS scenario with K ∈ [10 : 175] users, each of which
wishes to transmit a B = 75 bit message divided into L = 11 stages over 22, 517 channel
uses. NNLS was used as the CS solver.
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Figure 4. This figure shows the required Eb/N0 to obtain a PUPE of 5% versus the number of
active users.

From Figure 4, we observe that the enhanced decoding algorithm reduces the required
Eb/N0 by nearly 1 dB for a low number of users. Furthermore, for the entire range of
number of users considered, the enhanced algorithm is at least as good as the original
algorithm and often much better.

By tracking the expected number of parity-consistent partial paths, it may be pos-
sible to compute the expected column reduction ratio at every stage. However, this is a
daunting task, as explained in [5]. Instead, we estimate the expected column reduction
ratio by applying the approximate analysis found in [5], which relies on the following
simplifying assumptions:

• No two users have the exact same message fragments at any stage: wi(`) 6= wj(`)
whenever i 6= j and for all ` ∈ [L].

• The inner CS decoder makes no mistakes in producing lists L1, . . . ,LL.

Under these assumptions and starting from a designated root node, the number of
erroneous paths that survive stage `, denoted L`, is subject to the following recursion.

E
[
L`

]
= E[E[L` | L`−1]]

= E
[
((L`−1 + 1)K− 1)2−l`

]
= 2−l`KE[L`−1] + 2−l`(K− 1).

(4)

Using initial condition E[L1] = 0, we obtain the following expected value.

E[L`] =
`

∑
q=2

(
K`−q(K− 1)

`

∏
k=q

2−lk

)
. (5)

When matrix A is pruned dynamically, then K copies of the tree decoder run in
parallel and, as such, the expected number of parity-consistent partial paths at stage ` can
be expressed as follows.

P` = K(1 +E[L`]).

Under the further simplifying assumptions that all parity patterns are independent
and Pj concentrates around its mean, we can approximate the number of admissible parity
patterns. The probability that a particular path maps to a specific parity pattern is 2−l` ;
hence, the probability that this pattern is not selected by any path become (1− 2−l`)P` .
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Taking the complement of this event and multiplying by the number of parity patterns, we
obtain an approximate expression for the mean number of admissible patterns.

|P`| ≈ 2l`
(

1−
(

1− 2−l`
)P`
)

. (6)

Thus, the expected column reduction ratio at slot `, denoted E[R`], is provided by
the following.

E[R`] = 1−
(

1− 2−l`
)P`

. (7)

Figure 5 shows the estimated versus simulated column reduction ratio across stages.
Overall, the number of columns in A can be reduced drastically for some stages, thus
significantly lowering the complexity of the decoding algorithm.
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Slot 2 (Num)
Slot 2 (Sim)
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Slot 10 (Num)
Slot 10 (Sim)
Slot 11 (Num)
Slot 11 (Sim)

Figure 5. This figure illustrates the column reduction ratio provided by the enhanced decoding
algorithm for each stage of the outer code and a varying number of users. Lines represent numerical
results, and markers represent simulated results. Clearly, the size of the sensing matrix may be
drastically reduced.

4. Case Study 2: Coded Compressed Sensing for Massive MIMO

A natural extension of the single-input single-output (SISO) version of CCS proposed
in [5] is a version of CCS where the base station utilizes M � 1 receive antennas. In
this scenario, we assume that the receive antennas are sufficiently separated to ensure
negligible spatial correlation across channels. Furthermore, we adopt a block fading model
where the channel remains fixed for a coherence period of n channel uses and all coherence
blocks are assumed to be completely independent, as in [20]. Each active user transmits its
message over L coherence blocks, with one coherence block corresponding to each of the
L sections described above; thus, the total number of channel uses is N = nL. As in SISO
CCS, the receiver is tasked with producing an estimated list of the messages transmitted
by the collection of active users during a given time instant. In addition to observing the
received signal, the base station has knowledge of the total number of active users, the
codes used for encoding messages, and the second-order statistics of MIMO channels. We
note that channel state information (CSI) is not fully known. Thus, the decoding algorithm
can be characterized as non-coherent [29]. The scheme we consider in this study was first
presented by Fengler et al. in [21].

4.1. MIMO Encoding

The encoding process for CCS with massive MIMO is analogous to the encoding
process for CCS; for a thorough description of this process, please refer to Section 3.
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However, the signal received by the base station will have a different structure as the base
station features M receive antennas. Let x(t, `) denote the tth symbol in block ` of vector x.
Then, the signal observed at the base station is of the following form:

y(t, `) = ∑
j∈[K]

xj(t, `)hj(`) + z(t, `) t ∈ [n], ` ∈ [L] (8)

where z(t, `) is circularly symmetric complex white Gaussian noise with zero mean and
variance N0/2 per dimension and hj(`) ∼ CN (0, IM) is a vector of small-scale fading
coefficients representing the channel between user j and the base station’s M antennas.

4.2. MIMO Decoding

Recall that a URA receiver is tasked with producing an unordered list of the messages
transmitted by the collection of active devices. To perform this, the receiver must first
identify the list of fragments transmitted during each of the L coherence blocks and then
extract the transmitted messages by finding parity consistent paths across lists. The receiver
architecture presented in [21] features a concatenated code, where the inner code C is
decoded using a covariance-based activity detection (AD) algorithm and the outer tree
code T is decoded in a manner identical to that presented in Section 2.

Recall that each active user transforms its outer-encoded message v into a 1-sparse
index vector m. Let {ij(`) : j ∈ [K]} denote the set of indices chosen by the active users
during block `. Then, the signal observed at the base station is of the following form:

Y(`) = ∑
j∈[K]

aij(`)
(`)hj(`)

ᵀ + Z(`)

= A(`)Γ(`)H(`) + Z(`)
(9)

where H(`) has independent CN (0, 1) entries, Z(`) is an independent complex Gaussian
noise, and Γ(`) is a diagonal matrix that indicates which indices have been selected during
block `; that is, Γ(`) = diag(γ0(`), . . . , γ2v` (`)) with the following.

γi(`) =

{
1 i ∈ {ij(`) : j ∈ [K]}
0 otherwise.

(10)

Finally, Y(`) is an n×M matrix where the rows of Y(`) correspond to various time
instants and the columns of Y(`) correspond to the different antennas present at the base
station. Figure 6 illustrates this configuration.

M antennas

Ti
m

e

Figure 6. This figure illustrates the structure of Y(`), where the rows correspond to time instants, and
the columns correspond to receive antennas.

Determining which fragments were sent during coherence block ` is equivalent to
estimating Γ(`). This process is referred to as activity detection and may be accomplished
through covariance matching when the number of receive antenna is large. An iterative
algorithm for estimating Γ(`) was first proposed by Fengler in [21] and is summarized in
Algorithm 1. After the collection of fragments transmitted in each of the L sub-blocks has
been recovered by Algorithm 1, tree decoding is employed to disambiguate the collection
of transmitted messages.
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Algorithm 1 Activity Detection via Coordinate Descent

1: Inputs: Sample covariance Σ̂Y(`) =
1
M Y(`)Y(`)H

2: Initialize: Σ` = N0In, γ(`) = 0
3: for i = 1, 2, . . . do
4: for k ∈ S` do

5: Set d∗ =
ak(`)

HΣ−1
` (Σ̂Y(`)Σ

−1
` −In)ak(`)

(ak(`)HΣ−1
` ak(`))2

6: Update γk(`)← max{γk(`) + d∗, 0}
7: Update Σ−1

` ← Σ−1
` −

d∗Σ−1
` ak(`)ak(`)

HΣ−1
`

1+d∗ak(`)HΣ−1
` ak(`)

8: Output: Estimate γ(`)

As before, it is possible to leverage the enhanced version of the tree decoding process,
with its dynamic pruning, to improve performance and lower complexity. The application
of the proposed algorithmic enhancement to the activity detection algorithm may be
visualized in the following manner. Let S` denote the set of indices to perform coordinate
descent over during coherence block `; in its original formulation, S` = [2v` ]. After, list L1
has been produced by the activity detection algorithm, and the tree decoder can compute
the set of all admissible parity patterns P2 for list L2; then, A(2) may be pruned to only
contain columns corresponding to messages with parity patterns in P2. A similar strategy
can be applied moving forward, yielding a reduced admissible set P` for parity patterns at
stage `. In turn, this reduces the index set S` to the following:

S` = {[w(`)p(`)]2 : w(`) ∈ {0, 1}m` , p(`) ∈ P`} (11)

which may be significantly smaller than [2v` ]. This algorithmic refinement guides the
activity detection algorithm to a parity-consistent solution and reduces the search space of
the inner decoder, thus improving performance significantly [29].

4.3. Results

The simulation results presented in this section correspond to a scenario with K ∈ [25, 150]
active users and M ∈ [25, 125] antennas at the base station. Each user encodes their 96-bit
signal into L = 32 blocks with 100 complex channel uses per block. The length of the
outer-encoded block is v` = 12 for all ` ∈ [L], and a parity profile of (l1, l2, . . . , lL) =
(0, 9, 9, . . . , 9, 12, 12, 12) is employed. The energy per bit Eb/N0 is fixed at 0 dB, and the
columns of A(`) are chosen randomly from a sphere of radius

√
nP. These parameters are

chosen to match [21]. Figure 7 shows the PUPE of this scheme for a range of active users
and several different values of M. In this figure, the dashed lines represent the performance
of the original algorithm and the solid lines represent the performance of the enhanced
version with dynamic pruning.

From Figure 7, we gather that the proposed algorithm reduces the PUPE for a fixed
number of active users and a fixed number of antennas at the base station. Additionally,
this algorithm may be used as a means to reduce the number of antennas required to
achieve a target PUPE. For instance, when K = 100, the enhanced algorithm allows for a
23% reduction in the number of antennas at the base station with no degradation in error
performance. Figure 8 provides the ratio of average runtimes of the enhanced decoding
algorithm versus the original decoding algorithm. The enhanced decoding algorithm also
offers a significant reduction in computational complexity, especially for a low number of
active users.
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Figure 7. This figure illustrates the performance advantage of applying the enhanced decoding
algorithm presented in this paper to CCS for massive MIMO. For a fixed number of antennas,
the dashed line represents the original performance from [21], and the solid line represents the
performance of the enhanced algorithm.
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Figure 8. This figure plots the ratio of average runtimes between the enhanced decoding algorithm
and the original CCS for massive MIMO scheme [21]. As observed above, dynamic pruning offers a
significant reduction in computational complexity compared to standard tree decoding.

5. Conclusions

In this article, a framework for a concatenated code architecture consisting of a struc-
tured inner code and an outer tree code was presented. This framework was specifically
designed for URA applications but may find applications in other fields as well. An en-
hanced decoding algorithm was proposed for this framework that has the potential to
simultaneously improve performance and decrease computational complexity. This en-
hanced decoding algorithm was applied to two URA schemes: coded compressed sensing
(CCS) and CCS for massive MIMO. In both cases, PUPE performance gains were observed,
and decoding complexity was significantly reduced.

The proposed algorithm is a natural extension of the existing literature. From coding
theory, we know that there are at least three methods for inner and outer codes to interact.
Namely, the two codes may operate completely independent of one another in a Forney-
style concatenated fashion; this is the style of the original CCS decoder presented in [5].
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Secondly, information messages may be passed between inner and outer decoders as
both decoders converge to the correct codeword; this is the style of CCS-AMP, which was
proposed by Amalladinne et al. in [7]. Finally, a successive cancellation decoder may be
employed in the spirit of coded decision feedback; this is the style highlighted in this article
and considered in [28,29]. Thus, the dynamic pruning introduced in this paper can be
framed as an application of coding theoretic ideas to a concatenated coding structure that
is common within URA.

By using the examples presented in this article pertained to CCS, we emphasize that
dynamic pruning may be applicable to many algorithms beyond CCS. For instance, this
approach may be relevant to support recovery in exceedingly large dimensions, where a
divide-and-conquer approach is needed. As long as the inner and outer codes subscribe
to the structure described in Section 2, this algorithmic enhancement can be leveraged to
obtain performance and/or complexity improvements.
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