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Abstract: The subject of this work is the analysis of methods of detecting soiling of photovoltaic
panels. Environmental and weather conditions affect the efficiency of renewable energy sources.
Accumulation of soil, dust, and dirt on the surface of the solar panels reduces the power generated
by the panels. This paper presents several variants of the algorithm that uses various statistical
classifiers to classify photovoltaic panels in terms of soiling. The base material was high-resolution
photos and videos of solar panels and sets dedicated to solar farms. The classifiers were tested and
analyzed in their effectiveness in detecting soiling. Based on the study results, a group of optimal
classifiers was defined, and the classifier selected that gives the best results for a given problem. The
results obtained in this study proved experimentally that the proposed solution provides a high rate
of correct detections. The proposed innovative method is cheap and straightforward to implement,
and allows use in most photovoltaic installations.
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1. Introduction

Since the 1950s, the temperature on Earth has risen on average by 0.2 C per decade.
The temperature rise has a negative impact on the environment [1,2]. The consequences of
climate warming include heatwaves deadly for humans, drinking water shortages, food
production decline, coral reef degradation, and glacier melting [3]. To limit global warming,
the European Union (EU) under the European Green Deal [4] initiated a strategy to achieve
climate neutrality by 2050. The EU strategy has been endorsed by the European Parliament
and the European Council, 2020 [5,6]. In order to achieve this goal, it is necessary to increase
the use of renewable energy sources, which can achieve by building new renewable energy
installations and increasing their energy efficiency.

Photovoltaics (PV) convert light into electricity using semiconductor materials that
exhibit a photovoltaic effect. Solar cells are used to convert solar energy into electricity.
The energy generated by solar cells is called “green energy”. This means that it comes
from a natural and renewable energy source, the sun, and its production does not release
pollutants into the air [7]. This assumption is valid, but only after approximately three
years of operation of the PV module because the energy expenditure needed to produce it
is returned after this time [8]. In addition, the production of energy used to make the panel
generates 300 kg CO2 in the atmosphere. Advantages of photovoltaics compared to other
types of RES are:

– Positive correlation between the intensity of sunlight and the daily demand for elec-
tricity,

– Increased generation in the summer period correlated with the demand for cold, and
– It enables the use of brownfield sites and poor-quality land, as well as building

roofs [9].
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The TÜV Rheinland Institute identified the most common problems based on its data
from photovoltaic farms (Figure 1), industrial installations, and home micro-installations.
We include among them:

– Dirt on PV panels,
– Incorrect installation,
– Shading,
– Discoloration of EVA foil,
– Glass breakage,
– Degradation by induced voltage,
– Path snails,
– Defective protective foil,
– Spot heating of panels [10].

The most common problem is dirty panels, which translates into huge losses in energy
generated [11,12], as shown in 1. The dust accumulated on the surface of the photovoltaic
panel comes mainly from the soil, rocks, construction debris, particles from car traffic, bird
droppings, and pollen [13]. Dust accumulation on the surface of the panels obstructs the
light, preventing it from reaching the PV cells, reducing energy production [14,15]. The
energy loss depends on the amount of dust, particle size, and chemical composition of the
powder. Contaminants have different effects on the light transmission process. Some dust
particles can reduce the efficiency of photovoltaic devices by up to 98 [16,17]. To effectively
produce electricity using PV cells, it is necessary to ensure failure-free operation of the PV
installation throughout its lifetime (even up to 30 years), and a quick return on investment
outlays. For this purpose, it is necessary to develop a fast, reliable, and straightforward
method of checking the cleanliness of PV cells [18,19].

Figure 1. Missing electricity production due to various types of failure of solar panels [10].

2. Requirements

The system (Figure 2), which the algorithm is to be a part of, consists of a drone
equipped with a high-resolution camera, an edge computing unit, automatic cleaning
devices, and, optionally, may also consist of cloud computing. The principle of the system
is as follows. The drone uses a camera to record video material showing PV panels in
a given area. The recorded video material is sent to a computing unit, which extracts
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individual frames from the video. It then analyzes them using the algorithm proposed, in
this work, to detect dirty PV panels [20]. After detecting such a module, information about
the need to clean the PV modules is sent to the cleaning devices. The photos collected can
be sent to cloud computing for further analysis, e.g., to improve the algorithm’s operation.

Figure 2. System.

The classification of a PV panel is to assign it to one of two classes (Figure 3):

– Clean,
– Dirty.

A clean panel works with the most excellent possible efficiency under the given
atmospheric conditions, or the decrease in efficiency due to impurities on its surface is less
than 25%. In turn, a dirty panel is one for which we notice a reduction in performance by
at least 25%.

Figure 3. The classification of a PV panel—one of two classes.

2.1. Drone Photo Sourcing

In the case of video materials obtained from a drone (digital sensors), spatial resolution,
the Ground Sampling Distance (GSD) [21], is of crucial importance. It measures the distance
in the field between the centers of two adjacent pixels (Figure 4). For each measurement
mission of the drone, the GSD is defined before the task [22]. Typical values for this type of
task should be in the range of 1.5 cm–45 cm. In the case of monitoring photovoltaic panels,
it is necessary to determine which defects and the amount of dirt must be detected [23].
To detect panels with mechanical problems, set the GSD within 25 cm. To detect physical
damage or points more minor than the entire panel, set the GSD between 5–16 cm. In the
case of dust and dirt detection missions, set the GSD > 2 cm—this will allow you to detect



Sensors 2022, 22, 483 4 of 18

even small contaminants on the panels [24]. The tested system uses RGB cameras with a
resolution of 20 MP and a 1/1.7′′ CMOS matrix (DJI Zenmuse H20).

Figure 4. Ground sampling distance definition.

2.2. The Research Material

The input data will be the photographic material recorded on the test stand reflecting
the actual conditions on the photovoltaic farm. The photographic material consists of
70 photos encoded in JPG format. The images show one, two, three, or four solar panels.
The detailed breakdown is as follows:

– 60 photos containing one panel,
– 4 photos containing two panels,
– 4 photos containing three panels,
– 2 photos contain four panels.

The research material contained a total of four different polycrystalline PV panels,
44 clean and 44 dirty panels in total. First, pictures of clean PV panels were taken, then the
dirt from the soil, rocks, construction debris, and particles from car traffic was gradually
applied to them, and at a power drop of 10%, a photo was taken until archived a power
drop of 50% compared to maximum power.

The images were taken:

– With adequate sunlight. The images were taken during the day with a minimum
solar radiation intensity of 500 W/m2, because below this value the PV panels are
insufficiently illuminated, which means that the contrast of the photo is too low to
extract the information that is important to us. The project does not assume artificial
lighting of PV panels.

– Under appropriate weather conditions. Pictures cannot be taken during rainfall,
as they introduce unwanted artifacts into the picture, making subsequent analysis
difficult.

– At a minimum angle of 45 ◦ to the panel surface. Smaller values may make it impossible
to extract the panel from the photo.

– At different times of the year. This approach will enable the use of classifiers through-
out the year.

3. Statistical Classifiers to Classify Photovoltaic Panels

The project presents several algorithm variants that use different statistical classifiers
to classify photovoltaic panels into one of two classes, clean or dirty, based on observation
(feature vector). For the classification, it decided to use the characteristic feature of dirt. The
image saturation decreases in the place where they occur, the image saturation decreases,
and its luminance increases. Due to the two classes and two features, binary classifiers
have been selected to classify observations with two parts. The algorithm consists of two
stages: classifier training and classification. The photo material was divided into two sets: a
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training set composed of 32 photos of clean panels and 32 photos of dirty panels. A test set
consisted of 12 pictures of clean panels and 12 photos of dirty panels. Before classification,
the image is pre-processed to remove unwanted background and leave only the PV module
in the picture.

3.1. Extracting a Panel from a Photo

The first step in classification is to detect the PV module in the image. The PV surface
is found in the image and extracted from the background at this stage. Any additional
information is dropped from the input image.

This process takes place in three steps:

– Detection of all edges in the photo,
– Finding the edge of the PV panel,
– Application of a forward-looking transformation [25].

The result of each of these steps is shown in Figure 5.

Figure 5. Successive stages of extracting the PV panel from the photo. 0—starting image; 1—detected
edges in the picture; 2—outer edges of the PV panel found; 3—the result of the perspective transfor-
mation.

3.2. Observation

By visually comparing a clean and dirty panel, you can see that the surface of the
dirty panel looks dull and lacks color intensity. This is because the dominant color of the
dust is gray, and the shades of gray are not saturated. In addition, the surface of the pure
solar panel is dark as the cell material absorbs incident light. Therefore, the amount of light
reflected by the panel is limited. For a dirty PV module, its surface looks brighter because
less light is absorbed by the cell, and therefore more light is reflected from the surface
and scattered by the deposits [26]. Table 1 shows the average values of color saturation
and luminance for the same panel in two cases, when clean and dirty. Figure 6 shows a
visual comparison of this panel. These panels differ mainly in appearance. No structure is
visible, no light reflection, surface heterogeneity. In turn, Figure 7 presents all the results of
observations in a graphical form. These values confirm the hypothesis that for dirty panels,
the image saturation decreases, and the luminance increases.
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Table 1. Average values of saturation and luminance for a clean and dirty panel.

Clean Dirty

Saturation 0.4707 0.0891

Luminance 84.3143 143.0543

Figure 6. A clean panel (left) and a dirty panel (right) a comparison.

Figure 7. Observation results.

Image luminance is a value representing the image’s brightness, calculated by ITU
BT.601 [27]. For each pixel, calculate its luminance value and then calculate the arithmetic
mean of these values.

To calculate the saturation value of the image, you can use the fact that the saturation
is one of the components of the HSV model. So you can convert the image from RGB
to HSV, extract the component corresponding to the saturation for each pixel, and then
calculate the arithmetic mean of these values.

3.3. The Classifier of the k Nearest Neighbors

The classifier of the k nearest neighbors (kNN) classification method assigns a classified
object to the class that is most frequently represented among the k closest neighbors from
the training set [28]. In order to find the k nearest neighbors of the test object, the Euclidean
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distance between the test object and all training objects is calculated [29]. In this case, the
classifier consists of two features, so it is two-dimensional, which means that can lace of the
things be placed on the Euclidean plane in the form of a point with Cartesian coordinates.
Then, the Euclidean distance between two points is expressed by the formula:

d(p, q) =
√
(p1 − q1)2 + (p2 − q2)2 (1)

where:
p—first point;
q—second point;
d(p, q)—Euclidean distance between points p and q;
p1—coordinate X of point p;
p2—coordinate Y of point p;
q1—coordinate X of point q;
q2—coordinate Y of point q.
As shown in Table 1, the values of saturation and contrast differ significantly in terms

of magnitude, so the difference would dominate the calculated Euclidean distance because
it affects the distance value much more. For this reason, it is necessary to normalize
the value so that all dimensions for which the distance is calculated are equally relevant.
Normalization consists of making the variable’s values belong to the interval [0, 1]. The
formula that expresses it:

xj(i) =
xj(i)−min(xj)

max(xj)−min(xj)
(2)

where:
i—next vector index;
j—index of feature;
max(xj)—the maximum value of the variable j;
min(xj)—the minimal value of the variable j.
Test data also needs to be normalized. When normalizing the test set, one should use

the maximum and minimum values determined on the training set. Figure 8 shows the
decision surface for the kNN classifier for k = 7.

Figure 8. Decision area for the kNN classifier for k = 7.
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3.4. Naive Bayesian Classifier

The naive Bayes classifier is a simple probabilistic classifier that assumes that all fea-
tures are mutually independent, hence the so-called “naivety” of this classifier. It uses Bayes’
theorem, and the classification result is based on a conditional probability comparison. The
class for which the posterior probability value is the highest is selected [30].

P(Yk|X) =
P(X|Yk)P(Yk)

P(X)
(3)

where:
Y—vector of classes;
Yk—class;
X—vector of features of classified object;
Xi—feature;
P(Yk)—probability a priori;
P(X|Yk)—probability of occurrence;
P(Yk|X)—probability a posteriori;
P(X)—probability of occurrence of set of features.
Using the assumption of the classifier’s naivety:

P(X|Y) =
n

∏
i=1

P(Xi|Y) (4)

where:
P(X|Yk)—probability of occurrence;
P(Xi|Y)—conditional probability of occurrence of a given feature provided that a

given class occurs.
The values of the features are continuous, so we assume that for each part Xi the

distribution P(Xi|Yk) is a normal distribution:

P(Xi|Yk) = N(µik, σ2
ik) =

1√
2πσ2

ik

e
−

1
2σ2

ik
(Xi−µik)

2

(5)

µik =
1

m
∑

j=1
1Y(Y j = Yk)

m

∑
j=1

X j
i 1Y(Y j = Yk) (6)

σ2
ik =

1
m
∑

j=1
1Y(Y j = Yk)

m

∑
j=1

(X j
i − µ2

ik)1Y(Y j = Yk) (7)

where:
1Y—indicator function;
σ2

ik—variance;
µik—average value.
In the case under consideration, we have 2 features and 2 classes:

X = [Xsaturation, Xluminance] (8)

Y = [Yclean, Ydirty] (9)

therefore:

P(Yclean|X) =
P(Yclean) ∗ P(Xsaturation|Yclean) ∗ P(Xluminance|Yclean)

P(X)
(10)
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P(Ydirty|X) =
P(Ydirty) ∗ P(Xsaturation|Ydirty) ∗ P(Xluminance|Ydirty)

P(X)
(11)

To compare P(Yclean|X) and P(Ydirty|X), it is not necessary to calculate P(X) because
this value is constant and only serves as a scaling function. This approach reduces the
computational effort of the classifier. The classifier’s decision rule is as follows:

Yk =

{
clean if P(Yclean|X) > P(Ydirty|X)
dirty otherwise

(12)

Figure 9 shows the decision surface of the naive Bayes classifier.

Figure 9. Decision surface for the naive Bayesian classifier.

3.5. Fisher’s Linear Discriminator

The Fisher Linear Discriminator (FLD) is used for supervised classification and pro-
duces a linear discriminant rule. The task of discriminant analysis for two classes can be
defined as [31]:

find the direction a, hat best separates the learning subgroups, and as a measure of
class separation along a given direction a take the square of the distance between
the arithmetic means of the subgroups along this direction, taking into account
the variability of the intra-group observation.

(a′x2 − a′x1)
2

a′Wa
(13)

The direction of a best separating the classes is the direction that maximizes the
expression (13):

argmaxa
(a′x2 − a′x1)

2

a′Wa
(14)
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The solution is:
a = W−1(x2 − x1) (15)

where:
W—intragroup covariance matrix;
a—direction vector of the searched line;
x1—group mean of observations included in the class clean;
x2—group mean of observations included in the class dirty;
n1—number of observations included in the class clean;
n2—number of observations included in the class dirty.
The observations can be divided into a subgroup of observations classified as class

clean and into a subgroup of observations classified as class dirty:

x11, x12, . . . , x1n1observations from class clean

x21, x22, . . . , x2n2observations from class dirty

Then, we can write the group averages as:

xk =
1
nk

nk

∑
i=1

xki dla k = 1,2. (16)

In order to assess the intragroup variability of the covariance matrix, it is necessary to
assume that both subgroups have the same covariance matrix, then:

W =
1

n− 2

2

∑
k=1

(nk − 1)Sk =
1

n− 2

2

∑
k=1

nk

∑
l=1

(xkl − xk)(xkl − xk)
′ (17)

where:
n = n1 + n2
Sk—sample covariance matrix of subgroup k;
x′—vector transposition x.
Having the designated direction a, both means of classes x1 i x2 and the new observa-

tion x, we can define the classification rule:

X =

{
clean if |a′x− a′x1| < |a′x− a′x2|
dirty otherwise

(18)

where:
x—new observation;
X—the class assigned to the new observation.
What after qualifying the boundary case to class clean comes down to the following

decision rule:

X =

{
clean if (x2 − x1)

′W−1[x− 1
2
(x1 + x2)] > 0

dirty otherwise
(19)

Figure 10 shows the discriminant line. It is a straight line perpendicular to the line a
and passing through the middle of the line connecting points ax1 and ax2. The discriminant
line equation is as follows:

xL = 170, 5716401240xN + 44, 975372529300 (20)

where:
xN—value of saturation;
xL—value of luminance.
Figure 11 shows the designated decision areas.
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Figure 10. Decision boundary between classes.

Figure 11. Decision surface for the linear Fischer discriminant.

4. Analysis and Research

The aim of the work was to test the quality and effectiveness of the proposed classifiers.
For this purpose, the classic metrics of binary classification were used [32]. The decision
surfaces of classifiers were also analyzed. In the case of the kNN classifier, its various
variants were analyzed to select the optimal value of the k parameter.
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4.1. kNN Classifier

TThe kNN classifier is characterized by the fact that for a new observation, the class
that is most frequently represented among the k closest neighbors from the training set is
selected. The correct performance of this classifier depends on the number of neighbors.
The problem is the difficulty of selecting a priori the appropriate value for the k parameter,
so different values of this parameter were analyzed. Only odd values of k have been
considered, as such values guarantee that there will be no draw situation.

k ∈ {1, 3, 5, 7, 9, 11, 13} (21)

Table 2 presents the results of the classification for different values of the k parameter.
Based on these results, classic binary classification metrics have been developed, which can
be found in the Table 3. The test set consisted of 12 clean panels and 12 dirty panels.

It can be concluded that the optimal value of the k parameter is 7. For this value,
the kNN classifier is characterized by the highest sensitivity, specificity and precision.
Additionally, the F1 metric reaches the highest value for k = 7, which can be seen in the
Figure 12.

Table 2. Classification results for different values of parameter k.

k P N TP TN FP FN

1 12 12 10 8 4 2

3 12 12 10 10 2 2

5 12 12 11 10 2 1

7 12 12 11 11 1 1

9 12 12 10 11 1 2

11 12 12 10 10 2 2

13 12 12 9 8 3 2

Table 3. Classic binary classification metrics for different values of parameter k.

k TPR TNR PPV NPV F1

1 83% 67% 71% 80% 77%

3 83% 83% 83% 83% 83%

5 92% 83% 85% 91% 88%

7 92% 92% 92% 92% 92%

9 83% 92% 91% 85% 87%

11 83% 83% 83% 83% 83%

13 75% 67% 69% 73% 72%

4.2. Decision Surfaces

Figure 13 shows the decision surfaces of the classification of the 7NN classifier, the
naive Bayes classifier and the linear Fischer discriminant. In order to compare these surfaces,
the luminance and saturation values have been normalized so that, for each classifier, the
values are determined from the same selected range.

Comparing the decision surfaces of the naive Bayes classifier and the linear Fischer
discriminant, it can be concluded that these surfaces are similar to each other. Although
the naive Bayes classifier is not a linear classifier, for this classifier, the boundary between
two classes is similar to a straight line and resembles the boundary of a linear Fischer
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discriminant. In the case of the kNN classifier, its decision boundary is more wavy than for
the other classifiers.

Figure 12. The value of the F1 metric depending on the parameter k.

4.3. Metrics and Results

To test the quality and effectiveness of the proposed classifiers, traditional binary
classification metrics were used. The following classic binary classification metrics were
used to assess the correctness of the type: TPR, TNR, PPV, NPV, and F1 [33]. Table 4
presents the results of panel classification into classes clean and dirty. The individual lines
contain the results for each of the tested classifiers. The columns provide information on
the number of clean and dirty panel samples tested, the number of true positives and true
negatives detected, and the number of false positives and false negatives seen.

Figure 13. Cont.



Sensors 2022, 22, 483 14 of 18

Figure 13. Decision surfaces of each classifier.

Table 4. Classification results.

Classifier P N TP TN FP FN

The classifier of the k nearest neighbors 12 12 10 11 1 2

Naive Bayesian classifier 12 12 11 11 1 1

Fisher’s linear discriminator 12 12 11 10 2 1

Based on the results from Table 4, the classic binary classification metrics have been
developed, which are presented in Table 5. The lines of this table present the metrics of
each classifier, and the individual columns contain information about TPR, TNR, PPV, NPV,
and F1.
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Table 5. Classic metrics for binary classification.

Classifier TPR TNR PPV NPV F1

Classifier 7NN 83% 92% 91% 85% 87%

Naive Bayesian classifier 92% 92% 92% 92% 92%

Fisher’s linear discriminator 92% 83% 85% 91% 88%

Based on the research, it can be concluded that the Naive Bayesian classifier is charac-
terized by the highest efficiency of detection of contaminated panels. All metrics for this
classifier are the highest and amounted to 92%. For the 7NN classifier, the TPR, PPV, NPV,
and F1 values are lower than for the Naive Bayes classifier, and the TNR value is the same.
As for the linear Fischer discriminator, the TNR, PPV, NPV, and F1 values are lower than
for the Naive Bayes classifier, and the TPR value is the same. Figure 14 shows.

The conducted research shows that the naive Bayes classifier is the optimal classifier
for a given problem. A very high sensitivity characterizes the Bayes classifier. This means
that it identifies clean panels with high efficiency. It also identifies dirty panels with high
efficiency, as the specificity of this classifier is also very high. This classifier is also very
precise. As for the Fischer discriminator, it is characterized by high sensitivity but low
specificity, which means that it identifies clean panels more effectively than dirty panels.
It is also exact in detecting clean panels, but has low precision in detecting dirty panels.
In the case of the 7NN classifier, the situation is the opposite. This classifier has a high
specificity and low sensitivity, identifying clean panels more efficiently than dirty panels.
It is characterized by low precision in detecting clean panels and high precision in the
detection of dirty panels.

Figure 14. Value of the F1 metric for each of the classifiers.
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5. Summary

Monitoring the cleanliness of photovoltaic panels is very important. In the first three
years, the drop in efficiency can be as much as 15%. In places with high industrialization
or dusty environments, the reductions in inefficiency are even more significant. Scientific
research conducted by H. Haberlin and C. Renken from Berne University of Applied
Sciences show that regular cleaning of PV modules improves their efficiency by up to
13.8% [34]. This solution is in line with the global trend of optimizing the use of photovoltaic
panels. The results obtained in this study showed experimentally that the proposed solution
provides a high rate of correct detections. The proposed innovative method is cheap and
straightforward to implement, which allows it to be used in most photovoltaic installations
and is suitable for use in an intelligent system for monitoring the cleanliness of photovoltaic
panels. The presented methods of classifying the cleanliness of photovoltaic panels work
well in areas with the highest concentration of dust and pollution. These are mostly
suburban areas, proximity to highways, industrial plants, areas with a strong dusting of
plants. There is no restriction in use. You can use photo material from a photovoltaic farm
drone and photos with an appropriate resolution of home panels, e.g., on the roof, taken
with a camera or telephone.
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Abbreviations
The following abbreviations are used in this manuscript:

PV photovoltaics
EVA ethylene-vinyl acetate
TPR true positive rate
TNR true negative rate
PPV positive predictive value
NPV negative predictive value
P positive
N negative
TP true positive
TN true negative
FP false positive
FN false negative
RES renewable energy sources
EU European Union
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