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Abstract: A calibration curve is used to express the relationship between the response of the measur-
ing technique and the standard concentration of the target analyst. The calibration equation verifies
the response of a chemical instrument to the known properties of materials and is established using
regression analysis. An adequate calibration equation ensures the performance of these instruments.
Most studies use linear and polynomial equations. This study uses data sets from previous studies.
Four types of calibration equations are proposed: linear, higher-order polynomial, exponential rise
to maximum and power equations. A constant variance test was performed to assess the suitability
of calibration equations for this dataset. Suspected outliers in the data sets are verified. The stan-
dard error of the estimate errors, s, was used as criteria to determine the fitting performance. The
Prediction Sum of Squares (PRESS) statistic is used to compare the prediction ability. Residual plots
are used as quantitative criteria. Suspected outliers in the data sets are checked. The results of this
study show that linear and higher order polynomial equations do not allow accurate calibration
equations for many data sets. Nonlinear equations are suited to most of the data sets. Different forms
of calibration equations are proposed. The logarithmic transformation of the response is used to
stabilize non-constant variance in the response data. When outliers are removed, this calibration
equation’s fit and prediction ability is significantly increased. The adequate calibration equations
with the data sets obtained with the same equipment and laboratory indicated that the adequate
calibration equations differed. No universe calibration equation could be found for these data sets.
The method for this study can be used for other chemical instruments to establish an adequate
calibration equation and ensure the best performance.

Keywords: calibration equation; regression analysis; nonlinearity; prediction; outliers

1. Introduction

The performance characteristics include accuracy, precision and sensibility of the sen-
sors or instrument is so important, especially in chemical analysis [1–3]. Most quantitative
analytical techniques for chemical analysis, such as spectrometry, Inductively Coupled
Plasma Mass Spectrometry (ICP-MP) or electrophoresis, require a calibration curve to
express the relationship between the response of the measuring technique and the standard
concentration of the target analyst [4,5].

According to the definition of Dux, the calibration equation is used to verify the
response of an instrument to the known properties of a material [6]. In terms of the user
of the instrument, the structure of the instrumentation is so complex that it is difficult
to adjust. Calibration detects the response using a series of samples of the known
concentration and sufficient purity. A calibration curve is established to express the
relationship between the response and the standard concentration for physical, chemical,
and biological sensors [7–9]. The calibration curve is fitted using regression analysis to fit
different models to experimental data [10,11].
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A calibration equation expresses the quantitative relationship between the response
of an analytical technique and the standard concentrations of the target. The responses
of instruments include current, potential, peak height, peak area or peak ratio. The best
equation to represent the calibration curve is selected using regression analysis. The re-
sponse of the analytic instrumentation is the dependent variable (y) and the standard
concentration is the independent variable (x). The equations used for analysis are lin-
ear equations, polynomial equations, weighted linear equations, and linear models with
a logarithmic transformation of variables [10–13].

Several criteria are used to evaluate fitting-agreement for a calibration equation,
such as the determination of coefficient (R2), the adjusted determination coefficient
(Radj

2), the Akaike’s Information Criteria (AIC) and an Analysis of Variance (ANOVA).
Residual plots are used as a qualitative criterion to determine the suitability of a calibra-
tion equation [10–14].

Rodriguez et al. used a linear regression model to establish a calibration equation
for spectrophotometric, spectrofluorometric and chromatographic methods and the R2

and the residual standard deviation of regression were the criteria [14]. Huber proposed
three equations: linear equations and polynomial equations without intercept and logarith-
mic y and x values to measure wide ranges and low concentrations [15]. Mulholland and
Hibbent studied the calibration equation for High-Performance Liquid Chromatography
(HPLC) and found that a heteroscedastic data distribution with a linear equation results
in significant unexpected errors [16]. The study determined that a reliable method to
validate an inadequate model is necessary to reduce errors. Desimoni used a weighted
linear regression to address heteroscedastic issues in response data [17]. The weights for
the gression analysis are calculated using the standard deviation of the linear function and
the outliers are checked using an F-test. However, only three replicates were measured for
each standard concentration.

Linear equations, y = a + bx, quadratic equations, y = a + bx + cx2 and a non-linear
equation, y = a + bxc were used to evaluate calibration equations for chromatography and
spectroscopy by Kirkup and Mulholland [18]. The study determined that quadratic and
nonlinear equations produce a better fitting agreement than linear equations because the
calibration curves are slightly curved. Bruggemann et al. tested the nonlinear calibration
equations using a lack-of-fit test and showed that a polynomial calibration equation gives
good results [19].

R2, the standard errors of the estimate values s and visual inspection of residual
plots are standard criteria. Lavagnini and Magno used a statistical technique to establish
univariate calibration for gas chromatography/mass spectrometry (GC-MS) and used
a higher-order polynomial equation for nonlinear curves [20]. The residual plots are used
to assess the heteroscedastic data. Ortiz et al. used univariate regression for calibration
curves and proposed a quadratic polynomial equation for nonlinear calibration curves. The
regression results were verified using an ANOVA, a lack of fit test, and residual plots [21].

Rozet et al. used R2, Radj
2, and AIC, small sample adjusted information criteria

(AICc) and Bayesian Information Criteria (BIC) to select calibration equations [8]. Rawski
et al. used a statistical method to evaluate linear and quadratic equations for calibration
curves [22]. The validation uses R2, a lack of fit test and the F-test. Desharnais et al.
proposed selecting and validating a calibration equation [23]. The variance in a linear
equation is used to evaluate the constant variance and calculate the weights for a weighted
regression equation. A partial F-test is used to select the order of the polynomial equation.
Martin et al. used residual analysis to verify the fitting-agreement for calibration equations
and a constant variance [24]. Several studies involve nonlinear calibration curves but
polynomial equations are only used to represent the data distribution [25].

Calibration equations are still the subject of many studies. Higher-order polynomial
equations have been used to determine uncertainty and the limit of detection in Label-free
biosensors [26]. Machado et al. used a linear calibration equation for light elements in
animal tissues and plants and the criteria for model evaluation were R2 and s [27]. Pagliano
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and Meija established a calibration equation for isotope dilution mass spectrometry (IDMS)
and noted that the R2 values exceed 0.99 for all cases and the calibration curves show
a type of linear relationship [28].

For a sensitivity analysis of two types of surface plasmon resonance (SPR), Mrozek et al.
used a linear equation to express the relationship between SPR signals and the Cathepsin S
(CatS) concentration [29].

If the calibration curves have a relatively narrow range, a linear equation can be used
as a calibration equation [25]. Hinshaw constructed several calibration curves for gas
chromatography (GC) and showed that higher-order polynomial equations give a better fit
than a linear equation, especially for lower concentrations [26]. Frisbie et al. used a quadratic
polynomial regression equation instead of a linear equation for analytical chemistry [30].

Martin et al. studied the calibration equations for several compounds detected
using Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and used a lin-
ear equation for smaller concentrations [31]. However, there is no universal model for
all cases. To ensure reliable Selective Reaction Monitoring/Multiple reaction monitoring-
mass spectrometry (SRM/MRM-MS)-based proteomic assays, Kohl et al. proposed a com-
plex calibration equation [32], y’ = c0 + c1Exp(c2x’), wherein y’ and x’ are the logarithmical
response area (y) and logarithmical concentration (x).

The R2 value is used as a criterion to evaluate calibration equations, but this criterion
is not supported by theory and the numerical value can be manipulated easily [33–37].
There is also no acceptable value for R2. Mulholland and Hibbert noted that some studies
use an R2 value between 0.99 and 1.0 as an acceptable criterion, which is inadequate for
chemometric fields [16]. In terms of the effect of the number of parameters, the Radj2

criterion was proposed by Kirkup and Mulholland [18], and Rozet et al. [5]. However, this
criterion proved flawed [8], so the R2 value cannot be the only criterion. The criterion did
not be used in this study.

The sum of the square residuals (SSR) and s are used to evaluate the fit of calibration
models. The s value has the same unit as the response for detecting techniques, so it is
a useful criterion [33,35,36].

The lack of fit technique is used to test the validation of linear equations, but this technique
gives no information about the order of a polynomial equation [33,38–40]. An ANOVA is used
to test the significance of the effect of x (standard concentration) on the y (response of detecting
technique) but does not determine the adequacy of a calibration equation.

The detection of outliers in a calibration equation is important. The existence of
outliers affects the fit of the calibration equation and the estimated values of parameters
in the calibration equation. Njaka et al. detected outliers in linear calibration equations in
a study of graphite furnace atomic absorption spectrometry (GF-AAS) and concluded that
movement outliers increases the quality of the measurement [41].

A calibration procedure involves several measurements at specific concentrations.
As concentration increases, the distribution of measurement data at this concentration
is increased, so the variance for each concentration is not constant. This constitutes het-
eroscedastic data. A weighted regression is used to address this problem [17,19,42,43]. The
value of the weight must be determined for a weighted regression. This value is calculated
using the reciprocal standard deviation of the error for the measurement data at each con-
centration. The practical difficulties of this calculation are that replicates are required
at each level [36], and there must be more than nine samples to ensure validity [33,44].
However, this requirement is not a feature of previous studies. If the weight is estimated
incorrectly, the result of the weighted regression is less accurate than the result using
an unweighted regression [33,39].

In terms of regression techniques, the prediction ability of calibration equations is
important. Criteria have been proposed to evaluate the prediction performance but the
predictive ability of calibration equations is not a feature of studies that assess calibration
equations for chemical analysis [33,40].
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A residual plot is used to validate a regression analysis. A visual method is ambigu-
ous if the number of data is limited. Another quantitative criterion must be considered.
A single session coefficient is tested to determine the order of a polynomial equation. Out-
liers in the data needs are evaluated, and the effect of outliers on the regression analysis
requires further study [33,34,39,40].

To the authors’ best knowledge, regression techniques have not been fully used
to study calibration equations for chemical analysis. This study determines calibration
equations for chemical analysis using regression analysis. The data is collected from
previous studies.

2. Materials and Methods
2.1. Regression Analysis

For this study, the dependent variable yi is the response of the instrument of chemical anal-
ysis. The independent variable xi is the standard concentrations of the target measurement.

The calibration methods for this study are:

1. Linear equations
y = a0 + a1x (1)

2. Higher order polynomial equations

y = bo + b1x + b2x2 + . . . + bkxk (2)

3. Exponential rise to maximum equations (ERTM equations)

y = c1 (1 − Exp(c2x)) (3)

4. Exponential rice to maximum equations with intercept

y = do + d1 (1 − Exp(d2x)) (4)

5. Power equations
y = e1xe2 (5)

6. Power equations with intercept

y = f o + f ixf 2 (6)

If the yi data is heteroscedastic, the dependent variable is transformed to stabilize the
variance. This study uses a logarithmic transformation. The variable y for Equations (1)–(6)
is replaced by lny. These new equations are:

lny = a0 + a1x (7)

lny = bo + b1x + b2x2 + . . . + bkxk (8)

lny = c1 (1 − Exp(−c2x)) (9)

lny = do + d1 (1 − Exp(−d2x)) (10)

lny = e1xe2 (11)

lny = fo + f ixf 2 (12)

Statistical analysis uses Sigma plot V.14.0 (SPSS Inc., Chicago, IL, USA).
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2.2. Evaluation Criteria for Calibration Equations
2.2.1. The Criteria of Fitting-Agreement

The standard error in the estimate errors, s is use as criteria to assess the fit:

s =

√
(yi − ŷi)

2

n− p
(13)

where yi is the dependent variable, ŷi is the predicted value for the calibration equation,
n is the number of data points and p is the number of parameters.

2.2.2. Criteria for Prediction

The Prediction Sum of Squares (PRESS) statistic is used to compare the prediction
ability for different equations [33,35,39,45]. If the data for responses and standard concen-
trations consist of n observations, the first observation (x1, y1) is removed from the data
set. The remaining n − 1 observations are used to estimate the values of parameters for
a specific equation. The value for the first observation (x1) is then substituted into this
first specific equation to calculate the predicted value. This predicted value is denoted as
ŷ1,−1, The predictive error for (x1, y1) is calculated as y1- ŷ1,−1 and denoted as e1,−1.

The first observation (x1, y1) is then replaced in the data set, and the second observation
(x2, y2) is withdrawn. The new parameters for this specific equation are then estimated
again. x2 is substituted into the second specific equation to calculate the predicted value,
ŷ2,−2. The predicted error in the second observation is calculated as y2 − ŷ2,−2 or e2,−2.
Using this method, each observation is removed and the predicted error is calculated.
The n prediction error is called the PRESS residuals, and is denoted as yi − ŷi,−i = êi,−i.
Observation (xi, yi) is not used to determine the fit and evaluate the predictive ability
simultaneously, so the evaluations for fit and prediction are independent. The statistic is
defined as PRESS:

PRESS = ∑(yi − ŷi,−i)
2 = ∑(êi,−i

2
)

(14)

For different calibration equations, the smaller the value of PRESS, the better is the
prediction ability.

2.3. Residual Plots

Residual plots are the plots of residuals versus the predicted values. If the errors
have a uniform distribution along the yi = 0 line, the regression model is adequate. If the
variance of the errors increases as the prediction increases, such as a funnel distribution,
the error variance is not constant (heterogeneous variance). If the error distribution has
a fixed pattern, the equation is not adequate. This occurs if a nonlinear curve is treated
using linear regression.

2.4. Constant Variance Test

If the number of data points is limited, visual observation cannot be used to determine
the variance of errors. The Spearman Rank correlation between the observed values of yi
and the absolute residual values is calculated. This statistic is then used to determine the
relationship between the two variables.

2.5. Transformation

If the variance is not constant, the dependent data is transformed to stabilize the error
variance. This study uses a logarithmic transformation (lny). The independent data is
zero for a blank concentration. This cannot be transformed to a logarithmic form (lnx) or
an inverse power form (1/x), so independent data (xi) is not transformed for this study.
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2.6. The Test on a Single Regression Coefficient

To determine whether a variable is significant, the t-value for the parameter for the
calibration equation is tested.

The hypothesis is:
H0 − bi = 0 (15)

H1 − bi 6= 0 (16)

The t-value of bi is calculated as:

t = bi/se(bi) (17)

where bi is the parameter value and se(bi) is the standard error.

2.7. Outlier Test

The criteria for outliers is that the standardized residual of yi has a critical value >
2.5 and the difference in fit in standard (DFFITS) has flag values > 2.0 [33,38].

2.8. Data Sources for Calibration Curves

Seventeen data sets are used to determine the adequacy of calibration equations,
and the results are shown in Table 1. All original data for the response of chemical analysis
instrumentations and standard concentrations from previous studies.

Table 1. Published data for evaluating the adequate calibration equations in the literature.

Study Equipment Target Standard, Range Response Range Calibration Equation Statistic Criteria

Mulholland and Hibbert [16] HPLC 1 Diadzen 0.162–10.96 mg/50 mL 0.243–30.75 Peak area Linear y = X1.1 R2, Residual plot
Desimoni [17] Flow injection analysis sulfides 0.88–81.2 µm 0.170–15.94 µA linear R2, Residual plot
Yang et al. [46] ICP-MP 2 CD(114) 0–25,000 ng/L −53.9–25,726 polynomial Outliers, s

Bruggemann et al. [19] ICP
Spectrometer Aresenic 0~10.0 ng/L −92~26,394 Linear polynom R2, s, Lack of fit, Residual plot

Lavagnini & Magno [20] GC MS 3 Chloromethanre 0~4 µg/L 0.111975~ 0.465813 Peak
area ratio Linear polynomial s, Residual plot

Ortiz et al. [21]

Ex1. HPLC-DAP 4

Ex2. Anodic
Stripping

voltammetry

Ascorbic
Cadmium

0.004–0.026 mg/L
20.18~60.08 nmol/L

14.54–83.5
Peak area

4.50~15.98 nA

linear
linear

s
ANOVA, R2,Residual plots

Ex3. SWADS using DMG 5 Nickel 0~415 µmol/L 2.5~76.87 µA linear R2

Ex4. Pulse
Polarography Benzaldehyde 0.0198~0.1740 mnol/L 0.033~0.366 µA linear Residual plots,

s

Kirkup and Mulholl-and [18] HPLC

Ibuprofen
Genisten

Biochanin
Pseudoephedrine

Sodium nitrate

103.9~305.7 ng
0.159~10.16 mg
0.158~10.09 mg
61.4~181.5 mg

1.006~25.16

Area 261.357~755.89
0.15508~35.2175
0.12111~34.0687

28,653~85,241
8103~233,405

Linear polynomicl
Y = a + bxm

R2, Radj2,
ANOVA,

AIC 9,
residual plots

Rawski et al. [22] Spectrophotomethic Albumin 0~20 µg/mL 0~450
Peak height × 10−3 Linear Lack of fit, R2

Desharnais et al. [17] LC-MS 6 Cocaine
Naltrexone

5~1000 ng/mL
5~1000 ng/mL

0.049~9.209
Area ratio

0.226~16.298
Area ratio

Linear
linear

Partial F-test,
ANOVA

Partial F-test,
ANOVA

Martin et al. [24] Ex1. HPLC Vitamin B12 0.23~4.0 ng 0.14~1.29 Area ratio High order polynomial
R2

Residual
Plots

Ex2. HPLC Blood 0~90 ng/mL 0.002~0.272 Area ratio
Martin et al. [31] LC-QqQ-MS 7 MeP 1–1500 ng/mL 864–1,470,121 linear R2

arsay HBCDD 1–1500 ng/mL 105–175,247
PFOS 2548–1,924,470

PFPeA 9110–7,597,353
PrP 2150–3,054,469

PFHpA 29,847–19,417,533
EtP 1007–2,062,210

PFOA 12,569–12,906,640

Njaka et al. [41] GF-AAS 8 Pb 5~25 µg/L 0.0122~0.0622
Absorbanc linear

R2

Outliers.,
Residual

plots.
Lavin et al. [26] Ex1.Jmmunoassay moden unknow 0~500 µg/mL 0~99.2 polynomial AICs 10, R2

Ex2. Biophotonic sensing cells Anti-IgG 1~100 µg/mL 0.00~6.14 polynomial AICs, R2

Note: 1. HPLC: High-performance liquid chromatography. 2. ICP-MP: Inductively Coupled Plasma Mass Spectrome-
try. 3. GC–MS: Gas chromatography/mass spectrometry. 4. HPLC-DAP: High performance liquid chromatography-
diode array detection. 5. SWADSV using DMG: Square-ware adsorptive-Stripping voltammetry using dimethyl
lyoxine. 6. LC-MS: Liquid chromatography-tandem mass spectrometry. 7. LC-QqQ-MS: liquid chromatography–mass
spectrometer. 8. GF-AAS: Graphite furnace atomic adsorption spectrometry. 9. AIC: Akaikes information criterion.
10. AICs: The small sample adjusted information criteria.

3. Results

After evaluating the adequacy of equations for that are listed in Table 1, the results of
the regression analysis involve four types of calibration equations:
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a. Linear equations
b. Nonlinear equations
c. Calibration equations with non-constant variance
d. Calibration curves with outliers

3.1. Linear Equations

The type of data distribution for a linear equation ([21], Ex.1) is shown in Figure 1. This
shows the relationship between the ascorbic concentration and the peak area of HPLC. The
results of the evaluation of fit for calibration equations and the criteria are listed in Table 2.
The results show that all equations are adequate. The residual plots for these equations
feature a uniform distribution. The residual plot for the linear calibration equation is shown
in Figure 2.
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Table 2. The evaluation of fitting calibration equations and criteria for the ascorbic concentration and
the peak area for HPLC (data published [21]).

Equation s PRESS Residual Plots

1. y = 222.512 + 30812x 89.644 160,637 Uniform distribution
2. y = 191.243 + 313946.6x − 199117.011x2 92.034 182,248 U.D.
3. y = 48234.378(1 − Exp(−7.150x)) 102.857 220,533 U.D.
4. y = 188.052 + 222889.55(1 − Exp(−1.4113x)) 92.037 182,214 U.D.
5. y = 255791.66x0.9426 92.241 176,843 U.D.
6. y = 160.955 + 290978.8x0.983 92.017 179,136 U.D.

Note: U.D.: Uniform distribution.
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The linear equation has the smallest s value, so the fitting agreement is best. The
PRESS value for this linear equation is less than the value for other equations, so it gives
the best prediction. For the data distribution between cadmium concentration and the
current response using Anodic stripping voltammetry ([21], Ex.2), two calibration equations
are adequate:

y = −0.416 + 0.263x, s = 0.279, PRESS = 2.392 (18)

The other four calibration equations (Equations (3)–(6)) give residual plots with fixed
patterns. The t-test for the numerical value of 0.000603 for Equation (18) is valid.

y = 0.436 + 0.214x + 0.000603x2, s = 0.287, PRESS = 2.291 (19)

The other four calibration equations (Equations (3)–(6)) give residual plots with fixed
patterns. The t-test for the numerical value of 0.000603 for Equation (19) is valid.

The quadratic polynomial equation has a smaller PRESS than the linear equation,
giving a better prediction. The linear equation gives a better fit because the s value is
smaller. Both are adequate calibration equations. A previous study ([21], Ex.2) used only
a linear equation.

3.2. Nonlinear Equations
3.2.1. Quadratic Equations

The relationship between sulfide concentrations and the response for flow injection
analysis is shown in Figure 3. The results for the estimated parameters and comparative
statistics for six equations are shown in Table 3. The residual plots for these equations
are shown in Figure 4. The linear equation, the ERTM equation, and the power equation
exhibit a fixed pattern for the residual distribution, so these three calibration equations are
not adequate. The quadratic polynomial equation, the ERTM equation with intercept, and
the power equation with intercept exhibit a uniform distribution for residuals.

Table 3. The evaluation of fitting calibration equations and criteria for sulfide concentration and the
response for flow injection analysis (data published [17]).

Equation s PRESS Residual Plots

1. y = −0.172 + 2.818x 0.315 4.140 Fixed pattern
2. y = −0.414 + 3.0801x−0.0241x2 0.225 2.418 U.D.
3. y = 624.382(1 − Exp(−0.0046x)) 0.335 4.498 Fixed pattern
4. y = −0.417 + 182.166(1 − Exp(−0.0169x)) 0.225 2.259 U.D.
5. y = 2.806x0.998 0.334 4.814 Fixed pattern
6. y = −0.543 + 3.237x0.945 0.241 2.472 U.D.
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The quadratic polynomial gives the best fit (the smallest of s value) and the best
prediction performance, with the smallest value of PRESS. This data set is from a study by
Desimoni [17]. This study uses a linear equation as the sole model and assessment use the
sole criterion of the R2 value. In this study, we use more models for comparison and show
that the model gives a better fit and prediction than the linear equation that is used in the
previous study [17].

3.2.2. The 4th Order Polynomial Equations

The relationship between the nickel concentration and the current for square-wave
adsorptive-stripping voltammetry ([21], Ex.3) is shown in Figure 5. Table 4 lists the es-
timated parameters and the comparative statistics for these calibration equations. The
4th order polynomial equation gives the lowest value for s and PRESS. Only this equation
gives a uniform distribution for the residual plots. The residual plots for the other seven
equations exhibit a systematic pattern. The residual plots for the linear and fourth-order
polynomial equations are shown in Figure 6. The respective values for the fitting crite-
rion, s, for the quadratic, the third-order and the fourth-order polynomial equations are
2.986, 1.707 and 1.360. The respective values for the prediction criterion, PRESS, for the
quadratic, the third-order and the fourth-order polynomial equations are 231.49, 81.364 and
70.125. The results show that an adequate calibration equation gives a significantly better fit
and prediction.

Table 4. The evaluation of fitting calibration equations and criteria for nickel concentration and the
current for square-wave adsorptive-stripping voltammetry (data published [21]).

Equation s PRESS Residual Plots

1. y = 9.832 + 192.469x 7.587 1299.3 Fixed pattern
2. y = −2.861 + 383.458x − 459.414x2 2.986 231.49 Fixed pattern
3. y = 1.620 + 235.042x + 452.872x2 − 1455.64x3 1.707 81.364 Fixed pattern
4. y = 3.347 + 124.632x + 1733.643x2 − 6367.25x3 + 5939.812x4 1.360 70.125 U.D.
5. y = 103.107(1 − Exp(−3.712x)) 3.982 361.11 Fixed pattern
6. y = −2.975 + 101.749(1 − Exp(−4.150x)) 3.966 434.6 Fixed pattern
7. y = 155.549x0.686 5.692 740.4 Fixed pattern
8. y = −3.401 + 155.388x0.644 5.716 1919.1 Fixed pattern
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The study by Oritz et al. ([21], Ex.3) analyzed this data set using the least square
(LS) and least median squares method (LMS) in the form of a linear equation. The result
of this study shows that the third-order polynomial equation gives a better fit than the
two equations that were proposed by Oritz et al. [21]. As the concentration levels in-
crease, significant deviation errors develop for the LMS calibration equation, so the fit and
prediction are poor.

3.2.3. Exponential Rise to Maximum Equations

The data distribution for Albumin concentration and the response for the spectropho-
tometric measurement [22] are shown in Figure 7. The estimated parameters and the
comparative criteria are listed in Table 5. The quadratic polynomial equation, the ERTM
equation and the ERTM equation with intercept are adequate. The residual plots for these
equations are shown in Figure 8. The respective values for the fitting criterion, s, for the
quadratic polynomial equation, the ERTM equation and the ERTM equation with inter-
cept are 8.766, 8.560 and 8.698. The respective values for the prediction criterion, PRESS,
for these three equations are 2718, 2611 and 2672. Compared with the linear equation,
the results show that the ERTM equation gives a significantly better fit and prediction.

Table 5. The evaluation of fitting calibration equations and criteria for Albumin concentration and
the response for spectrophotometric measurement (data published [22]).

Equation s PRESS Residual Plots

1. y = 47.773 + 22.047x 27.408 7431 Fixed pattern
2. y = 4.946 + 36.322x − 0.714x2 8.766 2718 U.D
3. y = 617.147(1 − Exp(−0.0654x)) 8.560 2611 U.D
4. y = 0.707 + 618.310(1 − Exp(−0.650x)) 8.698 2672 U.D
5. y = 57.694x0.696 12.781 5976 Fixed pattern
6. y = −7.232 + 61.790x0.678 12.766 5948 Fixed pattern
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The ERTM equation has the lowest value for s and PRESS. This equation gives the
best fit and prediction of all equations.

The study by Rawski et al. [22] used the lack-of-fit test for this data set to evaluate the
linear and quadratic polynomial equations and showed that the second-order polynomial
equation gives a better fit than the linear equation. This study uses other forms of equations
and shows that the second polynomial equation is adequate, but the ERTM equation gives
a better fit and prediction.

3.2.4. Power Equations

The calibration curve for ibuprofen concentration and the peak area for HPLC was
plotted by Kirkup and Mulholland [18]. This data is shown in Figure 9. The results of the
regression analysis for seven calibration equations are listed in Table 6. Figure 10 shows
the residual plots for the calibration equations. Only the ERTM equation with intercept
and the power equation with interceptgivese a uniform distribution for the residual plots.
The power equation with intercept gives smaller values for s and PRESS. This equation is
adequate for this calibration curve.
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Table 6. The evaluation of fitting calibration equations and criteria for ibuprofen concentration and
the peak area for HPLC (data published [18]).

Equation s PRESS Residual Plots

1. y = −0.670 + 3.510x 0.280 1.253 Fixed pattern
2. y = −0.473 + 3.731x − 0.022x2 0.187 0.599 Fixed pattern
3. y = −6319 + 4.074x − 0.125x2 + 0.007x3 0.148 0.348 Fixed pattern
4. y = 2128.294(1 − Exp(−0.0016x)) 0.356 1.595 Fixed pattern
5.y = −0.477 + 296.738(1 − Exp(−0.0126x)) 0.186 0.567 U.D.
6. y = 3.443x1.004 0.354 1.737 U.D.
7. y = −0.640 + 3.935x0.953 0.165 0.349 U.D.
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The respective values for the fitting criterion, s, for the quadratic polynomial equation,
the ERTM equation with intercept and the power equation with intercept with intercept
are 0.187, 0.186 and 0.165. The respective values for the prediction criterion, PRESS,
for these three equations are 0.599, 0.567 and 0.349. Compared with the linear equation and
other polynomial equations, the results show that the power equation with intercept gives
a significantly better fit and prediction.

The study by Kirkup and Mulholland [18] used three calibration equations: y = a + bx,
y = a + bx + cx2 and y = a + bxc, to evaluate the fit of the calibration equations. The criteria for
comparison are R2, Radj

2 and AIC. Their results of the study show that there is no significant
difference in the three criteria for the three calibration equations so the other two equa-
tions only give a slightly better fit than that the linear equation. However, our study
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uses s and PRESS as the criteria for fitting and prediction and the residual distributions
were observed.

The power equation with intercept gives a significantly better fit and prediction and is
the best equation. Different criteria make the different results.

3.2.5. Evaluation of Other Data Sets

Other studies show that nonlinear equations give a good fit and prediction perfor-
mance. The data distribution for a study of the signal (µA) that is detected by an immunoas-
say ([26], Ex.1) is shown in Figure 11.
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This distribution has the form of the ETRM curve. The response increases as the
concentration increases and achieves a maximum value. The best calibration equation is:

y = 99.379(1 − Exp(−0.0197x)), s = 0.181, PRESS = 0.611 (20)

Martin et al. established the VitninB12 calibration curves and proposed the calibration
equation:

√
y = g0 + g1logx [24]. However, this equation cannot be used for the blank test

(x = 0). We evaluates the data sets using regression analysis with Equations (1)–(6). The
best calibration equation is:

y = −0.586 + 1.173x0.319, s = 0.0481, PRESS = 0.116 (21)

The calibration curve for the Diadem concentration and the peak area for HPLC
analysis was plotted by Mulholland and Hibbert [16]. The simple equation, y = x1.1 is used
and the R2 value is 0.999. However, the residual plots exhibit a fixed pattern. The data sets
are evaluated using regression analysis with Equations (1)–(6) and the best equation is:

y = −0.417 + 182.167(1 − Exp(−0.0169x)), s = 0.225, PRESS = 2.159 (22)

The best equation is evaluated using different regression equations, and the results are
different from those of Mulholland and Hibbert [16].

3.3. Calibration Equations with Non-Constant Variance
3.3.1. The Data Set of Lavagnimi and Magno

The study by Lavagnimi and Magno [20] measured the ratio of the peak area for
chloromethane and the related standard results for GC-MC. The distribution for this
calibration data is shown in Figure 12a. The data becomes more scattered at the same
standard level as the standard chloromethane concentration increases. The residual plots
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for the regression results for the calibration equations are shown in Figure 13a,b. These
show a funnel pattern, so all equations give a heterogeneous variance. The results of the
regression analysis for the y-values and standard concentration are listed in Table 7.

Table 7. The evaluation of fitting calibration equations and criteria for the ratio of peak area for
chloromethane and of the internal fluorobenzene standard detected by GC-MC and chloromethane
concentration using the y variable (data published [20]).

Equation s PRESS Residual Plots

1. y = 0.0186 + 0.0972x 0.0243 0.0554 Fixed pattern
2. y = 0.010133 + 0.128x − 0.00804x2 0.0320 0.0475 Fixed pattern
3. y = 0.664 (1 − Exp(−0.222x)) 0.0227 0.0501 Fixed pattern
4. y = 0.132x0.790 0.0221 0.0470 Fixed pattern
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Figure 13. Residual plot for chloromethane concentration and the peak area of the ratios of peak
area for chloromethane and the internal fluorobenzene standard using calibration equations for the
data [20]. (a) The third polynomial equation using original y-values. (b) The power equation using
original y-values. (c) The third polynomial equation using logarithmic y-values. (d) The power
equation using logarithmic y-values.

The replicates of the measurement of the fixed concentration levels are <9, so the
weights for the weighted regression analysis cannot be calculated [33,44]. The logarithmic
transformation of the dependent variable (y), lny is the new variable. The distribution
between lny and the standard concentration is shown in Figure 12b. The data distribution
converges, so the transformation stabilizes variance in the data.

The results of the regression analysis for the lny values and standard concentration are
listed in Table 8.

Table 8. The evaluation of fitting calibration equcations and criteria for the ratio of the peak area
for chloromethane and the internal fluorobenzene standard detected by GC-MC and chloromethane
concentration using the lny variable (data published [20]).

Equation s RESS Residual Plots

1. Lny = −4.165 + 2.356x − 0.403x2 0.423 16.501 Fixed pattern
2. Lny = −4.373 + 3.837x − 1.544x2 + 0.201x3 0.320 9.494 Fixed pattern
3. Lny = −4.561 + 5.986x − 54.802x2 + 1.439x3 − 0.154x4 0.242 6.811 U.D.
4. Lny = −4.537 + 3.393x + 1.678x2 0.271 6.839 U.D.
5. Lny = −5.0126 + 2.763x0.309 0.224 4.578 U.D.

Three calibration equations give a uniform distribution for the residual plots. The
residual plots for two equations are shown in Figure 13c,d. The power equation with
intercept gives the smallest values for s and PRESS, so this equation is the best equation for
this calibration curve.

The adequate calibration equation is:

lny = −5.013 + 2.763x0.309 (23)

The lny is transformed back to the natural unit.

y = Exp(−5.013 + 2.763x0.309)

y = 6.654 ∗ 10−3 Exp(2.766x0.310)
(24)
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In Table 7, the criteria, s and PRESS, are calculated using the original y-value but
three criteria are calculated using the lny values in Table 8. It is inappropriate to compare
the results in Tables 7 and 8 because y and lny are dependent variables.

3.3.2. Other Cases Using the Transformation of the y-Value

The other cases that involve the transformation of y-value to stabilize the variance are
shown in Figure 14a. The current response for pulse polarography for different concentra-
tions of the benzaldehyde was measured by Ortiz et al. ([21], Ex.4) using a weighted linear
equation, but there were only four replicates for each concentration so it is not appropriate
to calculate these weights using the standard deviation.
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Figure 14. The relationship between the concentration of the benzaldehyde and the current detected
for pulse polarography (data published [21]). (a) Current. (b) Logarithmic current.

Six calibration equations are evaluated for these data sets. The typical residual plots for
the original y-value are shown in Figure 15a. The funnel pattern indicates a non-constant
variance in the y response.

When the current data is transformed, the data distribution between lny and the
concentration is shown in Figure 14b. The typical residual plots are shown in Figure 15b.

The acceptable calibration models are:

lny = −3.807 + 39.695x − 237.956x2 + 575.645x3, s = 0.0506, PRESS = 0.130 (25)

lny = −6.270 + 7.605x0.218, s = 0.0498, PRESS = 0.120 (26)
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The equation for natural unit y is:

y = 0.00189Exp(7.605x0.218) (27)
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equations for the data [21]. (a) The second polynomial equation using original y-values. (b) The
power equation with intercept using logarithmic y-values.

In some cases, the numeric value of response y is negative. These numerical values
cannot be treated with the logarithmic transformation.

In a study of anti-Ig6 detection using Biophotonic sensing cells ([26], Ex.2), the trans-
duction signal has zero values. All y-values are modified as y’ = y + 10, and an adequate
calibration equation was established:

lny’ = −1.863 + 3.489(1 − Exp(−0.0943x)), s = 0.239, PRESS = 4.037 (28)

Transformed back to the original units, the new equation is:

y = −10 + 0.155 Exp(3.489(1 − Exp(−0.0643x)) (29)
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Yang et al. established the calibration curve for the detection of cd(114) using ICP-MP
and used a quadratic polynomial calibration equation [46], but the residual plots exhibit
a funnel pattern. The original data sets include some data for responses with a minus sign
between −7 to −53.9.

The adequate equation was evaluated as:

lny’ = ln(y + 60) = 1.939 + 1.115(1 − Exp(−0.203x)), s = 0.417, PRESS = 15.35 (30)

The natural unit for this calibration equation is:

y = −60 + 6.955Exp(1.115(1 − Exp(−0.203x)) (31)

Bruggemann et al. plotted a calibration curve for the detection of the arsenic content
using an ICP spectrometer and used a second-order polynomial equation with the criteria
of R2 and the s value [19].

However, the residual plots exhibit a funnel pattern. The response value has a negative
value from −31 to −92.

The adequate equation is:

lny’ = ln(y + 100) = 3.512 + 4.412x0.185, s = 0.42, PRESS = 5.28,

s = 0.42, PRESS = 5.28
(32)

The natural unit for this calibration equation is:

y = −100 + 33.529Exp(4.412x0.185) (33)

3.4. Calibration Curves with Outliers

Njaka et al. measured lead concentration using graphite furnace atomic absorption
spectrometry [41]. The distribution between the response for absorption and the standard
concentration is shown in Figure 16. It is not easy to determine a suspected outlier visually
so outliers were identified using an F-test [41].
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Figure 16. The relationship between Pb concentration and the absorbance detected by atomic
absorption spectrometry (data published [41]).

The results for the linear calibration equation are:

y = 0.00152 + 0.00237x, s = 0.00137, PRESS = 3.136× 10−5 (34)
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The residual plot for Equation (28) is shown in Figure 17. An outlier is reconfirmed.
For this study, the statistics for this observation are verified using the standardized residual
value and the DFFITS value. The results show that the observation is an outlier.
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Figure 17. Residual plot for Pb concentration and the absorbance detected by atomic absorption
spectrometry using calibration equations for the data [41]. (a) Linear equation with outlier. (b) Linear
equation without outlier.

If the outlier is removed from the data sets, the new calibration equation is:

y = 0.00121 + 0.00240x, s = 0.0095, PRESS = 1.868× 10−5 (35)

If the outlier is removed, the intercept and slope values are changed. The fit criterion
increases from 0.00137 to 0.0075, and the prediction criterion decreases from 3.136 × 10−5

to 1.869 × 105, so removing the outliers significantly increases the accuracy of the fit
and prediction.

The calibration curve for the area ratio for LC-MS-MS and the standard Naltrexone
concentration was plotted by Desharnais et al. [17]. The measurement data is shown
in Figure 18. A partial F-test was used to select the order of the polynomial equation,
and a linear calibration equation was evaluated to be the best equation.

The data sets were analyzed using a regression technique. A quadratic polynomic
equation is the best equation and an outlier is identified. The residual plots are shown
in Figure 19a.
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The second polynomial equation for all data is:

y = 0.0240 + 0.00875x + 2.806× 10−7x2, s = 0.087, PRESS = 0.459 (36)

When the outlier was removed from the data sets, a new calibration equation
was established:

y = 0.0270 + 0.00866x + 4.639× 10−7x2, s = 0.055, PRESS = 0.156 (37)

The residual plots for Equation (37) is shown in Figure 19b. The residuals have a uni-
form distribution. The fit and prediction are significantly improved using Equation (37).

The value of s decreases from 0.087 to 0.055 and PRESS decreases from 0.459 to 0.156.
A study by Martin et al. ([24], Ex.2) measured blood concentration using HPLC. The
calibration curve is shown in Figure 20. An observation (90, 0.0272) was found.
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Figure 20. The relationship between blood concentration and the response detected by a HPLC array
with a suspected outlier (data published [24]).

The results for the fit for the calibration equations and the criteria for these calibration
curves are listed in Table 9. Linear, ERTM and power equations are adequate equations,
but the results of the outlier test show that the observation (90, 0.272) is an outlier. The
residual plots for two equations are shown in Figure 21.

Table 9. The evaluation of fitting calibration equations and criteria for blood concentrations and the
response detected by a HPLC array with suspected outlier (data published [24]).

Equation s PRESS Residual Plots

1. y = 0.00364 + 0.00143x 0.0266 0.0415 U.D. with outlier
2. y = −0.504(1 − Exp(−0.00340x)) 0.0267 0.0420 U.D. with outlier
3. y = 0.0024x0.893 0.0167 0.0411 U.D. with outlier
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Figure 21. Residual plot for blood concentration and the response detected by a HPLC array for the
data of Martin et al. with a suspected outlier [24]. (a) Linear equation. (b) Power equation.

When the outliers are removed, the calibration equation is established and the results
are listed in Table 10. The residual plots are shown in Figure 22.

Table 10. The evaluation of fitting calibration equations and criteria for blood concentrations and the
response detected by a HPLC array when outliers are deleted (data published [24]).

Equation s PRESS Residual Plots

1. y = 0.00543 + 0.00126x 0.0165 0.0139 U.D.
2. y = 0.192(1 − Exp(−0.0101x)) 0.0158 0.0142 U.D.
3. y = 0.00351x0.779 0.0161 0.0137 U.D.
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A comparison of Tables 9 and 10 shows that deleting outliers improves the fit and pre-
diction performance significantly. A calibration curve and adequate calibration equations
are necessary for chemical analysis. The effect of outliers on the calibration Equation was
only measured by the study of Njaka et al. [41]. For this study, outliers in three calibration
curves are used to show the effect of these outliers on the fit and prediction performance
and the parameter values for the calibration equations. A regression analysis technique
improves the calibration equations for chemical analysis.

3.5. The Adequate Calibration Equations with the Data Sets Obtained with Same Equipment
and Laboratory
3.5.1. Data Sets of Desharnais et al

Desharnais et al. prepared the standard materials of cocaine and naltrexone in bovine
blood at concentrations ranged from 5 to 1000 ng/ml. These samples were analyzed
on an HPLC equipment with q mass spectrometer. There were five replicates at each
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concentration and the dependent variable (y) was the response area ratio. The adequate
calibration equations for cocaine and naltrexone were:

1. Cocaine
y = 29.979(1 − Exp(−0.0008x)) (38)

2. Naltrexone
y = 0.0270 + 0.00866x + 4.639× 10−7x2 (39)

The adequate calibration equation was the exponential rise to maximum equation for
cocaine and second-order polynomial equation for naltrexone. Both data sets were detected
from the same equipment and laboratory. However, the form of the adequate calibration
equations were difference.

3.5.2. Data Sets of Kirkup and Mulholland

Five standard solutions were prepared and measure with HPLC by Kirkup and Mul-
holland [18]. The adequate calibration equations for each standard solution were listed
as follows:

1. Ibuprofen
y = 0.640 + 3.935x0.953 (40)

2. Genisten
y = −0.640 + 3.935x0.953 (41)

3. Biovhanin
y = −0.475 + 835.467(1 − Exp(−0.0042x)) (42)

4. Pseudoephedrine
y = 1930.801 + 430.374x + 0.153x2 (43)

5. Sodium nitrate
y = 8263.744x1.033 (44)

The adequate calibration equation was the power equations with intercept for Ibu
profen, Genisten and Sodium nitrate, the exponential rise to maximum equation with
intercept for Biovhanin and the second-order polynomial equation for Pseudoephedrine.
These data sets were measured by using the same equipment in a laboratory. No universe
calibration equation could be found.

3.5.3. Data Sets of Martin et al

Eight standard concentrations of the compounds were prepared by Martin et al. [31].
These standard reagents were detected by using an HPLC system. There were four repli-
cates at each concentration and the dependent variable (y) was the response area ratio. The
adequate calibration equations for these reagents were listed as follows:

1. Mep
y = 207336558.2x0.00000472 (45)

2. HBCDD
y = 105.9236x1.0132 (46)

3. PFOS
y = 32006.765 + 2267.574x − 6.689x2 (47)

4. PFPeA
y = 20650.147 + 8660.301x − 4.0249x2 − 0.0011x3 (48)

5. PrP
y = −18410.374 + 10679965.5 (1 − Exp(−0.0002x)) (49)
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6. PFHpA
y = 187092.785 + 26629692.6 (1 − Exp(−0.0008x)) (50)

7. EtP
y = 2768.698 + 1231.0322x − 0.493x2 − 0.0030x3 (51)

8. PFOA
y = 46279.18 x0.773 (52)

The adequate calibration equations included the power equation, the higher or-
der polynomial equation and the exponential rice to maximum equation with intercept.
No universe calibration equation could be found for these data sets.

4. Discussion

An adequate calibration equation is necessary to determine calibration curves for
chemical analysis. Seventeen data sets from previous studies are used to evaluate calibration
equations. A linear calibration equation can be used for two data sets only.

Nonlinear equations are suited to most of the data sets. The data distribution becomes
more diverse as the standard concentration increases so a logarithmic transformation of the
response is used to stabilize non-constant variance in the response data.

Linear equations are the most commonly used equations and high- order polyno-
mial equations are used for nonlinear calibration curves. R2 is the sole criterion and the
numerical value is usually very high.

This study uses a regression analysis technique. The criteria to assess the fitting-
agreement are the value s. The predictive ability of these equations is measured in terms of
the PRESS value. The residual plots are used as quantitative criterion to assess the adequacy
of the calibration equations. As the fit and prediction ability are the principal requirement
for adequate calibration equation, linear and higher order polynomial equations are not
suited to many data sets.

A suspected outlier in the data sets is verified using the standardized residual and the
difference in fit in standard (DFFITS). When the outlier is removed, the fit and prediction
ability of the calibration equation improve significantly.

If an outlier is found in the standardized residual or DFFITS, deleting these observa-
tions improves the fit and prediction ability. However, a dominant data point provides an
insight into this calibration procedure. These problems may be due to sample preparation,
instrumentation adjustment or an operator’s mistake. Outliers is are identified to remove
suspected observation points to improve the calibration equation and to highlight problems
with the calibration procedure.

In a study of calibration equations for several compounds of environmental concern
that are detected by LC-MS/MS, Martin et al. used linear and higher order polynomial
equations to verify the adequacy of equations and concluded that there is no perfect model
for all calibration curves [24]. This study uses four forms of calibration equations.

There is no universal equation for all calibration curves. Each calibration curve uses
specific calibration equation.

In a study of the uncertainty of humidity sensors, Lu and Chen [47] found that an ade-
quate calibration equation decreases the measurement uncertainty significantly. An evaluation
of the measurement uncertainty shows that nonlinearity is the main effect on measurement
uncertainty and this is mitigated by using an adequate nonlinear calibration equation [48,49].

Regression analysis is used to establish a liver volume prediction equation [50],
in order to evaluate the environmental factors that affect plant tissue culture [51],
to describe the water activity equations for honey [52] and to express the factors that
affect the dielectric properties of foods [53]. This statistical technique is also used to
evaluate adequate calibration equations for the calibration curves in this study.

A calibration curve is necessary for chemical analysis. The method that is proposed
by this study can be used for other chemical instruments to establish adequate calibration
equation and improve performance.
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5. Conclusions

This study uses seventeen data sets from previous studies to evaluate the adequacy of
calibration equations. Four types of calibration equations were proposed and the standard
error of the estimate errors, s is use as the criteria to evaluate the fitting performance.
The prediction ability is determined using the Prediction Sum of Squares, PRESS statistic.
Constant variance test was performed to assess the suitable of calibration equation for this
dataset. Suspected outliers in the data sets are verified.

The results of this study show that linear and higher order polynomial equations
are only suitable for some data sets. Nonlinear equations, exponential rise to maximum
and power equations are adequate calibration equations for others data sets. A logarith-
mic transformation of the response is used to stabilize non-constant variance in response
data. Removing outliers significantly improves the fit and prediction ability of calibra-
tion equation. The adequate calibration equations with the data sets obtained by using
same equipment in a laboratory indicated that the form of the adequate calibration equa-
tions were difference. There is no universal calibration equation for different calibration
curves. The regression technique that is used in this study can be applied to other chemical
instruments to establish adequate calibration equations.
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