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Abstract: The three-dimensional (3D) symmetry shape plays a critical role in the reconstruction and
recognition of 3D objects under occlusion or partial viewpoint observation. Symmetry structure
prior is particularly useful in recovering missing or unseen parts of an object. In this work, we
propose Sym3DNet for single-view 3D reconstruction, which employs a three-dimensional reflection
symmetry structure prior of an object. More specifically, Sym3DNet includes 2D-to-3D encoder-
decoder networks followed by a symmetry fusion step and multi-level perceptual loss. The symmetry
fusion step builds flipped and overlapped 3D shapes that are fed to a 3D shape encoder to calculate the
multi-level perceptual loss. Perceptual loss calculated in different feature spaces counts on not only
voxel-wise shape symmetry but also on the overall global symmetry shape of an object. Experimental
evaluations are conducted on both large-scale synthetic 3D data (ShapeNet) and real-world 3D data
(Pix3D). The proposed method outperforms state-of-the-art approaches in terms of efficiency and
accuracy on both synthetic and real-world datasets. To demonstrate the generalization ability of
our approach, we conduct an experiment with unseen category samples of ShapeNet, exhibiting
promising reconstruction results as well.

Keywords: 3D object reconstruction; reflection symmetry; deep learning

1. Introduction

Humans are able to predict the three-dimensional geometry of an object from a single
2D image based on the prior knowledge of target objects and related environments. How-
ever, it is quite a challenging task for machines without such prior knowledge because of the
drastic variation of object shape, texture, lighting conditions, environments and occlusions.
In traditional 3D reconstruction approaches, such as Structure from Motion (SfM) [1] and
Simultaneous Localization and Mapping (SLAM), visual appearance consistency across
multiple views are utilized to infer lost three-dimensional information, finding multi-view
corresponding point pairs. Extracting dense corresponding point pairs is not a trivial
task due to texture-less regions, large differences in viewpoints, and self-occlusion [2].
A complete 3D shape can be observed as long as the multiple images cover the target object
from entire angles of view. A 3D reconstruction from 2D images is a challenging task that
has been studied for a long time. Traditional approaches, such as structure from motion
(SfM) and simultaneous localization and mapping (SLAM), require multiple RGB images
of the same target scene [3,4]. To recover the 3D structure, dense features are extracted
and matched to perform the minimization of re-projection errors [5]. However, detecting
corresponding pairs is a difficult task when the distances between multiple viewpoints
are large. Furthermore, scanning the entire aspects of an object with 2D color images is
computationally expensive especially with occluded or concave surface regions [3]. Taking
the advantage of the availability of large-scale synthetic data, deep learning-based networks
have been introduced to reconstruct 3D shapes from single or multiple view RGB images.
LSM [6] and 3D-R2N2 [7] propose RNN based networks to predict voxel representation of
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3D shape from single or multiple view images where input views are processed sequentially
using a shared encoder. Extracted features from views are refined incrementally when
more input views are available. In their methods, the information from earlier input views
is hardly passed to the final refined features for 3D reconstruction. DeepMVS [8] and
RayNet [9] apply max and average polling, respectively, over features of entire viewpoints
to accumulate outstanding features from unordered multiple views. While these methods
alleviate the limitation of RNN, they lose useful view-specific information. Recently, for
more effective accumulation of entire viewpoint features, AttSets [10] uses an attentional
aggregation module that predicts weight matrix for the features of attention. However,
feature aggregation from multiple views is a difficult task in latent space. To overcome the
difficulties of feature aggregation, Pix2Vox++ [11] proposes a multi-scale context-aware
fusion module that applies context information across multiple view images. In the method,
they apply the context-aware fusion module after coarse volume prediction and finally
refine the 3D reconstruction using a 3D auto-encoder. However, all these methods learn
shape priors implicitly and are sensitive to noisy input or heavy occlusion frequently
existing in real-world images. Recently deep learning methods are able to recover 3D
shapes in the form of meshes and point clouds. Reference [12] predicts dense point cloud
using 2D convolutional operation from multiple viewpoint images and performs geometric
reasoning with 2D projection optimization. Pixel2Mesh++ [13] uses a graph convolutional
network to recover 3D mesh of objects from cross-view information.

Different from multi-view 3D reconstruction, single view reconstruction has to predict
a complete 3D shape based on single view observation and corresponding prior knowledge.
Therefore, complete 3D shape reconstruction from a single 2D image is a challenging task.
To resolve the problem, several methods have attempted to reconstruct a 3D shape from
a 2D view, where the 2D view is either silhouettes [14], shading [15,16], or texture [17].
In real-world scenarios, these methods are not practical for shape reconstruction because
of presumption step on camera calibration, smooth surface, single light source, and so
forth [18]. To address the issues, most of the state-of-the-art methods map input images
to latent representation and obtain the corresponding 3D shape by decoding the latent
representation. A joint 2D–3D embedding network proposed in [19], named TL-Network,
extracts good latent feature representation using a 3D auto-encoder. Latent features are
inferred from 2D input images. But the method reconstructs very low resolution of the
3D shape. With great achievements of generative adversarial networks (GANs) [20] and
variational auto-encoders (VAEs) [21], 3DVAE-GAN [22] uses GAN and VAE to reconstruct
a 3D shape from a single 2D image. MarrNet [23] and ShapeHD [24] use an intermediate
step of estimating silhouettes, depth, and normal of 2D images and reconstructs 3D shape
from the depth and normal. To reconstruct a high-resolution 3D shape, OGN [25] proposes
octree based learning representation. Matryoshka networks [26] use nested shape layers by
recursively decomposing a 3D shape. Currently, several methods are trying to reconstruct
a 3D shape with different representations such as point cloud [27], mesh [28] and signed
distance field [29]. PSG [27] proposes a method to retrieve point cloud using a simple
deep neural network from a single 2D image. Pixel2Mesh [28] reconstructs triangular
meshes of 3D shape. Taking the advantage of fine-grained 3D part annotations [30], several
approaches [30–32] reconstruct 3D shapes by combining 3D parts in a hierarchical scheme.

Reflection symmetry is one of the useful characteristics in both real-world and man-
made objects for better description, understanding, and sometimes also being visually
attractive. Reference [33] shows the importance of symmetry and virtual views on 3D
object recognition. Reflection symmetry has been employed in diverse tasks in computer
vision such as novel view synthesis [34], texture inpainting [35] and shape recovering [36].
Symmetry correspondences are utilized for 3D reconstruction with different representation
such as curves [37], points [38] and deep implicit fields [39]. To find the symmetry corre-
spondence, these methods need either camera pose or symmetry plane as given inputs.
References [40,41] proposes symmetry detection methods for 3D reconstruction. On the
other hand, reference [39] propose an implicit function for 3D reconstruction and find
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the local details by projecting 3D points onto 2D image and applying symmetry fusion.
Symmetry prior in considerable number of object types is one of the powerful clues to
infer a complete 3D shape from single-view images [42]. Symmetry properties have pro-
vided additional knowledge about 3D structures and the entire geometry of objects in 3D
reconstruction tasks [43–46].

In this work, we propose Sym3DNet for single-view 3D reconstruction. Sym3DNet
recovers occluded and unseen symmetry shapes by sharing the symmetry feature inside
the networks performing 3D reconstruction in a complex environment. Additionally, we
incorporate 3D shape perceptual loss that improves the reconstruction of a realistic 3D
structure in both global and local 3D shapes. Extensive quantitative and qualitative evalua-
tions on ShapeNet and Pix3D datasets show an outstanding performance of the proposed
3D reconstruction from single image.

2. Proposed Method

To apply symmetry prior to 3D reconstruction, a view-orientation of 3D output with
respect to input view is critical. The orientation of reconstructed 3D output in view-centric
coordinate is aligned to the 3D camera space of input image as shown in Figure 1a. On
the other hand, in object-centric coordinates, the orientation of the 3D output is aligned
to the canonical view as shown in Figure 1b. In the canonical view, orientations of all 3D
shapes are aligned in 3D space as shown in Figure 1c. In order to include symmetric prior
inside a network, we have to know the symmetry correspondence of the 3D output. To
find the symmetry correspondences in view-centric coordinates, symmetry plane detection
is essential [41]. In a view-centric coordinate, the global reflection symmetry plane of
an object comes to vary along with the change of input view. NeRD [40] has proposed
a learning-based reflection symmetry plane detection from a single-view shape image. This
method can be extended to pose estimation, depth estimation and 3D reconstruction task.
It performs well with synthetic clean object images with uniform backgrounds. However,
symmetry plane detection with real-world images with arbitrary backgrounds becomes
a more challenging task. Therefore, incorporating an additional step of symmetry plane
detection makes the performance of 3D reconstruction dependent on the performance of
symmetry plane detection. Global reflection symmetry plane of 3D shapes in object-centric
coordinates can be defined in the canonical view. Ladybird [39] has proposed a deep implicit
field-based 3D reconstruction where local image features of the corresponding symmetry
points are fused to solve the problem of self-occlusion. To extract the local feature from
an input image, camera extrinsic parameters are either given or predicted from the input
view, which restricts the scope of single-view 3D reconstruction application. The prediction
of camera parameters is often very difficult for real-world images and reconstruction
performance is affected by the prediction performance of camera parameters.

To exploit the advantage of symmetry in view-centric coordinates, most of the methods
have to solve the symmetry detection problem which itself is challenging with real-world
images due to self-occlusion or occlusions by other objects and complicated background.
On the other hand, other methods using 3D projection onto 2D to collect symmetry corre-
spondence have to know the camera pose which is another challenging task with occlusions
and complicated background. In this work, we utilize the advantage of the canonical view
and propose voxel-wise symmetry fusion inside our network to share the symmetry prior.
Symmetry fusion helps the network to recover the missing shapes in 3D reconstruction.

Instead of using camera information or a separate symmetry detection step [39,40],
we focus on the canonical view 3D reconstruction network in which the global symmetry
plane of 3D shapes are learned implicitly and aligned, exploiting the benefits of symmetry
properties of 3D objects in 3D reconstruction. We propose a Symmetric 3D Prior Network
(Sym3DNet) for single-view 3D reconstruction. Sym3DNet is composed of two jointly
trained encoder branches: a 3D shape encoder and a 2D image encoder. A 3D decoder is
connected to the encoders so that the input 3D volume and 2D image are represented in
the same latent space and reconstruct 3D volume from the latent representation via 3D
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decoder. To incorporate the symmetric prior, the symmetry fusion module is attached to
the 3D decoder and perceptual loss is calculated. A pair of symmetry voxels share their
receptive features in the symmetry fusion module. To penalize the non-symmetric shape
in our network, we introduce a perceptual loss that has two terms: global and local. We
pass the reconstructed 3D shape and corresponding ground truth to the pre-trained 3D
shape encoder and calculate global perceptual loss based on the latent representation of
predicted and original 3D shape. In this way, global perceptual loss tries to penalize not only
reconstructed shapes deviating from original shapes but also the prediction of perceptually
unpleasant (i.e., visual discomfort) shapes. Many encoder–decoder networks [6,7,10,11]
suffer from limited performance in the reconstruction of local details. To recover local
details, the local perceptual loss is calculated from the randomly chosen partial 3D data of
reconstructed 3D object and their ground truths. For the local perceptual loss, we use a 3D
shape encoder pre-trained with randomly cropped small 3D shapes. In our experimental
evaluation, the proposed Sym3DNet achieves an outstanding performance of single-view
3D reconstruction in terms of both efficiency and accuracy on ShapeNet [47], a synthetic
dataset and Pix3D [48], a real-world dataset. The proposed method is also generalized to
unseen shape reconstruction.

(a) View-Centric Coordinate (b) Object-Centric Coordinate (c) 3D Shapes in Canonical View

Figure 1. (a) View-centric coordinate where 3D shapes are aligned to input image view in 3D
camera space. (b) Object-centric coordinate where 3D shapes are aligned to common canonical view
regardless of views of input images. (c) In canonical view, all 3D shapes are aligned in world 3D
space. Objects are symmetric with respect to the x-y plane (symmetry plane).

The goal of our method is to predict a voxelized 3D shape from a single 2D image. The
output of the 3D shape prediction is represented by a 3D voxel grid where 1 indicates the
surface of the shape and 0 indicates another empty space. Our method maps the input RGB
image to a latent representation of a 3D shape and decodes the representation obtaining
the corresponding volumetric shape. The proposed method optimizes the latent space
representation of a 3D shape so that the original 3D shape can be reconstructed in the
3D decoder. At the same time, the latent space representation of the 3D shape has to be
obtained from the corresponding 2D color image in the 2D image encoder.

First, 3D shape encoder and decoder shown in Figure 2 are trained as a 3D auto-
encoder. The 3D shape encoder takes the 3D voxel representation gt as input and transforms
3D shape into latent feature vector z(gt). The 3D decoder takes z(gt) as input and decodes
the latent feature vector to a voxel representation of a 3D shape. Then, to ensure the
transformation of the same latent feature z(gt) from a respective 2D image, our network
contains a 2D image encoder shown in Figure 2. The 2D image encoder of our network
takes a 2D RGB image I as input and transforms the 2D image into latent features z(I) and
tries to map with corresponding z(gt) in the second stage of training. Finally, we fine tune
the 2D image encoder and the 3D decoder with perceptual and reconstruction losses.
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Figure 2. Proposed symmetry 3D prior network: During first stage of our training, the 3D shape
encoder and 3D decoder are trained to learn latent space representation of 3D shapes. In second stage,
the 2D image Encoder is trained with a pre-trained 3D decoder to learn the mapping between 2D and
3D representations in latent space. Finally, perceptual loss is applied together with latent loss and
reconstruction loss.

The proposed Sym3DNet consists of two jointly trained encoders: a 2D image encoder
and a 3D shape encoder. In particular, two encoders map a 3D shape and corresponding 2D
image into the same point of latent space. The 3D output is generated by the 3D decoder
from the latent space. As our output is in canonical view, we apply a symmetry fusion
module in the 3D decoder to provide the symmetry feature fusion to our model as shown
in Figure 2. The symmetry feature fusion module shares the structural shape information in
their corresponding region of reflection symmetry and improves the prediction of the object
surface. We use perceptual loss that considers the 3D shape encoder as a high-level 3D
shape features extractor to differentiate between the original shape and the predicted shape.
We employ a local perceptual loss which tries to differentiate the local shape and a global
perceptual loss, which keeps the naturalness of the global 3D shape in the reconstruction
(Figure 2).

2.1. Symmetry Prior Fusion

The reflection symmetry plane is the x-y plane of object-centric coordinates where 3D
objects are aligned with the canonical view. With symmetrical 3D objects, the reconstructed
outputs of the 3D decoder are aligned with the canonical view as shown in Figure 1. The
features of the 3D shape in the receptive field of the 3D decoder are aligned with the
reconstructed output. So the local receptive field of the decoder is the symmetry in x-y
plane as well. If B is a voxel located at the other side of the symmetry structure of voxel A,
then we share the feature of B inside the receptive field of 3D decoder with A by feature
concatenation as shown in Figure 2. Concatenated features recover local shapes from
symmetry prior considering the neighborhood patterns of symmetry fusion as shown
in Figure 3. In the left of Figure 3, a symmetry object has a missing voxel k that has
symmetry counterpart h reconstructed correctly. In this case, voxel h has strong features
to be predicted as an object surface (Figure 3a) and the neighbor features of voxel k also
support voxel h to be predicted as the object’s surface. On the other hand, voxel k has
weak features and is going to be predicted as an empty surface. However, strong neighbor
features from h influence k to be predicted as the object surface after symmetry fusion is
applied as shown in Figure 3b.

As the symmetry features are explicitly added to the network, the symmetry fusion
module does not affect the reconstruction of 3D shapes which are partially non-symmetry.
In Figure 3c,d, we show that neighborhood patterns of symmetry fusion are able to find the
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non-symmetry shapes of an object. In Figure 3c, voxel q lies on non-symmetry structure
of an object and weak neighbor features of s are not able to influence q to be predicted as
empty space because neighbor features of q are strong. In Figure 3d, voxel s lies on the other
side of the non-symmetry structure of an object and weak neighbor features of s influence s
to be predicted as empty space even though neighbor features of q is strong. To include the
neighborhood patterns, we add a symmetry fusion module prior to the prediction layer of
the 3D decoder at a resolution of 16× 16× 16.

Figure 3. Symmetry fusion module recovers local shape and detects non-symmetry shapes. Network
learns the neighborhood symmetry patterns for 3D reconstruction. The feature spaces of symmetry
and non-symmetry object voxels in the symmetry fusion module are visualized as top view 2D grid
for simplicity. The red dotted line is a symmetry plane in 2D. The solid green line represents the
object surface with strong features. (a) Prediction of object voxel with weak features in symmetry
structure. (b) Recovering object voxel with weak features. (c,d) Detection of Non-symmetry shapes.

2.2. Reconstruction Loss

In the first step of training, the 3D shape encoder and 3D decoder are trained to get
the latent representation of 3D shapes. Both networks are optimized with reconstruction
loss lrec, which is defined as binary cross-entropy (BCE) between the reconstructed object p
and ground truth 3D object gt. The BCE loss calculates the mean of binary cross-entropy of
each voxel between p and gt. More formally we define lrec as follows:

lrec(gt, p) =
1
N

N

∑
i=0

[gti log(pi) + (1− gti) log(1− pi)], (1)

where N represents the total number of voxels. gt and p denote the ground truth voxel and
the corresponding predicted occupancy respectively.

In the second step of training, only the 2D image encoder is trained with MSE loss
between the latent features z(I) from the 2D image encoder and the latent features z(gt)
from the 3D shape encoder as shown in Equation (2). Here, latent features z(gt) are
considered as a ground truth of the corresponding 3D shape.
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llat(z(gt), z(I)) =
1
n

n

∑
i=0

(zi(gt)− zi(I))2, (2)

where I represents input images and i represents the index of latent features. n is the
number of latent features. Both the 2D image encoder and the 3D shape encoder give
an output of the same sized latent features.

In the final step of the training, we initialize the 2D image encoder from the second
step and the 3D decoder from the first step. Finally, we train the 2D image encoder and the
3D decoder with both loss lrec and llat along with perceptual loss lper.

2.3. Perceptual Loss

It is a difficult task to transfer local details observed from a 2D encoder to a 3D
decoder in a latent space. To provide local guidance, we propose local perceptual loss lperL

between partial region X of gt and corresponding region X̂ of p. We pass both X and X̂ to
a pretrained 3D shape encoder and get the respective latent representation of the partial
regions zi(X) and zi(X̂).

lperL(X, X̂) =
1
N

n

∑
i
(zi(X)− zi(X̂))

2. (3)

We apply a 3D voxel mask M to both gt and p to find X = gt�M and X̂ = p�M,
where � represents element-wise multiplication. The size of the 3D bounding box M is
randomly picked with a condition that within the bounding box of gt should contain the
object surface.

In the case of 3D reconstruction from single view, the goal is to recover the 3D shape to
visually match the perfect undistorted 3D shape. The single 2D view might have multiple
counterpart shapes which are perceptually acceptable. Using only reconstruction loss, the
output can have a mean shape problem for a counterpart. To solve the problem, we apply
a global perceptual loss LperG which is defined as follows:

lperG(gt, p) =
1
N

n

∑
i
(zi(gt)− zi(p))2, (4)

where zi(gt) are latent features of the 3D ground truth shape gt and i is the index of latent
features and p represents the predicted shape. Usually perceptual loss is calculated from
the network that is trained for object classification. In our method, we use the same 3D
shape encoder for perceptual loss calculation. Our perceptual loss includes both lperL and
lperG. We define the perceptual loss lper as follows:

lper = lperL + lperG. (5)

2.4. Network Architecture

The 3D shape encoder takes 32 × 32 × 32 3D voxels as an input. The global latent
features z(gt) are directly learned from the input voxel through the 3D shape encoder.
The 3D shape encoder consists of four 3D convolution blocks. Each 3D convolution block
contains 3D convolution, batch normalization, and ReLu activation. Four 3D convolution
layers are configured with kernel sizes of (4,4,4,4), strides of (2,2,2,1) and channels of
128,256,512,128 respectively. Our 3D shape encoder produces 128 latent features.

After getting the global latent feature vector from the 3D shape encoder, we put z(gt)
to the 3D decoder to reconstruct the respective 3D voxel from the latent space as shown in
Figure 2. The 3D decoder is designed with four deconvolution blocks including transpose
3D convolution, batch normalization, and ReLu activation. Four transpose 3D convolutions
have kernel sizes of (4,4,4,4), strides of (1,2,2,2) and channels of (512,256,256,1), respectively.
We apply an element-wise logistic sigmoid function in the output layer for each voxel. Prior
to the prediction layer, we add our symmetry fusion module as shown in Figure 2.
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The 2D image encoder takes an RGB image I as input. Latent feature vector z(I) is
extracted by the 2D image encoder from a single view RGB image to learn the respective
z(gt). In our implementation, ResNet [49] is used for the 2D image encoder. The 2D image
encoder gets a 224 × 224 image as input and extracts 128 latent features. In testing, we
remove the 3D shape encoder and keep only the 2D image encoder with a 3D decoder.

3. Experimental Evaluation

In this section, we demonstrate extensive evaluations including an elaborated ablation
study of the proposed method compared with state-of-the-art methods.

3.1. Data Sets

The ShapeNet dataset [47] is the collection of 3D object models based on WorldNet
Taxonomy. In our experiment, we have used a subset of ShapeNet which consists of 44 K
subjects of 13 major categories out of 55 categories. Following [7], we split 80 percent of
the whole dataset into a training set and the rest of the dataset into a testing set. In the
training, the output is voxels which are rendered from a 3D computer-aided design (CAD)
model. The rendered voxels are aligned with the canonical view. We use the rendering
method of [7], which consists of 24 random view images with a size of 137× 137 for each
3D CAD model. As the synthetic rendered images have a transparent background, we
consider a uniform color background to the image for qualitative results visualization.
To evaluate the proposed method with real-world images, we use Pix3D dataset [48]
for test. Pix3D provides real-world shape images and perfectly aligned CAD models.
Pix3D dataset consists of 395 CAD models from nine categories. Each 3D object model is
associated with multiple real-world object images. Following [48], we conduct our testing
on 2894 unoccluded and untruncated images from the chair category.

3.2. Evaluation Metric

To evaluate the quality of our proposed method, we obtain an occupancy map with
threshold t = 0.3 [11] and employ intersection over union (IoU) as a evaluation metric.
More formally,

IoU =
∑N

i I(gti > 0)I(pi > t)

∑N
i I((I(gti > 0) + I(pi > t)) > 0)

, (6)

where pi and gti are the predicted probabilities of being in object volume and ground truth
respectively. I(.) denotes an indicator function and t is the threshold for voxel binarization.
Higher IoU means better reconstruction performance. We calculate F-score based on [50].

F-score(d) =
2P(d)R(d)

P(d) + R(d)
, (7)

where d is the distance threshold. P(d) and R(d) represent the precision and recall, respec-
tively.

P(d) =
1

kR
∑

r∈R

[
min
g∈G
‖g− r‖ < d

]
, (8)

R(d) =
1

kG
∑
g∈G

[
min
r∈R
‖r− g‖ < d

]
, (9)

where G and R are point clouds from ground truth and prediction, respectively. k is
the number of points in G and R. To generate a point cloud from voxel, first we apply
marching cubes [51] to generate mesh of 3D surface. Then, we sample 8192 points from
a generated mesh to calculate F-score between point cloud from prediction and ground-
truth following [11]. Based on the suggestion of [50], we consider d = 1% of the side length
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of the reconstructed volume which is more indicative to evaluate the prediction quality.
Higher F-score indicates better reconstruction.

3.3. Training Protocol

In the first phase of training, we use 32 × 32 × 32 voxels as input and output for the
3D shape encoder and 3D decoder. We train the 3D shape encoder and decoder using the
Adam optimization technique [52]. The initial learning rate is set to 0.001 and the total
number of epochs is 150 in the first stage of training. In the second step, we use random
view 224 × 224 RGB images as input to train the 2D image encoder where the output is the
latent features of a length of 128. In this case, target latent features are the output of the 3D
shape encoder taking respective 3D voxels as the input. We augment our training input
images by applying random flip, random background, random color and light jittering
following the method [11]. In the training phase, we use an Adam optimizer [52] with
an initial learning rate of 0.001 divided by 2 after every 150 epochs up to 500 epochs. Finally,
we fine-tune 2D image encoder and 3D decoder jointly feeding a random view of input
image for 150 epochs with both reconstruction loss lrec + llat and perceptual loss lper. In this
step, we initialize the 3D decoder from the pretrained model of our first step training and
the 3D image encoder from the pretrained model of our second step training.

3.4. Ablation Studies

We define a baseline model that does not have a 3D shape encoder and a symmetry
fusion module compared to the proposed Sym3DNet. With the baseline, we directly train
the 2D image encoder and the 3D decoder without a symmetry fusion module with only
reconstruction loss lrec. To show the effectiveness of 3D embedding, we add the 3D shape
encoder to the baseline and apply training step 1 with lrec loss. Finally, we train the 2D
image encoder with llat and achieve a significant improvement in terms of IoU and F-score
as shown in Table 1.

Table 1. The effect of the symmetry fusion module and perceptual loss in our proposed network in
terms of IoU and F-scores.

3D
Embedding

Symmetry
Fusion

Perceptual
Loss IoU F-Scores

Baseline 0.657 0.396
Baseline+llat Loss X 0.677 0.427

Sym3DNet w/o lper Loss X X 0.686 0.437
Sym3DNet X X X 0.689 0.440

Sym3DNet without lper loss shows better reconstruction results than baseline in terms
of IoU and F-scores (Table 1). Reconstruction results of Sym3DNet without lper loss are
mostly symmetric as shown in Figure 4. As Baseline and Pix2vox++ [11] do not provide
any symmetry guidance of an object, small structures of a 3D shape are reconstructed
independently without having any influence of respective symmetry structures of the
object. The reconstruction depends only on the latent features extracted from the 2D input
image. If the 3D decoder fails to reconstruct any local surface from latent features, the
symmetry fusion module in the decoder helps to reconstruct the local surface influenced by
the counterpart features of the symmetry surface guided by the symmetry fusion module.
Baseline, Pix2vox++ and Sym3DNet without lper loss suffer from recovering small local
details in 3D reconstruction. Applying perceptual loss lper to our proposed network, we get
improved 3D reconstruction results recovering local details as shown in Figure 4 such as
the small details of a bench in the second example and the lower parts of float plane in the
fourth example. The fifth example in Figure 4 has a partially non-symmetry structure. The
proposed symmetry guidance keeps the structure of the non-symmetry part and affects
only the symmetry part.
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Input Baseline Baseline + llat Loss Pix2vox++ Sym3DNet Sym3DNet Ground Truth
w/o lper Loss

Figure 4. The effects of symmetry fusion, perceptual loss and 3D embedding in single view 3D
reconstruction and comparison between baseline and state-of-the-art method Pix2vox++ [11]: Baseline
network consists of 2D image encoder and 3D decoder without symmetry fusion module. We provide
3D embedding from 3D shape encoder for baseline (with llat) network. We also compare Sym3DNet
without perceptual loss (lper).

We observe in our experiment that a bigger size of the latent feature vector preserves
both local and global details of a 3D object as shown in Table 2 for the 3D-3D auto-encoder.
However, the bigger size of latent representation is difficult to learn from a single view RGB
image due to occluded and missing part of an object. In Table 2, we show a comparison of
the IoU and F-scores of our method with different lengths of latent features for both 3D-3D
and 2D-3D. In this study, we use Resnet18 [49] for the 2D image encoder.

Table 2. Comparing IoU and F-scores of our method with different length of latent feature vector. We
highlight the best scores in bold.

Lenth
3D-3D 2D-3D

IoU F-Scores IoU F-Scores

64 0.847 0.601 0.670 0.417
128 0.873 0.640 0.673 0.429
256 0.891 0.658 0.666 0.422
512 0.900 0.673 0.662 0.421

To provide a more detailed analysis of transforming single view 2D input image into
3D latent representation, we train the 2D image encoder with different backbone networks
as shown in Table 3. When the 2D image encoder is deeper, it produces a 3D representation
from a single 2D image better.
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Table 3. Comparing IoU Result with different backbone network for the 2D image encoder. We
highlight the best scores in bold.

Backbone IoU F-Scores

VGG 0.593 0.362
ResNet18 0.673 0.429
ResNet50 0.683 0.437
ResNet101 0.689 0.440

3.4.1. Evaluation on ShapeNet Data Set

We performed an experimental comparison of our method with several state-of-
the-art methods including 3D-R2N2 [7], Matryoshaka [26], OGN [25], Pixel2Mesh [28],
AtlasNet [53], IM-Net [54], OccNet [55], AttSets [10], Pix2Vox++ [11] on the ShapeNet test
dataset. Tables 4 and 5 show the IoU and F-Score of all methods. For fair comparison, we
follow the same evaluation scheme described in [11]. The proposed method outperforms
prior methods in both IoU and F-score that are illustrated in Tables 4 and 5. Figure 5
shows single-view 3D reconstruction results, where we observe that the proposed method
generates cleaner and more visually convincing 3D shapes than others. For example, the
proposed method shows better reconstruction results with legs and handles of chairs, small
details in the car and the tail of the plane, and so forth, as shown in Figure 5.

Table 4. Comparison of 3D shape reconstruction from single view on ShapeNet13. We provide
Intersection of Union (IoU) scores per category. We provide the mean IoU of each category. For the
best category, we highlight the scores in bold.

Category 3D-R2N2 Matryoshka OGN Pixel2Mesh AtlasNet IM-Net OccNet AttSets Pix2Vox++ Sym3DNet[7] [26] [25] [28] [53] [54] [55] [10] [11]

airplane 0.513 0.647 0.587 0.508 0.493 0.702 0.532 0.594 0.674 0.710
bench 0.421 0.577 0.481 0.379 0.431 0.564 0.597 0.552 0.608 0.656

cabinet 0.716 0.776 0.729 0.732 0.257 0.680 0.674 0.783 0.799 0.811
car 0.798 0.850 0.828 0.670 0.282 0.756 0.671 0.844 0.858 0.872

chair 0.466 0.547 0.483 0.484 0.328 0.644 0.583 0.559 0.581 0.600
display 0.468 0.532 0.502 0.582 0.457 0.585 0.651 0.565 0.548 0.580
lamp 0.381 0.408 0.398 0.399 0.261 0.433 0.474 0.445 0.457 0.473

speaker 0.662 0.701 0.637 0.672 0.296 0.683 0.655 0.721 0.721 0.723
rifle 0.544 0.616 0.593 0.468 0.573 0.723 0.656 0.601 0.617 0.652
sofa 0.628 0.681 0.646 0.622 0.354 0.694 0.669 0.703 0.725 0.740
table 0.513 0.573 0.536 0.536 0.301 0.621 0.659 0.590 0.620 0.629

telephone 0.661 0.756 0.702 0.762 0.543 0.762 0.794 0.743 0.809 0.814
watercraft 0.513 0.591 0.632 0.471 0.355 0.607 0.579 0.601 0.603 0.626

Overall 0.560 0.635 0.596 0.552 0.352 0.659 0.626 0.642 0.670 0.689

Table 5. The comparison of 3D shape reconstruction from single view on ShapeNet13. We provide
F-scores for each category. We use the marching cube algorithm for voxel reconstruction to triangular
mesh output. For the best category, we highlight the scores in bold.

Category 3D-R2N2 Matryoshka OGN Pixel2Mesh AtlasNet IM-Net OccNet AttSets Pix2Vox++ Sym3DNet[7] [26] [25] [28] [53] [54] [55] [10] [11]

airplane 0.412 0.446 0.487 0.376 0.415 0.598 0.494 0.489 0.583 0.596
bench 0.345 0.424 0.364 0.313 0.439 0.361 0.318 0.406 0.478 0.492

cabinet 0.327 0.381 0.316 0.450 0.350 0.345 0.449 0.367 0.408 0.425
car 0.481 0.481 0.514 0.486 0.319 0.304 0.315 0.497 0.564 0.574

chair 0.238 0.302 0.226 0.386 0.406 0.442 0.365 0.334 0.309 0.302
display 0.227 0.400 0.215 0.319 0.451 0.466 0.468 0.310 0.296 0.313
lamp 0.267 0.276 0.249 0.219 0.217 0.371 0.361 0.315 0.315 0.324

speaker 0.231 0.279 0.225 0.190 0.199 0.200 0.249 0.211 0.152 0.290
rifle 0.521 0.514 0.541 0.340 0.405 0.407 0.219 0.524 0.574 0.583
sofa 0.274 0.326 0.290 0.343 0.337 0.354 0.324 0.334 0.377 0.399
table 0.340 0.374 0.352 0.502 0.371 0.461 0.549 0.419 0.406 0.385

telephone 0.504 0.598 0.528 0.485 0.545 0.423 0.273 0.469 0.633 0.613
watercraft 0.305 0.360 0.328 0.266 0.296 0.369 0.347 0.315 0.390 0.410

Overall 0.351 0.391 0.368 0.398 0.362 0.405 0.393 0.395 0.436 0.440
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Input 3D-R2N2 AtlasNet Pixel2Mesh OccNet AttSets Pix2Vox++ Sym3DNet Ground Truth

Figure 5. Examples of 3D shape reconstruction from single-view on synthetic dataset (ShapeNet):
32× 32× 32 is the resolution of reconstructed output volumes for voxel-based reconstruction methods.

3.4.2. Evaluation on Unseen Data

We conduct an additional test to evaluate the generalization ability of our method to
unseen shape reconstruction. For this experiment, we collect 3D shapes from the remaining
44 categories of the ShapeNetCore [47] dataset and render 2D views using the blender.
For testing unseen shapes, we use a pretrained model. During the training, our model
has never seen these shape categories. More specifically, we use 13 major categories of
ShapeNet rendered by [56] for training and selecting shapes from the remaining categories
for the test. In Figure 6, we demonstrate a visual comparison of our method with the
state-of-the-art method [11]. We use their pretrained model [11] trained with the same
data for the visualization of their test result on unseen shape reconstruction. Our result
on an unseen class in Figure 6 shows that our model reasonably reconstructs the unseen
3D shape. This result indicates that the latent representation of a 3D shape preserves the
structural information. Our 2D image encoder extracts the structural information from the
2D RGB image.

3.4.3. Evaluation on Real-World Images

To evaluate the performance of our method for real-world single view reconstruction,
we test our model on the Pix3D [48] dataset. We train our model on ShapeNet-chair and test
on the chair category of the Pix3D dataset. For training, we render 20 random views with
real-world background for each chair model of ShapeNet [47]. The background contains
uniform color, long-dynamic-range scene, and randomly sampled indoor scene from SUN
database [57]. In addition, we augment training data with a random color and jittering
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lighting. At first, we crop the input image with a bounding box and then rescale it according
to the requirement of the network. We provide mean IoU and F-scores of the Pix3D dataset
result in Table 6. The proposed method performs better than the state-of-the-art methods
in terms of both IoU and F-scores.

Input Pix2Vox++ Sym3DNet Ground Truth

Figure 6. Single view reconstruction on unseen object from ShapeNet datasets.

Table 6. Comparison of 3D reconstruction from single-view on a real-world dataset (Pix3D) at 32 ×
32 × 32 resolution.

Network IoU F-Scores

ShapeHD [24] 0.284 -
Pix3D [48] 0.282 0.041

Pix2Vox++ [13] 0.292 0.068
FroDo [58] 0.325 -

Sym3DNet w/o lper Loss 0.325 0.147
Sym3DNet 0.346 0.150

Figure 7 shows several real-world sample results showing that our method generates
visually better and cleaner results. For the visualization of [48], we collect their testing
result which contains the prediction probability and apply a threshold of 0.1 to create binary
voxel grids. In Figure 8, our results have a promising reconstruction on challenging 2D
inputs such as occlusion, transparent shape and noisy input.
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Input Baseline Pix3D Sym3DNet Sym3DNet Ground Truth
w/o lper Loss

Figure 7. Three dimensional reconstruction from single view on the Pix3D testing set of chair category.

Input Pix2Vox++ Sym3DNet Ground Truth

Figure 8. Single view reconstruction of proposed method on challenging situations such as noisy
input, occluded and transparent object.
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3.4.4. Space and Time Complexity

For computational complexity, we compare the memory usage, inference time and
number of parameters of the proposed method with several state-of-the-art methods as
shown in Table 7 and Figure 9. For fair comparison, we collect all values of Table 7 from [11]
and follow their scheme to obtain the values of the proposed method.

Table 7. Comparison of our method in terms of memory, time inference, and number of parameters
with state-of-the-art methods. The memory is calculated considering the backward computation with
batch size of 1.

Methods Pixel2Mesh AtlasNet IM-Net OccNet AttSets 3D-R2N2 Pix2Vox++ Sym3DNet Sym3DNet
[28] [53] [54] [55] [10] [7] [11] (resnet18) (resnet101)

Parameters (M) 21.36 45.06 55.45 13.43 17.71 35.97 96.31 25.93 57.46
Memory (MB) 1289 1293 3935 955 3911 1407 2411 158 892

Inference Time (ms) 60.78 38.47 10,886 12.61 26.32 78.86 10.64 2.68 4.11

Figure 9. Intersection over Union (IoU), Model size, Number of Parameters and memory consumption
of state-of-the-art methods for 3D shape reconstruction from single-view: The radius of the circle
represents the size of corresponding models with respect to the number of parameters. Color of the
circles represents the memory usage by the respective model (blue is lower and red is higher). In
terms of inference time, IoU, and Memory usage, the proposed method outperforms all state-of-the-
art methods.

4. Conclusions

In this paper, we propose a symmetry 3D prior network for single-view 3D shape
reconstruction. In our proposed method, we introduce a symmetry feature sharing scheme
to infer the missing shapes from single-view and perceptual loss, which consists of both
global and local terms. Global perceptual loss recovers the naturalness of the 3D shape
and local perceptual loss recovers the detailed structures of a 3D shape. The proposed
method outperforms state-of-the-art methods in 3D reconstruction in both quantitative
and qualitative evaluations. Our method is computationally efficient compared to prior
methods, considering both memory and time.
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