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Abstract: Mechanically driven magnetoelectric antennas are a promising new technology that enable
a reduction in antenna size by many orders of magnitude, as compared to conventional antennas.
The magnetoelastic coupling in these antennas, a phenomenon playing a direct role in determining
performance, has been modeled using approaches that are severely lacking in both accuracy and
tractability. In response to this problem, we take a physics-based approach to the analysis of magne-
toelastic coupling. We find that certain directions of applied stress will maximize the coupling and we
derive general expressions to quantify it. Our results are applied in comprehensive simulations that
demonstrate the dynamic nature of the coupling as well as the impact of various operating conditions
and material properties. Our work contributes analytical expressions and associated insight that can
serve not only as guidelines for the design of mechanically driven magnetoelectric antennas, but also
as stepping stones towards the development of more accurate models.

Keywords: magnetoelastic; magnetoelectric; magnetostriction; antenna; modeling

1. Introduction

Magnetoelectric multiferroic materials exhibit both ferroelectricity and ferromagnetism
and have a wide range of applications, from energy efficient memories to targeted drug
delivery vehicles to photovoltaic devices [1]. A large appeal of these materials is their
unique capability to enable electric field control of magnetism or vice versa. Recently, this
capability has been taken advantage of to design what are referred to as mechanically
driven magnetoelectric antennas [2]. These antennas employ multiferroic heterostructures
composed of a piezoelectric phase and a magnetostrictive phase. Electromagnetic wave
radiation is achieved by application of an electric voltage stimulus to the piezoelectric
phase, which transduces the stimulus into a mechanical one. The mechanical stimulus then
couples to the magnetostrictive phase, inducing oscillations of the magnetic moments that
generate the radiation. For an oscillating magnetic dipole located in free space, centered at
the origin of a coordinate system, and oriented in the ẑ direction, its radiated far fields at a
point (r, θ, φ) in spherical coordinates are given by:

E =
µ0m0ω2

4πc

(
sin θ

r

)
cos[ω(t− r/c)]φ̂ (1)

H = −m0ω2

4πc2

(
sin θ

r

)
cos[ω(t− r/c)]θ̂ (2)

where E is the electric field, H is the magnetic field, µ0 is the permeability of free space, m0
is the magnetic moment of the dipole, ω is the angular frequency of its oscillation, c is the
speed of light in free space, and SI units apply to all values [3]. This operational concept
of mechanically driven magnetoelectric antennas is depicted in Figure 1. Electromag-
netic wave reception by the antennas is achieved in an analogous but reversed procedure.
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By mechanically driving the magnetic moments responsible for radiation, antenna reso-
nance is dictated by mechanical wave resonance [2]. This contrasts with the situation for
conventional antennas, in which antenna resonance is dictated by electromagnetic wave
resonance [4]. Given that mechanical wave velocities are many orders of magnitude slower
than electromagnetic wave velocities and wavelength λ is related to wave velocity v ac-
cording to f λ = v, with f being the wave frequency, mechanically driven magnetoelectric
antenna dimensions can be reduced by many orders of magnitude as compared to those
of conventional antennas operating at the same frequencies [2]. Further contrast exists
in the fact that the source of radiation for mechanically driven magnetoelectric antennas
is oscillating magnetic moments controlled by an electric voltage stimulus whereas for
conventional antennas, the source of radiation is oscillating electric currents [4]. This
eliminates ohmic losses to a large extent and improves antenna efficiency [2]. This also
allows operation of the antenna in the presence of a ground plane without the platform
effect and storage of reactive energy that conventional antennas are subject to [5].
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phase of the antenna to be in most need of scrutiny. This coupling, highlighted in Figure 
1, has been shown to be crucial in determining antenna performance with larger amounts 
of coupling entailing stronger transduction between mechanical stimuli and magnetic os-
cillations leading to more efficient radiation [5]. 
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Figure 1. Heterostructure used for mechanically driven magnetoelectric antennas (left) along with
operational flowchart (right) for electromagnetic wave radiation. Our work focuses specifically on an
accurate analysis of the magnetoelastic coupling aspect of operation.

While there has been progress in the realization of mechanically driven magneto-
electric antennas [2,6], the approaches to modeling and understanding them have been
largely inappropriate. Consequently, there are no concrete guidelines with regards to how
the antennas should be designed or operated to maximize their radiation and reception
performance. In particular, we identify magnetoelastic coupling in the magnetostrictive
phase of the antenna to be in most need of scrutiny. This coupling, highlighted in Figure 1,
has been shown to be crucial in determining antenna performance with larger amounts
of coupling entailing stronger transduction between mechanical stimuli and magnetic
oscillations leading to more efficient radiation [5].

Past approaches tend to neglect a consideration of magnetization dynamics in their
treatment of magnetoelastic coupling. They describe magnetic behavior entirely through
either linear [7,8] or nonlinear [2,9] frequency-independent constitutive equations. In reality,
magnetic behavior is highly dependent on the time-varying nature of its excitation in ways
that simply cannot be described by these equations. Furthermore, past approaches tend to
neglect the significance of many of the operating conditions and magnetic material proper-
ties that influence magnetoelastic coupling. The use of constitutive equations accounts for
these factors only implicitly, obscuring the nature of their influence. The significance of
magnetization dynamics, operating conditions, and material properties on magnetoelastic
coupling has been clearly demonstrated in studies involving magnetostrictive materials as
well as magnetostrictive-piezoelectric heterostructures [10,11]. Recent attempts have been
made to incorporate magnetization dynamics in the modeling of mechanically driven mag-
netoelectric antennas [12]; nevertheless, operating condition and material property effects
are still largely hidden by constitutive equations. All these past approaches additionally
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share the fact that they derive antenna performance from numerical simulations. These
simulations provide little tangible insight to guide antenna design and operation choices.

In this paper, we address these problems by analyzing magnetoelastic coupling in
mechanically driven magnetoelectric antennas using the physical equation governing
magnetization dynamics. This equation is not only accurate in its description of magnetic
behavior, but also it allows us to explicitly account for the effects of operating conditions
and material properties. From this equation, we derive analytical expressions that quantify
the coupling. These expressions provide insight into the design and operation choices
that will maximize antenna performance. Our approach focuses solely on magnetoelastic
coupling and so, in contrast with past approaches [2,7,9,12], electrodynamics are not
considered. In the following sections, we introduce the equations governing magnetization
dynamics along with the operating conditions and material properties of interest. We
quantify magnetoelastic coupling, then explore theoretical conditions for its maximization.
We finally derive expressions for the coupling and evaluate them for a variety of operating
conditions and materials.

2. Methods

The physics of macroscopic magnetization dynamics are governed by the Landau-
Lifshitz-Gilbert (LLG) equation. This equation and its numerical evaluation are the primary
focus of standard magnetic simulation software [13]. We pursue an analytical evaluation
here, however, to gain insight into the nature of magnetoelastic coupling and the factors
that influence it. The equation and our approach to analysis are described first. We then
introduce the operating conditions and material properties of interest to mechanically
driven magnetoelectric antennas as well as how these factors are incorporated into the
analysis.

2.1. Magnetization Dynamics

The LLG equation describing magnetization dynamics is given by:

∂M
∂t

= −γ(M×H) +
α

Ms

(
M× ∂M

∂t

)
(3)

where M is the magnetization in emu/cm3 with saturation magnetization Ms, H is an
effective magnetic field in Oe, α is a damping constant, and γ is the gyromagnetic ratio in
rad/(sec·Oe) [14].

Given that mechanically driven magnetoelectric antennas radiate or receive electro-
magnetic waves through a perturbation of magnetization, linear analysis is suitable and
employed throughout this work. The LLG equation can be linearized [15] by supposing
that the magnetization and effective magnetic field can be decomposed into a dominant
static component and a small time-varying perturbation:

M = Msẑ + mH = Hzẑ + h (4)

where Ms � |m| and Hz � |h|. The dominant static components are parallel, here
arbitrarily taken to lie along the z-axis of the laboratory coordinate system.

Neglecting higher order powers of the time-varying perturbations and assuming the
system to be ejωt time-harmonic, (3) can be written as:

1
γMs

 γHz + jωα −jω 0
jω γHz + jωα 0
0 0 1

 mx
my
mz

 =

 hx
hy
0

 (5)

where mi and hi, i ∈ {x, y, z} are the phasor components of the perturbations. Our analysis
of magnetoelastic coupling follows from an evaluation of (5) with the appropriate operating
conditions and material properties of interest accounted for.
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2.2. Operating Conditions & Material Properties

Several operating conditions and material properties are of particular interest for
mechanically driven magnetoelectric antennas, motivating their incorporation into the
evaluation of (5). Amongst operating conditions, foremost are the applied magnetic biasing
and the applied stress. Magnetic biasing is important to ensure deterministic uniform
magnetization as well as to ensure (4) is maintained, and stress is a fundamental mechanism
upon which magnetoelectric antenna operation is contingent. Amongst material properties,
foremost are the crystal and shape anisotropies. Crystal anisotropy causes magnetic
behavior to vary based on the crystallographic direction of magnetization. Shape anisotropy
causes magnetic behavior to vary based on the geometrical direction of magnetization. Also
of interest are the material properties of saturation magnetization and damping; however,
these are already represented explicitly in (5).

Each of these operating conditions and properties is associated with an energy density.
Magnetic biasing is associated with Zeeman energy, applied stress with magnetoelastic
energy, crystal anisotropy with magnetocrystalline anisotropy energy, and shape anisotropy
with demagnetization energy. The crystal structure of a magnetic material will affect the
nature of both the magnetoelastic and magnetocrystalline anisotropy energies. Equations
for these energy densities can be found in magnetic material textbooks [16].

2.3. Effective Magnetic Field

The means by which the operating conditions and material properties of interest
are incorporated into the evaluation of (5) is through the effective magnetic field, where
each condition or property is represented with an additive contribution to this field. The
contributions can be derived from the associated energy densities according to:

H = −∂W
∂M

(6)

where W is the energy density in erg/cm3 [15]. Equations for the contributions of interest
are summarized in Table 1.

The Zeeman contribution to effective magnetic field is simply the applied magnetic
biasing field Happ.

For the magnetoelastic contributions, σ is the applied stress in dyne/cm2, the λ’s
are magnetostriction constants, and û is parallel to the direction of applied stress. The
equations for these contributions are given with respect to the crystal coordinate systems.
The cubic crystal Equation (7) defines the coordinate system axes to be aligned with <100>
directions, and the hexagonal crystal Equation (8) defines the coordinate system ẑ axis to
be aligned with the c-axis. There is no general energy density equation for polycrystals,
and consequently no general equation for effective field contribution. However, under the
condition that the grains of a polycrystal either have no preferred orientation or exhibit
isotropic magnetostriction, (7) can be applied with λ100 = λ111 = λp [16]. In this case, λp is
found as an average of magnetostriction over all grain orientations.

For the magnetocrystalline anisotropy contributions, the Ks are anisotropy constants
in erg/cm3. The equations for these contributions are given with respect to the crystal
coordinate systems, specified akin to those of (7) and (8) for cubic and hexagonal crystal
respectively. Again, there is no general equation for polycrystals, in which the effective field
contribution will be dependent on grain orientations. If there is no preferred orientation,
the material will exhibit no net crystal anisotropy [16].

For the demagnetization contribution, the Ns are demagnetization coefficients. We are
interested in magnetic bodies with simple geometries such as spheres, thin rods, or thin
films in which the coefficients are approximately or exactly constant. For these geometries,
it will also hold that two of the three coefficients are approximately equal [17]. In (11), Nt is
the value of the two equal coefficients, Nu is the value of the third coefficient, and d̂ is the
direction corresponding to the third coefficient in the laboratory coordinate system.
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Table 1. Effective magnetic field contributions.

Contributor Effective Magnetic Field H (Oe)

Zeeman Happ

Magnetoelastic

Cubic 1
3σλ100

M2
s

(
u2

x Mxx̂ + u2
y Myŷ + u2

z Mzẑ
)
+

3σλ111
M2

s

[(
Myuy + Mzuz

)
uxx̂ + (Mxux + Mzuz)uyŷ +

(
Myuy + Mxux

)
uzẑ
] (7)

Hexagonal 2

HA + HB + HC + HD where
HA =
σλA
M2

s

[(
Mxux + Myuy

)(
2uxx̂ + 2uyŷ− uzẑ

)]
−

σλA
M2

s
Mzuz

[
uxx̂ + uyŷ

]
HB =
− 2σλB

M2
s

[(
Mxux + Myuy

)
uxx̂ +

(
Mxux + Myuy

)
uyŷ + Mz

(
1− u2

z
)
ẑ
]

HC =
− σλC

M2
s

uz
[
Mzuxx̂ + Mzuyŷ +

(
Mxux + Myuy + 2Mzuz

)
ẑ
]

HD =
4σλD

M2
s

uz
[
Mzuxx̂ + Mzuyŷ +

(
Mxux + Myuy

)
ẑ
]

(8)

Polycrystal No general equation

Magnetocrystalline Anisotropy
Cubic 3 − 2K1

M2
s

M + 2K1
M4

s

(
M3

xx̂ + M3
yŷ + M3

z ẑ
)

(9)

Hexagonal 3 2K1
M2

s
(M·ẑ)ẑ (10)

Polycrystal No general equation

Demagnetization (Nt − Nu)
(
M·d̂

)
d̂ (11)

1 Valid for crystals with easy axes along the <100> or <111> directions. 2 Valid for crystals with easy axis along
the c-axis. 3 Higher order terms are neglected.

3. Results

The described framework under which magnetization dynamics, operating conditions,
and material properties are collectively represented is applied to assess magnetoelastic cou-
pling. Towards this goal, magnetoelastic coupling is first quantified by defining coupling
coefficients. Maximization of the coupling through optimal conditions of applied stress is
then explored. General analytical expressions for the coupling coefficients are presented,
then specialized for particular scenarios. Lastly, simulations are performed by evaluating
the magnetoelastic coupling coefficient expressions for a variety of operating conditions
and materials.

3.1. Optimal Applied Stress

For the system of (5), magnetoelastic coupling is quantified by coupling coefficients
η defined to be the phasor ratio of the magnetization perturbation m components to the
scalar applied stress σ. The phasor z-component of the perturbation is seen to be zero, and
so coupling is described by two coefficients:

ηx =
mx

σ
ηy =

my

σ
. (12)

From (12), larger amounts of magnetoelastic coupling correspond to larger perturbations of
magnetization for a given amount of applied stress. This is clearly desirable for mechani-
cally driven magnetoelectric antennas from the standpoint of radiation performance.

Amongst the many potential parameters that can be optimized to maximize magne-
toelastic coupling, we focus on the conditions of applied stress. Applied stress manifests in
(5) as a contribution to the effective magnetic field. Heuristically, (12) is maximized with a
stress that maximizes the components of this contribution transverse to the dominant static
component of magnetization.
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From Table 1, applied stress is seen to be associated with two parameters. The first is
σ, the magnitude of which quantifies the amount of stress and the sign of which indicates
whether the stress is compressive or tensile. The second is û, which indicates the direction
of stress application. Given that the system of (5) is linearized, the magnitude of σ will not
affect the value of the coefficients of (12). Furthermore, the sign of σ is irrelevant, given
that the system of (5) is assumed to be time-harmonic. Consequently, an optimal applied
stress that maximizes magnetoelastic coupling is tantamount to an optimal direction of
application û. We find this optimal direction for both cubic and hexagonal crystals.

3.1.1. Cubic Crystal <100>

For cubic crystals with easy axes along the <100> directions, it is reasonable to suppose
that the dominant static component of magnetization will be aligned along one of these
directions. Given the magnetization of (4), (7) can be employed directly since it defines the
crystal coordinate system axes to be aligned with <100> directions.

Neglecting the time-varying perturbation m for the time being, (7) can be written as:

H =
3σλ100

Ms
u2

z ẑ +
3σλ111

M2
s

uz
[
Msuxx̂ + Msuyŷ + ẑ

]
. (13)

The magnitude of the transverse component of (13) is:

|Ht| =
∣∣∣∣3σλ111

2Ms
sin 2θ

∣∣∣∣ (14)

where θ is the angle between û and the direction of dominant static magnetization. Equation
(14) indicates that the optimal applied stress is directed at an angle 45◦ from the direction
of dominant static magnetization.

3.1.2. Cubic Crystal <111>

For cubic crystals with easy axes along the <111> directions, it is reasonable to suppose
that the dominant static component of magnetization will be aligned along one of these
directions. Given the magnetization of (4) and the crystal coordinate system definition
for (7), a transformation between laboratory and crystal coordinate systems is needed in
order to find the optimal applied stress. The details of this transformation are provided in
Appendix A. Hereon, the prime symbol will distinguish vectors and vector components of
the crystal coordinate system from those of the laboratory coordinate system.

Neglecting the time-varying perturbation m for the time being, (7) can be written as:

H = 3σλ100
Ms
√

3

[
u′x2x̂′ + u′y2ŷ′ + u′z2ẑ′

]
+ 3σλ111

Ms
√

3

[(
u′y + u′z

)
u′xx̂′ + (u′x + u′z)u′yŷ′ +

(
u′y + u′x

)
u′zẑ′

]
.

(15)

Transforming (15) as well as û′ to the laboratory coordinate system, the magnitude of
the transverse component of the result is found to be:

|Ht| =
∣∣∣ σ

Ms
√

2

∣∣∣√(2A1uxuy + A2uxuz
)2

+
(

A1u2
x − A1u2

y + A2uyuz

)2

A1 = λ111 − λ100
A2 =

√
2(2λ100 + λ111).

(16)

Letting stress be applied in the xz-plane, (16) simplifies to:

|Ht| | uy=0 =

∣∣∣∣σ sin θ

Ms
√

2

∣∣∣∣√A2
1 sin2 θ + A2

2 cos2 θ (17)
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and letting stress be applied in the yz-plane, (16) simplifies to

|Ht| | ux=0 =

∣∣∣∣σ sin θ

Ms
√

2
(A1 sin θ − A2 cos θ)

∣∣∣∣ (18)

where θ is the angle between û and the direction of dominant static magnetization. The
optimal û that maximizes (16) in general depends on the magnetostriction constants of
the material. It will be characterized by not only θ, but also the angle φ of û in the plane
transverse to the direction of dominant static magnetization. Section 3.3 shows that, for a
given φ, the optimal θ will be approximately 45◦, 90◦, or 135◦ depending on the specific
magnetic material.

3.1.3. Hexagonal Crystal

For hexagonal crystals with easy axis along the c-axis, it is reasonable to suppose that
the dominant component of magnetization will be aligned along that direction. Given (4),
(8) can be employed directly, since it defines the ẑ axis to be aligned with crystal c-axis.

Neglecting the time-varying perturbation m for the time being, (8) can be written as:

H = (−λA − λc + 4λD)
σ

Ms
uz
(
uxx̂ + uyŷ

)
+
(
−λB + λBu2

z − λCu2
z

) 2σ

Ms
ẑ. (19)

The magnitude of the transverse component of (19) is:

|Ht| =
∣∣∣∣(−λA − λc + 4λD)

σ

2Ms
sin 2θ

∣∣∣∣ (20)

where θ is the angle between û and the direction of dominant static magnetization. Sim-
ilar to the case of cubic crystals with dominant magnetization along a <100> direction,
(20) indicates that the optimal applied stress is directed at an angle 45◦ from the direction
of dominant static magnetization.

3.1.4. Polycrystalline Material

For polycrystalline materials, the lack of a general equation describing the magnetoe-
lastic contribution to the effective magnetic field implies the lack of a general equation to
find optimal applied stress. Nevertheless, under the condition that the grains of a poly-
crystal either have no preferred orientation or exhibit isotropic magnetostriction, either
(14) or (16) apply with λ100 = λ111 = λp. The optimal applied stress is then directed at an
angle 45◦ from the direction of dominant static magnetization. This result is consistent with
experimental demonstrations [10].

3.2. Magnetoelastic Coupling

Magnetoelastic coupling is quantified by the coupling coefficients (12). As they stand
however, the equations of (12) are not very helpful in understanding the nature of mag-
netoelastic coupling and the factors that influence it. Expressions for these coefficients in
terms of operating conditions and material properties of interest are found by solving (5)
with the appropriate contributions accounted for in the effective magnetic field components
hx, hy, and Hz. The contributions to these components are found through a linear analysis
of the more general contributions of Table 1.

3.2.1. Linearized Effective Magnetic Field Contributions

Table 2 presents linearized contributions for an effective magnetic field. These results
were obtained based on the equations of Table 1, magnetization defined according to (4),
and several assumptions made based on scenarios of interest. Amongst these assumptions,
applied stress is taken to be optimally directed where known to maximize magnetoelastic
coupling. For cubic crystals with dominant magnetization aligned along a <100> direction
or hexagonal crystals with dominant magnetization aligned along the c-axis, this optimal
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direction is known. For cubic crystals with dominant magnetization aligned along a <111>
direction, this optimal direction is material dependent, so some directions that produce
simple results were chosen. The direction along which dominant magnetization is aligned
is denoted in the first column of Table 2 along with the direction of applied stress in the
format (θ, φ), where û = sin θ cos φx̂+ sin θ sin φŷ+ cos θẑ. There is no general equation for
the magnetoelastic contribution of polycrystalline materials; however, under the condition
that the grains either have no preferred orientation or exhibit isotropic magnetostriction,
(22) applies with λ100 = λ111 = λp. Other assumptions include the magnetic biasing, which
is taken to be directed along the dominant static component of magnetization, Happ = H0ẑ.

Table 2. Linearized effective magnetic field contributions.

Contributor hx hy Hz

Zeeman 0 0 H0 (21)

Magnetoelastic
Cubic <100>; (45◦, φ) 3σλ111

2Ms
cos φ 3σλ111

2Ms
sin φ 0 (22)

Cubic <111>; (45◦,−45◦) 3σλ100
2Ms
√

2
− σ(2λ100+λ111)

2Ms
√

2
0 (23)

Cubic <111>; (90◦, 0◦) 0 − σ(λ100+λ111)

Ms
√

2
0 (24)

Hexagonal (c-axis); (45◦, φ) (−λA − λC + 4λD)
σ

2Ms
cos φ (−λA − λC + 4λD)

σ
2Ms

sin φ 0 (25)
Polycrystal No general equation

Magnetocrystallline Anisotropy
Cubic 1 [100] − 2K1

M2
s

mx − 2K1
M2

s
my 0 (26)

Cubic [111] 0 0 − 4K1
3Ms

(27)
Hexagonal 0 0 2K1

Ms
(28)

Polycrystal No general equation

Demagnetization 1 (Nt − Nu)
(
mxdx + mydy

)
dx (Nt − Nu)

(
mxdx + mydy

)
dy (Nt − Nu)Msd2

z (29)

1 Under magnetostatic limit; general case requires consideration of electrodynamics.

3.2.2. General Solution

General expressions for the coefficients of (12) can be found by recognizing that, with
the linearized contributions of Table 2, (5) can always be written in the form: B1 −jω 0

jω B2 0
0 0 1

 mx
my
mz

 = γMsσ

 C1
C2
0


B1 = γHz − γMshx,other/mx + jωα
B2 = γHz − γMshy,other/my + jωα

C1 = hx,me/σ
C2 = hy,me/σ

(30)

where B1, B2, C1, and C2 are constants. Here, hx,me and hy,me are used to denote specifically
the magnetoelastic linearized effective magnetic field contributions (22)–(25), whereas
hx,other and hy,other are used to denote all other contributions. Solving (30) for the magnetoe-
lastic coupling coefficients yields:

ηx = γMs

(
B2C1 + jωC2

ω2
r −ω2

)
ηy = γMs

(
B1C2 − jωC1

ω2
r −ω2

)
(31)

ωr =
√

B1B2. (32)

These expressions describe the coefficients in their most general form. They can be
seen to account for not only the frequency dependency of the coupling, but also the effects
of operating conditions and material properties. For more utility, we specialize (31) and
(32) for some specific scenarios. All scenarios will assume magnetic biasing according to
(21) such that (4) can be maintained.
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3.2.3. Magnetic Biasing

Suppose magnetic biasing is the dominant contributor to effective magnetic field such
that all other contributions, other than that due to applied stress of course, can be neglected.
This may be the case for example with a polycrystal with no preferred grain orientation
and approximately spherical shape, or simply a material for which H0 is sufficiently large.
In this case, (31) and (32) become:

ηx = γMs

(
ωrC1+jωC2

ω2
r−ω2

)
ηy = γMs

(
ωrC2−jωC1

ω2
r−ω2

) (33)

ωr = γH0 + jωα (34)

where C1 and C2 depend on the applied stress, or in other words the type of crystal, its
orientation with respect to the dominant magnetization component, and the direction of
applied stress.

3.2.4. Cubic Crystal Anisotropy

When cubic crystal anisotropy also contributes significantly to the effective magnetic
field, (33) holds with:

ωr = γH0 + γ
2K1

Ms
+ jωα (35)

in the case where the dominant magnetization component is aligned along a <100> direction,
or

ωr = γH0 − γ
4K1

3Ms
+ jωα (36)

in the case where the dominant magnetization component is aligned along a <111> direction.
Consequently, the effect of cubic crystal anisotropy is equivalent to a change in the strength
of magnetic biasing.

3.2.5. Hexagonal Crystal Anisotropy

When hexagonal crystal anisotropy contributes significantly to the effective magnetic
field, then (33) holds with (35) in the case where the dominant magnetization component is
aligned along the c-axis. In this case, K1 would be the anisotropy constant associated with
hexagonal anisotropy. This indicates that the effect of hexagonal crystal anisotropy, like
that of cubic crystal anisotropy, is effectively a change in the strength of magnetic biasing.

3.2.6. Demagnetization

Supposing demagnetization contributes significantly to the effective magnetic field,
and defining θd to be the angle between the vector d̂ of (11) and the dominant static
component of magnetization, then we consider the two cases of θd equal to 0 and 90 degrees.
With θd equal to 0 degrees, then (33) holds with:

ωr = γH0 + γ(Nt − Nu)Ms + jωα. (37)

In other words, demagnetization in this case is equivalent to a change in the strength
of magnetic biasing. With θd equal to 90 degrees, we let d̂ = x̂. No loss in generality is
incurred with this choice given that a coordinate transformation can always be made to
satisfy it. The coupling coefficients are then found to be described by (31) and (32) with:

B1 = γH0 + γMs(Nu − Nt) + jωα
B2 = γH0 + jωα.

(38)
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3.3. Simulation

Simulations are performed using the magnetoelastic coupling coefficient results of
Section 3.2 to extract further insights regarding the nature of the coupling and the effects
of the operating conditions and material properties of interest. Iron (Fe) is the magnetic
material considered in these simulations, unless otherwise stated. Relevant characteristics
of iron are provided in Appendix B. The material has easy axes along the <100> crystal-
lographic directions, and so the dominant component of magnetization is assumed to be
aligned along one of these directions.

The effects of magnetic biasing are demonstrated in Figure 2a, which is a plot of
the magnitude of ηy as a function of frequency of applied stress under various applied
magnetic biasing field conditions. Given that our system is taken to be linear, this frequency
is identical to the magnetization perturbation frequency. For the simulation, α is set to 0.01
and optimal stress is applied at an angle φ = 45◦ in the xy-plane, resulting in equal ηx and
ηy magnitudes. Resonance behavior is exhibited, where the coupling is seen to reach a peak
value at a particular frequency. It is also seen that stronger biasing fields raise the resonance
frequency while reducing the amount of coupling both at and below resonance. Lastly, the
magnetoelastic coupling coefficient for these results, as well as all other results presented
in this section, displays asymptotic behavior for frequencies away from resonance.
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(b) Varying magnetic damping.

The effects of damping are demonstrated in Figure 2b, which plots the magnitude
of ηy for various damping constant values. The biasing field for this simulation is set to
100 Oe and again, optimal stress is applied at an angle φ = 45◦ in the xy-plane, resulting in
equal ηx and ηy magnitudes. It is seen that larger damping serves to lower the amount of
coupling achieved at resonance, while having minimal effect on off-resonance coupling.

The effects of demagnetization are demonstrated in Figure 3. In Figure 3a, the mag-
nitudes of both the ηx and ηy coupling coefficients are plotted as a function of frequency
of applied stress for a thin film material geometry with θd = 90◦, and specifically d̂ = x̂,
in which case Nt ≈ 0 and Nu ≈ 4π. The material is taken to have an α of 0.01, a biasing
field of 100 Oe, and optimal stress applied at an angle φ = 45◦ in the xy-plane. Due to
demagnetization, the magnetoelastic coupling exhibits anisotropy with respect to the angle
of stress application in the xy-plane. In particular, the amount of coupling to the geometrical
in-plane component of magnetization perturbation will tend to be much larger than that to
the geometrical out-of-plane component. This is seen in Figure 3a both below and around
resonance. Comparing with the analogous 100 Oe plot in Figure 2a, it is also seen that
demagnetization acts to increase resonance frequency.
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As we had seen in Figure 2a, a larger resonance frequency achieved by increasing the
biasing field tends to lower the amount of coupling both at and below resonance. In contrast,
a larger resonance frequency achieved due to demagnetization is not necessarily associated
with the same drop in coupling. Figure 3b plots the magnitudes of the magnetoelastic
coupling coefficients as a function of frequency of applied stress for the thin film material
previously considered, now with φ = 90◦, alongside those of the same material without any
influence from demagnetization. The material without demagnetization is biased with a
field of 3300 Oe to achieve the same resonance frequency as the thin film material. From
the results, it is seen that the thin film material exhibits higher amounts of coupling to the y-
component of magnetization perturbation at all frequencies. Coupling to the x-component
of magnetization perturbation is the same amongst the two materials except at resonance,
where the material without demagnetization reaches a higher value.

Iron was considered for all simulations so far. Other cubic crystal magnetic materials
with dominant magnetization aligned along a <100> direction will have different saturation
magnetizations, magnetocrystalline anisotropy constants, and magnetostriction constants.
From the results of Section 3.2, these differences scale the amount of coupling or change the
effective biasing field as compared to that of iron; however, the core behaviors demonstrated
with iron still hold in general. For hexagonal materials with dominant magnetization
aligned along the c-axis, again the amount of coupling may be scaled, or the effective
biasing field changed, but the core behaviors remain the same. Likewise, only the specific
demagnetization scenario of a thin film material with θd = 90◦ was considered so far. With
other geometries or θd values, provided (21) is still satisfied, the effective biasing field,
degree of anisotropy, and directions of anisotropy may change, but the core insights remain
the same.

On the other hand, cubic crystals with dominant magnetization aligned along a <111>
direction will exhibit some fairly different behaviors. In particular, we found in Section 3.1
that the optimal direction of applied stress for these crystals in general depends not only
on θ, but also φ, where û = sin θ cos φx̂ + sin θ sin φŷ + cos θẑ. Investigating this further,
we plot the normalized value of (16) as a function of θ for several different φ values in
Figure 4. Figure 4a shows the results for nickel (Ni), and Figure 4b shows the results
for magnetite (Fe3O4), both cubic crystals with <111> easy axes along which dominant
magnetization is assumed to be aligned. Relevant characteristics of these materials are
given in Appendix B. It is seen that the optimal θ for a given φ is either approximately 45◦,
90◦, or 135◦, depending on the material. This holds true in general for other applicable
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materials as well. It is also seen that the choice of φ influences the maximum possible
magnitude of (16) that can be obtained. For both magnetite and nickel, φ = 90◦ is shown to
enable a larger magnitude, as compared to the other values considered.
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4. Discussion

Mechanically driven magnetoelectric antennas are hardly the only application en-
visioned for piezoelectric–magnetostrictive heterostructures, and there have been many
recent studies dedicated to an assessment of the magnetization dynamics in these het-
erostructures for other purposes [18]. For example, a substantial amount of research has
been performed in this regard for high density, low power data storage applications [19].
However, these works were concerned with magnetic switching dynamics and stepped
or pulsed mechanical stimuli [20] whereas our work deals with harmonic dynamics and
stimuli. A substantial amount of research has also been performed assessing magnetization
dynamics that are induced by surface acoustic wave mechanical stimuli for applications
such as magnetic sensing [21] or spintronics [22]. However, these works tend to focus on
obtaining numerical [22] or experimental [23] results. Until our study, analytical results
focused on the maximization of magnetoelastic coupling as well as the effects of operating
conditions and material properties on coupling had been absent.

Limitations of the presented results include the fact that they require several mod-
ifications to account for the effects of nanoscale magnetism that become significant as
the dimensions of the magnetic material are reduced [24]. For example, thin films with
thicknesses on the order of nanometers, also known as ultrathin films [25], have magne-
tizations and magnetostriction constants that may differ considerably from those of the
corresponding bulk materials [17]. Surface anisotropy and epitaxial stress must also be
considered for these films. Surface anisotropy can be modeled with a magnetocrystalline
anisotropy contribution to the effective magnetic field found using (6) with energy density
W given by [26]:

W = Ke f f sin2(θ)

Ke f f = Kv +
2Ks

t
(39)

where Ke f f and Kv are the effective and volume anisotropy constants, respectively, in
erg/cm3, Ks is the surface anisotropy constant in erg/cm2, θ is the angle between the mag-
netization and the axis of magnetocrystalline anisotropy, and t is the thickness of the film
in cm. Epitaxial stress can be handled with an additional magnetoelastic contribution term
in the effective magnetic field [17]. Other magnetic nanostructures such as nanoparticles
or nanowires exhibit their own unique properties that have spurred the development of a
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large variety of cutting-edge technologies [27–29], but their usefulness for mechanically
driven magnetoelectric antennas is yet to be seen.

Another limitation of the presented results arises from the fact that our work focuses
only on the magnetoelastic coupling in mechanically driven magnetoelectric antennas.
Consequently, interpretations of the results are most appropriate in such a context. Our
work does not consider the spatially dependent electrodynamics governed by Maxwell’s
Equations [3]:

∇× E = − ∂B
∂t

∇×H = J + ∂D
∂t

(40)

where B is the magnetic flux density, H is the magnetic field, D is the electric displacement,
and J is the volume current density. Our work further does not consider the spatially
dependent elastodynamics governed by the acoustic field theory [30]

S = 1
2∇v + 1

2 (∇v)T

∇·T = ρ ∂2v
∂t2

(41)

where S is the strain tensor, v is the particle displacement, T is the stress tensor, and ρ is the
equilibrium mass density. Lastly, our work does not consider the full coupling between all
the various dynamics, described by the constitutive relations [12]

B = µ0(H + Mme(dbT) + Mem)
S = sBT + µ0dbM

(42)

where Mme is the magnetization directly induced by mechanical stimuli, Mem is the mag-
netization induced by all other factors, and the total magnetization M = Mme + Mem. The
variable db is the effective piezomagnetic constant, and sB is the elastic compliance. In the
context of our work, Mme is found from (30) and db is determined by C1 and C2 of (30), and
T is determined by the applied stress variables σ and û. These phenomena are ultimately
necessary to rigorously account for processes such as system resonance, mechanical loss, or
electromagnetic radiation and so far, have been collectively considered only in numerical
approaches [12]. Nevertheless, our results provide considerable insight into characteristics
of the crucial yet often overlooked magnetoelastic coupling aspect of antenna operation.

Looking to the future, mechanically driven magnetoelectric antennas are a promis-
ing new technology that have the potential to realize antennas with dimensions smaller
than those of conventional antennas, a consequence of their dependence on mechanical
resonance, and efficiencies higher than those of conventional antennas, a consequence
of their independence from electric currents [2]. As with any new technology however,
mechanically driven magnetoelectric antennas are still subject to challenges inhibiting
their development [31]. One of these challenges is with respect to fabrication, where cur-
rent methods produce materials with undesirable residual stresses and domain structures.
Another challenge is with respect to structural integrity, where design approaches that
maintain a high degree of structural robustness are currently limited. Another challenge
is of course the lack of appropriate means to model and understand the antennas and
specifically the magnetoelastic coupling component of their operation, which is what our
work addresses.

5. Conclusions

In this work, we approached the analysis of magnetoelastic coupling by employing
the LLG equation to accurately represent magnetization dynamics and finding effective
magnetic field contributions for various operating conditions and material properties to
account for their effects. We quantified the coupling by defining magnetoelastic coupling
coefficients and derived conditions of applied stress to maximize it. These conditions
were found to be consistent with results from experimental studies in literature. We lastly
derived analytical expressions relating the coupling coefficients to parameters of interest
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and performed comprehensive simulations to assess the characteristics of these coefficients
in the frequency domain. The analytical expressions and associated insights presented are
intended to serve as approximate guidelines for antenna design and operation choices as
well as model development in order to enable researchers to realize the full capabilities of
mechanically driven magnetoelastic antennas.
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Appendix A. Coordinate System Transformation

For a cubic crystal with the [111] direction aligned along the ẑ axis of the laboratory
coordinate system, a vector transformation from crystal to laboratory coordinate system is
given by:

T =

 −1/
√

2 1/
√

2 0
−1/
√

6 −1/
√

6 2/
√

6
1/
√

3 1/
√

3 1/
√

3

 (A1)

with the transpose TT being the inverse transformation from the laboratory to crystal
coordinate system [15].

Appendix B. Magnetic Material Properties

Several magnetic materials and their associated properties are provided in Table A1 [16,17,32].

Table A1. Magnetic material properties.

Material Saturation Magnetization
(emu/cm3)

Crystal Anisotropy 1

(erg/cm3)
Magnetostriction
(10−6)

Fe 1714 4.8× 105 λ100 = 21
λ111 = −21

Ni 484 −5× 104 λ100 = −46
λ111 = −24

Fe3O4 480 −1.1× 105 λ100 = −20
λ111 = 78

Co 1297 2× 106
λA = −45
λB = −95
λC = 110

1 Higher order terms neglected.
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