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Abstract: Lane marking recognition is one of the most crucial features for automotive vehicles as
it is one of the most fundamental requirements of all the autonomy features of Advanced Driver
Assistance Systems (ADAS). Researchers have recently made promising improvements in the ap-
plication of Lane Marking Detection (LMD). This research article has taken the initiative to review
lane marking detection, mainly using deep learning techniques. This paper initially discusses the
introduction of lane marking detection approaches using deep neural networks and conventional
techniques. Lane marking detection frameworks can be categorized into single-stage and two-stage
architectures. This paper elaborates on the network’s architecture and the loss function for improving
the performance based on the categories. The network’s architecture is divided into object detection,
classification, and segmentation, and each is discussed, including their contributions and limitations.
There is also a brief indication of the simplification and optimization of the network for simplifying
the architecture. Additionally, comparative performance results with a visualization of the final
output of five existing techniques is elaborated. Finally, this review is concluded by pointing to
particular challenges in lane marking detection, such as generalization problems and computational
complexity. There is also a brief future direction for solving the issues, for instance, efficient neural
network, Meta, and unsupervised learning.

Keywords: ADAS; deep neural network (DNN); DBSCAN; object detection; segmentation

1. Introduction

Autonomous driving has become a hotspot research topic as the intelligent transport
system and environmental perception improves daily. LMD is one of the significant parts of
the environmental perception system, where many efforts have been made in the previous
decade. Nevertheless, developing an efficient lane detection framework under different
environmental circumstances is a highly challenging task because it has many dependencies
that may influence the framework’s final output.

Various preprocessing techniques have a significant role in lane marking detection
systems, mostly dependent on heuristic features. Distinct types of filters such as Finite
Impulse Response (FIR) [1], Gaussian [2], and mean and median [3] are used to remove
the noise from the input dataset. Duan et al. [4] introduced threshold segmentation to deal
with the variation in illumination. Additionally, PLSF [5] and Otsu [6] are also applied
for the same region. There are different Regions of Interest (ROI) that are examined to
avoid redundancy, such as vanishing point-based ROI [7], adaptive ROI [8], and Fixed-size
ROI [9]. An essential preprocessing tool to enhance the quality of lane marks is colour
conversion, such as the RGB to HSV colour model.

There are many algorithms applied to extract lane features, especially for straight lanes,
for instance, Hough [10], Canny [8], Sobel [9], and FIR filter [11]. Catmull–Rom spline [12],
clothoid curve [13], parabolic [14], and cubic B-spline [2] are applied for curved lanes. A
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few other techniques are used under complex conditions, such as image enhancement [15]
and wavelet analysis [16].

DNN (Deep Neural Network) has become one of the most promising computer vi-
sion techniques since AlexNet won the ILSVRC challenge in 2012. These deep learning
techniques have shown promising performances in various fields of research. Recently,
various efficient deep learning approaches have been examined for lane marking detec-
tion. From the beginning, Convolution Neuron Network (CNN) [17,18] to the GAN-based
method [19] and segmentation process [20] have obtained efficient results on LMD. Ad-
ditionally, DAGMapper [21] and attention map [22] have been applied to understand
the structural features of the lanes. Though these techniques have obtained auspicious
results, LMD is still challenging for its lack of generalization capability. For instance, a
trained model in a particular scenario, such as daytime, may obtain poor results in other
environmental scenarios, such as nighttime.

This article provides an efficient, comprehensive review of LMD using different deep
neural networks. The manuscript provides a review of the complete process of lane
marking detection (LMD) using deep learning techniques, considering the sequential
process. It provides a clear indication of preprocessing and post-processing approaches for
lane marking detection. In addition, the manuscript provides an optimization process to
improve the algorithm as well as to remove the post-processing steps. The loss function
is an important part of LMD, and it is categorically discussed, broken into classification,
regression, and adversarial training to make it these categories easy to understand. Deep
learning algorithms for LMD are explained in three major categories: object detection,
classification, and segmentation of lanes, to cover all aspects of this field with proper
objectives, limitations, suggested improvements, and structures. The summary table
(Tables 1 and 2) provides the deep learning algorithms for LMD with achievements, results
and constraints to indicate their goals and barriers. More importantly, a discussion shows
a comparative result with outcome figures by training and testing the models with the
Tusimple dataset. Finally, a future direction is provided to give a probable option for
improving the LMD techniques. The remaining sections of the review article are organized
as follows: Section 2 outlines distinct deep learning techniques (including preprocessing,
loss function, cluttering, and preprocessing) for LMD. Section 3 describes the comparative
result of some experimental results. Finally, Section 4 gives the conclusion and future
thoughts on LMD techniques.

2. LMD Using DNN

The existing lane marking detection approaches can be classified into two major
categories: single-stage and two-stage [23]. The initial segment of the two-stage frameworks
extracts the heuristic recognition and deep learning-based lane features. In contrast, the
second segment refers to the post-processing steps, which may include fitting, clustering,
or interfacing. However, the single-stage lane detection approach provides final results
directly from the input stage, including post-processing and cluster results. The LMD
using the deep neural network has been discussed from four perspectives: preprocessing,
network architecture, network loss functions, and post-processing.

2.1. Pre-Processing

ROI cropping is applied to remove the irrelevant information from the input dataset in
the traditional and initial parts of the deep learning approaches. Consequently, it reduces
the computational complexity and increases the running speed of the framework. As the
lane markings are visualized on the lower part of the image frames, the clipped portion
refers to the frames’ upper or sky part. Thus, it reduces the computational complexity by
around 30% [23].

Some advanced techniques, such as meta-learning, can be examined to ameliorate the
generalization of the CNN method. It can also be improved by diversifying the training
dataset. The augmentation technique has a significant role in diversifying and increasing
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the number of data in the image dataset. In this process, data can be cropped, rotated,
brightened, and mirrored to assort the training dataset shown in Figure 1 as a reference.

Figure 1. Different pre-processing technique (a) original, (b) cropped, (c) brighten (d) mirrored,
(e) rotating and (f) perspective.

2.2. Network Architecture of LMD

There are many strategies to detect the LMD using a deep learning network, though
these strategies can be categorized based on defining the LMD task. Therefore, these
techniques can be classified as object detection, classification, and segmentation of lanes.
Every feature point on lane segments is labeled, and detects the lanes as an object by
the regression coordinates. In comparison, lane position is determined by combining
the prior information in the classification techniques. On the contrary, background and
lane pixels are labelled as distinct classes and detect the lane through semantic or instant
segmentation. However, some LMD techniques are also satisfied with multiple purposes
along with detecting lane marks, such as road marking detection, road type classification,
and drivable area detection. Initially, architectural information can be managed from the
primary convolution network, such as ResNet, VGG, and FCN.

2.2.1. The Initial Network Architecture of LMD

CNN was first introduced to extract the lane feature in LMD by Kim et al. [17]. Addi-
tionally, random sample consensus (RANSAC) was used to group the identical architecture
of the lane locations. The CNN architecture, shown in Figure 2, consists of three convolution
layers, two subsampling layers, and three fully connected layers (FCL). The input dataset
was converted into 192 × 28 after the ROI and edge detection. The last FCL provided the
predicted output of 100 × 15.



Sensors 2022, 22, 7682 4 of 21

Figure 2. The architecture of CNN based lane marking detection technique.

Though it has improved LMD compared to the traditional methods, it also has some
research limitations. The approach requires complex data processing unit and has a complex
architecture of eight layers. Therefore, other researchers have developed other improved
deep neural networks to overcome the existing limitations.

2.2.2. Lane Detection Based on Object Detection

Various types of visual detection systems are available for the autonomous driving
system, such as road marking detection, vehicle detection, and, most importantly, lane
marking detection. Sermanet et al. [24] introduced the overfeat technique, emphasizing
the importance of a multi-supervised training approach, which simultaneously improved
performance due to location, detection, and classification. Two key points typically focus
on object detection, such as predicting the object and position of the object on the image.

Huval et al. [25] introduced empirical evaluation of the deep learning (EELane) tech-
nique with an overfeat detector to detect the highway’s lane markings. This research
aims to apply six regressions to predict the lanes. The initial four regression dimensions
indicate the finishing aspects of the line under the segmented lane boundary. The reaming
regression dimension conceding the camera suggests the more profound finishing points.
The geometrical information from CNN has been applied for many purposes, such as edge
detection and inpainting, to assist the main task. The reader can go through it for a detailed
understanding [26].

Seokju et al. [27] introduced VPGNet based on VPD, also a geometric estimation
method of CNN. It is a modified version of the vanishing point tracking method, composed
of four segments. The Vanishing point can guide road marking recognition and lane detec-
tion, which was the main contribution of the VPGNet. VPGNet has some post-processing
framework for lane regression and clustering, increasing computational complexity. The
architecture of the network is shown in Figure 3.

Figure 3. Schematic diagram of VPGNet.

EELane and VPGNet showed the effectiveness of the multi-branch techniques where
lane detection can be guided from prior knowledge by sharing different tasks into con-
tiguous representations. Huang et al. [28] combined the spatial and temporal data in the
CNN framework to detect the lane markings by selecting the lane boundaries. Therefore,
the computational time is reduced, allowing it to be run more effectively in the automated
driving car under intricate weather and traffic schemes in real-time. With this aim in mind,
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lane location estimation is obtained by evaluating Inverse Perspective Transformation
(IPM) from the overhead view of the images using spatial and temporal relevancy of lanes.
The images are cropped into relevant sub-image, carrying out the local lanes’ boundary
information. Sequentially, the CNN framework is applied to detect the actual location
and boundary of the lanes. The final structure is optimized to reduce the computational
complexity by selecting the adjacent lanes based on the lane change for searching for the
lanes’ actual position. The architecture of the network is depicted in Figure 4. The study
of spatial and temporal relevancy of lanes made it different from EELane and VPGNet,
whereas IM’s implementation created the condition of its robustness. However, this makes
up for low illumination conditions, such as at night and rainy conditions [28].

Figure 4. Schematic diagram of spatial and temporal based LMD technique.

2.2.3. Lane Detection Based on the Classification

Image classification refers to the discrimination process of objects available in the input
image frame. However, the location of the lane can not be tracked through this process.
Therefore, some modification is required in the classification technique to track the lane’s
location. Let us consider the amendment on the classification is y = f(x,pm(p)), where f(x)
is the CNN mapping function, and pm(p) is the prior knowledge depending on the lane
location. Gurghian et al. [18] have come up with DeepLane depending on the same idea,
which network architecture is shown in Figure 5. DeepLane received the training dataset,
which was created from the image frames of the downward camera. It was classified into
317 classes, among which, 316 were for the probable lane position and reaming one was for
missing lanes. A softmax function was applied to the last fully connected layer to achieve
the probability distribution. The lane position was estimated Ei through the following
equation:

Ei = argmax(yi), 0 ≤ i ≤ 316, where, yi = yo, y1, . . . . . . ., y316

Figure 5. Schematic diagram of DeepLane.

Though DeepLane has achieved a better result than a complex network [17], the
prior fixing of the lane position has limited its robustness. In addition, the classification
techniques do not fit with lane marking detection, as it is associated with the high-level task.
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As discussed earlier, the regression of the lane coordinate as an object detection process is
also a better possible way to detect lane marking detection.

2.2.4. Lane Detection Based on the Segmentation

Segmentation approaches such as [29–31] can be the best option for lane marking
detection, as mentioned by Shriyash et al. [32]. These approaches strictly emphasize per-
pixel classification rather than focusing on particular shapes. Lane detection based on
the segmentation framework achieved more efficient results, except for the concern of
the above limitation. This problem is solved by many strategies, such as the strategy
proposed by Chiu et al. [33], which referred to the lane marking detection system as an
image segmentation problem. However, the conventional segmentation approaches did
not last long.

• End-to-End Segmentation Approach

Due to the previous reason, the researcher started to apply end-to-end segmentation
approaches for lane marking detection. The network can carry more features according to
the larger size of the convolution kernel. Zhang et al. introduced a GCN [34] algorithm to
detect particular lane areas. A lane departure system based on Mask-RCNN [35] is proposed
by Riera Luis et al. to detect the lane marks and an additional Kalman filter to track the
lanes. Shriyash et al. [36] proposed a CNN architecture that consists of ten neuron layers
to detect the lanes in real time. Different types of lanes also have a notable contribution
to more comprehensive recognition detection. The modified ERFNet architecture was
designed by Fabio et al. [37] to classify the road lanes and identify the drivable area.

Semantic Segmentation through DCNN may have some deficiencies, as it has no learn-
able pooling parameters. For instance, there is no learnable parameter in max/min pooling
or un-sampling layers. Therefore, there is an extreme possibility of losing many features
when attempting to recognize a large-perspective field. Kontun et al. [38] introduced dilated
convolution to resolve this issue, which can be studied more in [39]. Though this framework
had significant advantages, the effective design of CNN architecture emphasizing dilated
convolution has become a new issue.

Chen et al. proposed a Deep Convolution Neural Network based on the lane mark-
ings detector (LMD), aiming to have the optimal CNN architecture design with dilated
convolution [40]. The lane markings detector, similar to ResNet [41] and VGG [42], is used
as an encoder to classify, and DeconvNet [43], U-Net [44], and FCN [45] are used as a
decoder to create feature maps. Additionally, dilated convolutions were embedded in the
encode–decode section of the architecture shown in Figure 6. Lo et al. [40] introduced a
CNN architecture based on DDB (Digressive Dilation Block) and FSS (Feature Size Selec-
tion), considering the spatial and downsampling operation, which was also embedded
with dilation convolution [46].

Figure 6. Schematic diagram of Deep Convolution Neural Network based on the lane markings
detector (LMD).

Long-range information in lane marking detection is another concern. Wang et al. [47]
designed a non-local operation depending on a non-local framework [48]. The model could
extract the long-distance or range information, as long-distance information is also one
of a lane’s properties. Li et al. [49] proposed Instance batch normalization and Attention
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Network (IANet) to emphasize the model for considering a particular lane region. It is more
appropriate for two-class segmentation scenarios, according to the experimental result.

Considering efficient classification by focusing on pixels rather than shape, Jan et al. [50]
came up with an adversarial network known as generative adversarial networks (GAN).
It has a generator to create the synthetic data and a discriminator to differentiate the real
data from the generator’s output data. The initial concept for the GAN was to predict data
closely approximate to the real data. The recent concept tells us to differentiate accurately
to determine whether the input is generated or real. A reader can go through [51–53] for
further information about the GAN. Ghafoorian et al. [19] designed Embedding loss GAN
(EL-GAN) based on the GNN concept. The framework is divided into two segments, as
generator and discriminator. The schematic diagram of the EL-GAN framework is shown
in Figure 7. U-Net’s unique algorithm is applied for the generator to train the input, and
Tiramisu DenseNet [54] is used for detecting the lane markings. This process is continued
up to the level of convergence. In the case of the discriminator, DenseNet [55,56] is used
with the fully connected Generative Adversarial Network classification [57].

Figure 7. Schematic diagram of EL-GAN.

The framework generator is trained by adversarial embedding and Adam optimizer,
whereas the discriminator is trained by stochastic gradient descent and ordinary cross-
entropy. Embedding loss can be considered perceptual loss [58], whereas EL-GAN com-
bines perceptual loss and CGAN.

• Segmentation based on multitask

Geometrical features of roads also have an important role in lane marking detection,
which have better performance results than VPGNet. Zhang et al. [59] proposed Geometric
Constrained Network (GLCNet), which has multitasked to interlink the lane boundary and
lane segmentation sub-structure. The architecture of GLCNet [59] is shown in Figure 8,
which indicates that every decode section has a link with the encode section to transfer
corresponding features into two distinct tasks. Therefore, the information from the decode
sections can be redounded reciprocally. This multitask strategy opened the gate for the
researchers to develop a framework for the link between lane boundary and lane area.
Considering the same idea as GCLNet, John et al. [60] designed PSINet for multiple
detection purposes, such as road scene labels, lane marks, and free space on the road.

In addition to the geometric or special feature, temporal correlation might have a
significant effect where a lane can not be detected due to the linear structure of the captured
video. As Long short-term memory (LSTM) has memory capture capability, the lane can be
extracted from the previous frame by this LSTM approach. Hence, Qin et al. [61] proposed a
CNN-LSTM method that includes two LSTM layers between the encode–decode stage. The
major achievement of this method is that it has obtained ameliorate performance results
under different occlusion scenarios. The architecture of the CNN-LSTM method is depicted
in Figure 9, which indicates the temporal information transfer between the encode–decode
stage through LSTM.
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Figure 8. Schematic diagram of GLCNet.

Figure 9. Schematic diagram of CNN-LSTM.

2.2.5. Simplification of the Post-Processing Step

Without considering the optimization by the post-processing step, the described
frameworks extracted lane features more efficiently. It is very challenging to differentiate
the lane features from the output, excluding the post-processing approach. Effective
strategies are more important than particular network architecture to discover the optimal
result. This sub-section focuses on these strategies, rather than a deep neural network
(DNN) architecture, on lane marking detection.

There are two types of algorithmic output possible for lane marking detection using
DNN, such as lane points and lane lines. Hence, the possibilty is raised to utilize different
lane features, excluding post-processing steps. There might be three possible solutions
to overcome the particular constraint: semantic segmentation by labelling each line as
separate classes, instance segmentation by referring to every lane as a different instance,
and multi-branch CNN structure by detecting every lane line through the individual
branch.

Xingang et al. [20] applied a Spatial Convolution Neural Network (SCNN) to detect the
lanes under occlusion scenarios as multi-class semantic segmentation. SCNN framework is
based on the LargeFOV layout [62], and the weight of the initial thirteen convolution layers
is taken from VGG16 [42]. To predict the lanes precisely, it generates pixel-wise probability
maps for training the network. Consequently, it applies a CNN to differentiate the lane
markings on its own. Finally, the probability maps are sent to the system to predict the lane
markings of different classes. The architecture of the SCCN is shown in Figure 10, where
various branches were designed to predict other lane classes.

Figure 10. Schematic diagram of SCCN.
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Shriyash et al. [32] proposed Coordinate Network (CooNet) as a lane point regression
approach. It is a multi-branch neural network shown in Figure 11, where lanes are predicted
in their perspective branches. However, this network has no clustering process as the
network directly provides the lane output through the coordinate regression.

Figure 11. Schematic diagram of CooNet.

To detect multi lanes with changes from the lanes, Davy et al. [63] introduced an
end-to-end lane detection approach by applying the LaneNet deep learning method based
on the encoding–decoding procedure E-Net [64], as shown in Figure 12. It takes the shared
encodes from the input images and finds the embedding binary segmentation for each pixel
for creating the cluster together. All pixels can associate with the neighbourhood pixels. It
utilized the H-Net to collect the ideal information about the perspective transformation by
imposing a relevant condition on the input image. The research aimed to take the challenge
on lane changes, unlike the bird’s eye view. Additionally, this approach has no limitation
on the number of lanes, whereas CooNet and SCNN can only detect up to four lanes.

Figure 12. Schematic diagram of Lanenet.

2.2.6. Optimization Approaches

There is always a scope to improve the existing performance in the perspective research
field. Still, there is a particular opportunity to optimize the lane marking detection process,
as some research limitations exist for that particular application. The new question is, how
can one researcher design a framework utilizing a trained model? The answer has come
from the transfer learning technique and the knowledge distillation approach.

The dataset for transfer learning can be categorized into the target and source datasets.
The target dataset relates to the task directly, and the source dataset indicates an additional
dataset for the task. Fine-tuning becomes the major challenge due to the presence of
both datasets in transfer learning. Hinton et al. [65] proposed a solution by introducing
knowledge distillation, where the teacher network is used to guide the student network,
which contains small parameters. It improves the performance of the student network. A
few other researchers [66,67] enriched the knowledge distillation into attention distillation.
This idea significantly improved lane marking detection when Kim et al. [68] designed
Transfer Learning for Ego Lane detection (TLELane). In the TLELane architecture, two
transfer learning stages differentiate the general scene from the road scene and capture the
target lane to the left to right ego lane from that particular general scene. The attention
map extracts high contextual features from different perspective layers in the trained lane
marking detection segmentation-based network. These extracted features hold information
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regarding the rough outline and lane location. Thus, it is a promising way to replicate
attention maps for the deeper block by utilizing the initial block. Apart from attention
dilation, Hou et al. [22] introduced a self-learning distillation known as the self-attention
distillation framework.

There is also a way to remove the post-processing steps, including clustering. Thus,
the CNN needs to carry both the predicted lane and parametric description of each lane.
Ze et al. [69] designed a combinational neural network with CNN and LSTM named
Real-time Lane Network (RLaneNet). LSTM can face an uncertain number of lanes and
also has a decoder to retain the parameter information of each lane. According to the
mathematical assumption, a lane can be drawn from three corresponding coordinate
points and a quadratic function. Based on this assumption, RLaneNet predicted three
corresponding coordinate points of the lane that intersect the lane line with three horizontal
lines. In contrast, Differentiable Least-squares Fitting Network (DLFNet) [70] lane curvature
parameters are estimated by the weight of the least squares. These weights are captured
from a deep neural network, and a geometrical loss function minimizes the area between
ground truth and lane. The least-squares fitting can be defined as the following equation:

NXα = NY, where X and Y are coordinate matrices, N is the weighted pixel map, and
α is the best-fitting curve parameter.

2.2.7. Loss Function in LMD Networks

The measurement of loss of the deep neural network is another key factor in making
predicted data consistent with the ground truth data. It also ensures the optimization of the
neural network. Different loss functions such as classification, regression, and adversarial
training have different tasks in the network discussed in this section. The loss function for
classification techniques is discussed below.

Cross-Entropy (CE), L1, and L2 loss have been used most in the case of pixel-level and
lane line classification. The equation of L1 and L2 can be derived as follows:

L1(ŷ, x) =
1

hwm ∑
r,s,t
|ŷr,s,t − xr,s,t| (1)

L2(ŷ, x) =
1

hwm ∑
r,s,t

(ŷr,s,t − xr,s,t)
2 (2)

where h refers to height, w refers to weight, and m refers to the number of channels.
Additionally, x and ŷ represent the corresponding input and output.

The CE loss function can adopt the interclass competition mechanism, as indicated in
Equation (3).

Lce = −
c

∑
n

ni log(mi) (3)

where mi is predicted probability and n1 is the class. For C = 2, the CE loss equation
becomes Equation (4).

Lbce = −
c′=2

∑
n=1
−ni log(mi) = −n1 log(m1)− (1− n1) log(1−m1) (4)

Weighed CE loss function, as shown by Equation (5), is used when unbalance exists in
the sample data. For instance, there is a big unbalance ratio between background and lane
line areas. Zou et al. settled the weight for the background and lane line by 1.0.
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Lwce = −
c

∑
i

wini log(mi) (5)

In the case of significant errors, L1 and L2 are more sentient compared to small errors.
Let us consider the simplified loss function of L2 as:

J =
1
2
(yi − ŷi)

2 where, ŷi = (Wxi + b) (6)

dJ
dW

= (yi − ŷi)σ
′(Wxi + b)xi (7)

From the above partial derivative, if the value of σ(Wxi + b) becomes near 0 or 1,
the derivative will also become 0, indicating an initial slow divergence. However, the
derivative CE, as in Equation (8), does not depend on another multiplication term to have
the possibility of bringing 0. Therefore, the CE loss function is more applicable in lane
marking detection applications, mostly on semantic segmentation.

dLce

dW
= [σ(mi)− yi] · xi (8)

However, there is a possibility of scattering the learned feature, since the CE loss
function only focused on the correct label, ignoring the difference between the incorrect
label. The different solutions were dependent on the perspective function. Authors have
used A-Softmax [71] and L-Softmax [72] functions, considering the perspective activation
function. Contrastingly, Zhang et al. [59] proposed IoU loss, considering the perspective loss
function, which indicates the relationship between ground truth and predicted probability.
The loss function for regression techniques is discussed below in detail.

Coordinate and grid regression is based on the distance measurement used in [31,35,73].
Coordinate regression can be defined as Equation (9):

Lcolour =
15

∑
i=1
|xci − xgi|+

15

∑
i=1
|yci − ygi| (9)

where xgi and ygi represent the coordinate of the ground truth, and xci and yci represent
the corresponding predicted coordinate. At the same time, the grid regression can be
expressed as Equation (10):

L = λcoord
R2

∑
n=0

t
∑

m=0
1obj

nm

[
(xn − x̂n)

2 + (yn − ŷn)
2
]

+λcoord
R2

∑
n=0

t
∑

m=0
1obj

nm

[(√
wn −

√
ŵn
)2

+
(√

hn −
√

ĥn

)2
] (10)

where, xi, yi are the centre coordinates, wi, hi are the weight and height of the ground truth,
and x̂i, ŷi, ŵi, ĥi comprise the corresponding prediction.

The loss function for adversarial techniques is discussed below in detail.
Generative adversarial networks (GAN) have created a different computer vision task

with a generator to create the synthetic data and a discriminator to differentiate the real data
from the generator’s output data. GAN’s loss function is defined as Equations (11)–(13),
which is a modified version of CE.
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min
c

max
B

V(B, C) = Ex∼P(x)[log B(x)] + Ey∼Py(y)[log(1− B(C(y)))] (11)

max
B

V(B, C) = Ex∼Pdata(x)[log B(x)] + Ey∼Py(y)[log(1− B(C(y)))] (12)

max
B

V(B, C) = Ex∼Pdata(x)[log B(x)] + Ey∼Py(y)[log(1− B(C(y)))] (13)

Ghafoorian et al. [19] used various types of losses in the EL-GAN method, such as
Cross-Entropy Loss Lce, L2 loss and adversarial loss Lad are indicated in Equations (14)–(16),
respectively.

L f t = Ljt
(
G
(
x; θgen

)
, y
)
= Lce

(
G
(
x; θgen

)
, y
)

Lce
( .
y, y
)
= 1

wh

wh
∑
i

c
∑
j

yi,j ln
( .

yi,j

) (14)

L2
( .
y, y; x, θdisc

)
= ‖De(y; x, θdisc)− De

( .
y; x, θdisc

)
‖2 (15)

Lad = Ex∼P(x)[log(1− D(G(x)))] (16)

L2 Loss differentiates the convoluted features between the real and generated images,
referred to as perceptual loss. This loss was mostly applied in higher resolution fields to
retain the enriched structure-preserving [58].

This section describes different types of loss functions that utilize in lane marking
detection applications. There are also many other loss functions available in lane detection
applications, though they are combined or part of mentioned loss functions.

2.2.8. Post-Processing

The post-processing step is required if the result from the neural network is the pre-
dicted lane coordinates. Clustering or curve-fitting approaches can be applied to transform
these points into mathematical descriptions.

DBSCAN has been used mostly to interface the predicted lane pixels with the input
images. DBSCAN works more efficiently than other clustering techniques like K-means
in arbitrary and noisy clusters [74]. As the lanes’ positions are close to each other and
arbitrary, such as straight or curved, DBSCAN would increase efficiency in interfacing
the lane pixels. The closest distance point in DBSCAN depends on the value of ε and the
minimum number of points for considering the same region. If the lane point is less or
equal to the mentioned eps point, it would be considered in the same lane. On the contrary,
the point would be considered as in a different cluster. The process would be continued
according to the predicted information until all the lanes’ points are converged.

The clustering process makes the lane coordinate into different clusters. It is also
challenging to transform different clusters into a mathematical description. As mentioned
in the introduction section, distinct types of curve fitting function, such as Catmull–Rom
spline, cubic B-spline, and parabolic are used for curve fitting, and cubic B-spline has
shown more promising results [23].

2.2.9. Summary of the LMD Network

This section contains Tables 1 and 2, which summarize different deep learning tech-
niques used in the lane marking detection application and compares the performance
of various models. As mentioned earlier, the network summary is also categorized as a
single-stage and two-stage architecture with pros and cons.
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Table 1. Summary of lane detection techniques using DNN.

Author Deep Learning
Technique Categories Achievement Limitation

Single stage

Li et al. [49] IANet Segmentation Suitable for two-class
segmentation

High computation due to
non-local features

Gurghian et al.
[18] DeepLane Classification Fast detection with simple

architecture
Application scenarios are

limited

Van et al. [70] DLFNet Segmentation It does not have a predefined
condition

Applicable for the fixed
number of lanes

Ze et al. [69] RLaneNet Regression
Capable of handling uncertain

lane numbers without
post-processing

The lane ordinate needs to be
predefined.

Hou et al. [22] self-attention
distillation Segmentation The strategy is more efficient High computational

complexity

Kim et al. [68] TLELane Segmentation Significant achievement on the
small dataset It can only detect the ego lane

Davy et al. [63] Lanenet Segmentation Capable of handling uncertain
lane number

High computational
complexity due to the H-Net

Xingang et al. [20] SCNN Segmentation Slice convolution for long lane High computational
complexity

Shriyash et al.
[32] CooNet Regression Less computational network as

does not require clustering
Applicable for the fixed

number of lanes

Two-stage

Ghafoorian et al.
[19] EL-GAN Segmentation Can capture lane close to the

label
Require a high number of

parameters
Qin et al. [61] CNN-LSTM Segmentation Useful for the occlusion scene Computational is complex

Zhang et al. [59] GLCNet Segmentation
Capable of making efficient

interlinks between subsections
of the network

High computational
complexity and difficulties in

the training stage

Chen et al. [40] LMD based on
VGG16 Segmentation Dilated convolution can expand

the predicted field
The performance result is

lower

Huang et al. [28]
Spatial and

temporal-based
CNN

Object Detection Spatial and temporal enrich the
detection area Complex architecture

Seokju et al. [27] VPGNet Object Detection Efficient in different
environmental conditions

High computational
complexity due to the

post-processing

Huval et al. [25] EELane Object Detection Effective for the occlusion scene It contains the perpetual
prediction

Kim et al. [17] RANSAC Classification Overcome the limitations of
traditional approaches

The structure of the network is
not accurate enough

Table 2. Summary of the performances among various deep learning techniques.

Authors Detection Rate (%) FPR (%) FNR (%) Recall (%) Accuracy (%) Precision (%)

Jongin et al. [75] 93 - - - - -
Dan et al. [76] - - 10.03 - - -

Soonhong et al. [77] 88.70 - - - - -
Bei et al. [73] - - - 92.8 - 95.49
Xue et al. [78] - 5.5 - - - -

Gurghian et al. [18] - - 99.9 - 98.96
He et al. [79] - - - 93.80 - 95.49

Kim et al. [80] 98 - - - - -
Seokju et al. [27] 87 - - 88 - -

Zhe et al. [81] - 2.79 4.99 95.01 - 94.94
Umar et al. [82] 99 - - - - -
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Table 2. Cont.

Authors Detection Rate (%) FPR (%) FNR (%) Recall (%) Accuracy (%) Precision (%)

Davy et al. [63] - 7.8 2.44 - 96.38 -
Ghafoorian et al. [19] 4.12 3.36 - 96.39 -

Xingang et al. [20] - 6.17 1.8 - 96.53 -
Ze et al. [69] - 3.9 - - -

Youjin et al. [83] 92.4 - - - -
Xiaolong et al. [84] - 1.41 4.53 - - 95.65

Wenjie et al. [85] - 7.7 - - -
Tian et al. [86] - - - 66.4 83.5

Huang et al. [28] - - - 96.6 - 97.3
Ye et al. [87] - - 5.17 - - -

Chao et al. [88] - - - 66 96.26 89
Philion et al. [89] - 7.2 4.5 - 95.2 -
Azimi et al. [90] - - - 85.95 -

Sun et al. [91] - 2.0 - 96.4 -
Zhang et al. [92] 95.21 - - - - -

Zou et al. [61] - 4.24 1.84 95.8 97.2 85.7
Nguyen et al. [93] - - - - 98.1 -

Hou et al. [22] - 6.02 2.05 - 96.64 -
Fabio et al. [37] - - - - 76.53 -

Lo et al. [46] - - - - - -
Zang et al. [94] 82.44 - - - -

Mamidala et al. [95] - - - - 96.1 -
Liu et al. [96] - - - - 97.9 -
Ko et al. [97] - 2.94 2.63 - 96.7 -

3. Comparative Analysis

This section describes the constructive comparison of lane marking detection using
deep neural networks regarding performance parameters and output visualization. There
are five [19,20,61,63,70] segmentation-based DNN which are considered for the comparative
sudsy. Moreover, the Tusimple has been considered the largest dataset for lane marking
detection since 2018, and is available in [98]. This dataset was also trained and tested
on many lane marking detection tasks. Therefore, the Tusimple dataset is considered for
performance analysis in this comparative analysis. It contains annotated image frames of
different weather conditions, such as straight lane, curve lane, shadow, occluded through
vehicles, low light, etc. It has around 3.6k image frames for training and around 2.7k
completely unknown image frames for testing. Instead of lane markings, the annotated
full lane boundary is the main notability of the Tusimple dataset. The dimension of the
images is 720 × 1280. The sample original image frames of the Tusimple dataset have been
depicted in Figure 13.

There are particular statistical performance measurement units for evaluating neural
network results in the image processing arena. For example, accuracy defines how accu-
rately one model can predict the particular information from the image. Since accuracy
cannot only be considered a reliable performance parameter to evaluate the performance
that research, the other performance parameters, such as precision, recall, and F1score can
make a reliable result to evaluate the framework’s performance. The brief descriptions of
the performance parameters are given as follows.

Accuracy is the ratio of the actual true prediction to the total sample data.

Accuracy =
Actual True Prediction

Total Sample data
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Figure 13. Sample image frames of the Tusimple dataset.

The false-positive score is the ratio of wrongly predicted data to the total number of
predicted data.

FPS =
False Preicted Data

Totla Predicted Data
The false-negative score is the ratio of missed ground truth data to the total number of

ground truth data.

FNS =
Missed Ground truth Data
Totla Ground truth Data

Table 3 illustrates the performance result of different deep neural networks used for
lane detection on the Tusimple dataset. All of the networks that are arranged in Table 2
have been discussed in the previous section. The CNN-LSTM technique achieves a higher
performance result than other mentioned networks. However, other networks also have
a significant role in the lane marking detection application, as they have developed new
efficient solutions to perspective research gaps.

Table 3. Summary of lane detection techniques using DNN.

Authors DNN Method FPS FNS Accuracy

Davy et al. [63] Lanenet 7.8 2.44 96.38
Ghafoorian et al. [19] EL-GAN 4.12 3.36 96.39

Xingang et al. [20] SCNN 6.17 1.8 96.53
Qin et al. [61] CNN-LSTM 0.01416 0.0186 97.30
Hou et al. [22] Self-attention distillation 6.02 2.05 96.64
Van et al. [70] ERFNet-DLSF 0.1064 0.0983 93.38

The final output result of these [19,20,61,63,70] five DNN are depicted in Figure 14.
Figure 14 gives a generalized idea about the predicted lane markings from the mentioned
networks. A curve lane from the Tusimple dataset is elected for extracting the predicted
lane markings.
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Figure 14. Predicted lane marking using DNN (a) Input (b) Lanenet (c) SCNN (d) CNN-LSTM
(e) ERFNet-DLSF and (f) El-GAN.

4. Discussion

As lane detection is the ADAS system’s preliminary requirement, it is evident that
researchers must develop an advanced model for lane marking detection. This research ar-
ticle discusses a complete overview of lane marking detection systems using deep learning
techniques. The main contributions of the article can be categorized into four perspective
views. Firstly, it describes different deep learning techniques according to their category
in lane marking detection applications so that the researchers can find a specific path to
implement neural network techniques in this particular application. Secondly, it describes
different loss functions in order to help find a way to improve the performance. Thirdly,
it also elaborates on the process of simplification and optimization of the network for
simplifying the network architecture. Finally, comparative performance results with visual-
ization of the final output of five existing techniques on the Tusimple dataset are elaborated,
which will provide a track to the reader regarding the performance and optimization of the
proposed perspective models.

Many vision-based computer-aided features are incorporated into the modern vehicle
due to the improvement of the GPU and computational power of the hardware. Though
previous researchers have done a tremendous task on lane marking detection, there are
still many challenges to address. The first one would be the generalization problem,
and better performance can be obtained by transplanting into CNN from the proposed
method of [20,22]. Additionally, the supervisor learning process has a deficiency in the
appropriate adjustment of the dataset’s different situations. As the neural network utilizes
many parameters, real-time application and mobility are also quite challenging for this
application.

Some other clues can be followed for promising results focusing on these challenges.
As semantic segmentation has computation complexity regarding embedded liability and
more efficient accuracy, CNN approaches might be investigated. Again, the supervised
learning process can be transformed into a semi-supervised learning approach, as supervi-
sor learning expects a vast amount of annotated data and computational time. Accurate
and optimized lane marking detection systems can be designed under different critical
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situations through meta-learning. Significant feature extractors and detectors may arise
from the existing segmentation architecture.
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