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Abstract: A coarse-to-fine multi-view stereo network with Transformer (MVS-T) is proposed to
solve the problems of sparse point clouds and low accuracy in reconstructing 3D scenes from low-
resolution multi-view images. The network uses a coarse-to-fine strategy to estimate the depth of
the image progressively and reconstruct the 3D point cloud. First, pyramids of image features are
constructed to transfer the semantic and spatial information among features at different scales. Then,
the Transformer module is employed to aggregate the image’s global context information and capture
the internal correlation of the feature map. Finally, the image depth is inferred by constructing
a cost volume and iterating through the various stages. For 3D reconstruction of low-resolution
images, experiment results show that the 3D point cloud obtained by the network is more accurate
and complete, which outperforms other advanced algorithms in terms of objective metrics and
subjective visualization.

Keywords: multi-view stereo; transformer; 3D reconstruction; attention mechanism

1. Introduction

Multi-view stereo (MVS), a significant field in computer vision, intends to recon-
struct 3D models with dense representations from multi-view images and related internal
and external camera parameter matrices. The research results of 3D reconstruction have
been frequently used in robot navigation [1,2], augmented reality [3], and photogram-
metry [4,5]. High-resolution images allow for better reconstruction, but such large-size
images consume a lot of processing resources and time. However, mobile robots have high
requirements for real-time 3D reconstruction. Therefore, how to effectively and rapidly
reconstruct a 3D model from low-resolution images that lack detailed information but
retain a complete structure is what we are considering, which will contribute to the next
step of high-resolution reconstruction work.

The traditional MVS algorithms rely on hand-crafted similarity metrics [6,7], and are
optimized with regularizations such as semi-global matching to generate dense point clouds.
However, these methods rely on ideal Lambertian surfaces, and there are still limitations on
the completeness and scalability of the reconstruction [8,9]. To address the above problem,
we aim to investigate a more accurate and straightforward 3D reconstruction method for
low-resolution images.

Learning-based methods have obtained impressive results in MVS tasks [10–17]. Typi-
cally, convolutional neural networks (CNN) are used in these methods to extract image
features and then warped source image features to the reference camera frustum to produce
cost volume, which is utilized to predict the depth map of each view. Finally, the 3D point
cloud can be generated by fusing the multi-view depth map. This pipeline decouples the
MVS task into a regression problem between the multi-view image and the depth map,
resulting in higher reconstruction accuracy than traditional methods. The convolution-
based backbone gradually downsamples the image, extracting multi-scale features and
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using receptive fields of various sizes to progressively abstract low-level characteristics into
high-level features, capturing the image’s local attributes. However, feature resolution and
granularity lost in the deeper stages of the model are not conducive to the reconstruction of
low-resolution images.

Recently, neural network design in natural language processing (NLP) has embarked
on a completely different path since Transformer [18] has replaced recurrent neural net-
works as the dominant network architecture. With the introduction of Vision Transformers
(ViT) [19], more and more scholars apply Transformer to computer vision [20–25]. The
Transformer’s superior design architecture and self-attention mechanism can better model
spatial relationships and aggregate features at arbitrary locations.

Therefore, we propose an innovative neural network architecture with Transformer
for deep inference in the MVS task. The network uses encoder-decoder architecture for
low-resolution image reconstruction. The image feature pyramid is first extracted using the
Three-stage Feature Aggregation module (TFA), which focuses on semantic and shallow
information at the pixel level. Then, Transformer is applied to the coarsest resolution
features, using self-attention to enhance the long-term global context awareness of the
image. To better apply the Transformer architecture in the MVS task, we recombined the
bag of words representation provided by ViT into an image-like feature representation.
Finally, following the coarse-to-fine volume regularization pattern [11], the feature volume
is decoded, and a dense 3D reconstruction is performed.

The key contributions of this study can be categorized into three aspects. First, a
coarse-to-fine MVS network with Transformer (MVS-T) is proposed for MVS reconstruction
of low-resolution images. Second, the three-stage feature aggregation module is proposed
to merge multi-scale image features and preserve structural and detailed information to
improve depth estimation accuracy. Then, after validating different variants of ViT, the
vanilla Transformer block is introduced for global context information perception. The
fusion module recombines the Transformer outputs into image-like features to capture
dependent information for subsequent deep inference. Third, through detailed experiments
on the MVS task dataset DTU [8], the proposed method increases the precision of low-
resolution image 3D reconstruction, which is superior to other advanced algorithms.

The structure of this study is organized as follows. In Section 2, we discuss the
related work on multi-view stereo reconstruction. We introduce the detail of our method in
Section 3. In Section 4, we assess the performance of the proposed algorithm. In Section 5,
we present our conclusions.

2. Related Work
2.1. Multi-View Stereo Reconstruction

Research related to MVS has been conducted for decades. The traditional methods
mainly include Structure from Motion (SfM) [26,27] and Simultaneous Localization and
Mapping (SLAM) [28]. Both SfM and SLAM can achieve good 3D reconstruction results,
but they rely on feature matching, which becomes very difficult when the distance between
multi-view is too large.

Deep learning-based methods are developing rapidly, driving progress in tasks includ-
ing target detection [29], depth estimation [30], and image deblurring [31]. Convolutional
neural networks have considerable advantages in feature matching of images and do not re-
quire complex camera calibration, so they have attracted great interest in 3D reconstruction.
Learning-based methods tend to restore dense 3D surfaces from features of multi-images
and perform better in 3D reconstruction.

SurfaceNet [32] is the first learning-based pipeline for MVS tasks. It uses a series of
images and the associated camera parameter matrix as input, directly obtaining surface
voxels as output. The literature [10] proposed an MVS method for large-scale scene
reconstruction, using a 2D-CNN encoder and a 3D-CNN decoder to perform deep inference
on each view of the input and then outputting a 3D point cloud model by a fusion module.
CasMVSNet [14] uses a coarse-to-fine multi-stage approach to predict the corresponding
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coarse depth map at low resolution and then builds on this with higher resolution features
to narrow down the depth hypotheses to optimize the depth map. Compared to the
method of volumetric representations [33], the depth map-based MVS method dramatically
improves the flexibility of 3D scene reconstruction and reduces memory consumption.
Therefore, we also adopted the depth map representation for 3D reconstruction.

2.2. Transformer

The Transformer architecture introduced by Vaswani et al. [18] has become a reference
model in NLP tasks. Inspired by this, Transformer variants for various studies have
been proposed. Among them, ViT [19] applied the Transformer architecture to image
classification for the first time, and with the help of large-scale datasets, its accuracy has
surpassed convolutional networks. DeiT [34] introduced distillation methods into the
training of ViT, used a teacher–student training strategy, and proposed a distillation token
to improve the model’s performance. Swin-T [35] built a general framework for vision
tasks, which can be used for target detection and semantic segmentation. These attempts
have been successful in image classification and have shown promising applications of
Transformer. Transformer architecture is starting to be applied in MVS. TransMVSNet [22]
introduced inter- and intra-attention, focusing on both cross- and self-image information.
MVSTR [23] designed a global-context Transformer and a 3D-geometry Transformer to
facilitate information interaction. MVSTER [24] proposed epipolar Transformer for 3D
spatial correlations and used geometric knowledge to build the correlation along epipolar
line to improve model efficiency. WT-MVSNet [25] utilized epipolar constraints to reduce
redundant information and enhance patch-to-patch matching. Contrarily, our MVS-T does
not introduce additional constraints or elaborate complex structures, but has performed
well in our task.

The Transformer model, based on the self-attention mechanism, can capture the inter-
nal correlation of features and retain positional relationships during feature propagation,
facilitating the perception of global context information. These natural advantages of the
Transformer enable it to complement the shortcomings of the CNN approach and allow it
to fulfill its potential in the MVS task.

3. Methods

Figure 1 depicts the detailed structure of MVS-T. The network’s input consists of the
reference image I0 ∈ RH×W , the source images {Ii}N

i=1, and the camera intrinsic, rotation
matrix, and translation vector of the corresponding view {Ki, Ri, ti}N

i=0. The output is the
depth map D for reference image I0. After performing a photometric consistency check
and filtering on the depth maps of all views, we finally generated a 3D point cloud. The
originality of our method lies in focusing on the shallow information of the images in the
multi-stage process and applying the Transformer architecture in the MVS task to improve
the global context perception of each view. In the following, we will describe the details of
the feature pyramid, Transformer global perception module, image-like feature resampling,
cost volume construction, and loss function in our approach.

3.1. Image Feature Pyramid

The input raw image will be influenced by environmental factors such as illumination,
and we use learnable features that are widely used in dense prediction tasks to extract ab-
stract semantic information from the initial image. The overall process of feature extraction
is shown in Figure 2a, which is divided into three stages.

Figure 2b illustrates the specific structure of the first stage. An L-level image pyramid{
Ij

i

}L−1

j=0
was constructed for every input view, i ∈ {0, 1, . . . , N}, which represents the input

(N+1) images. Then, features were extracted from the input image using a neural network
consisting of nine convolutional layers containing a rectified linear unit (ReLU), with a

ratio of 2 for the feature mapping between stages. We define the l-level features as
{

fl
i

}N

i=0
,
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where fl
i ∈ R

H
2l ×

W
2l ×F, H and W denote the initial input image size, and F refers to the

number of feature channels output after stage one, which is set to 16 in this paper.
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However, for low-resolution images, the pyramid structure enables top-level features
to obtain high-level semantic information while ignoring information in the shallow layers,
which is not conducive to the subsequent dense prediction. To this end, we use a lateral
connection structure similar to U-Net [36]. In the second stage of the top-down pyramid
process, the feature of the upper layer is upsampled to obtain the same size as the current
layer. It is fused with the feature in the corresponding level of the first stage by using
concatenation through lateral connection. The specific structure is shown in Figure 2c,
where the upper layer feature fl passes through a 1 × 1 convolutional layer containing a
batch-normalization operation and Leaky ReLU to obtain cl . Then, the small-size feature
cl is upsampled by nearest neighbor interpolation and concatenated fl−1 through the
1 × 1 convolutional layer to obtain cl−1.

To improve the utilization of the low-level information and increase its propagation

efficiency, we perform bottom-up information enhancement
{

cl
i

}L−1

l=0
in the third stage. As

depicted in Figure 2d, the underlying feature cl−1 passed through a five convolution block
to obtain pl−1, then was downsampled and concatenated with the current level features cl .
Finally, a five convolution block was used to adjust the number of channels, and pl was

obtained. The
{

pl
i

}L−1

l=0
is the final image feature pyramid constructed in our method.

3.2. Transformer for Coarse Feature Fusion

The previous learning-based MVS methods build cost volume from extracted features
directly, ignoring the importance of global context information for deep inference, especially
in low-resolution image scenes, where information loss is severe and detrimental to 3D
reconstruction. The multi-head attention (MHA) mechanism in Transformer [18] is a global
operation that can focus on and affect all input tokens. Therefore, we proposed applying
Transformer in the MVS task. Considering the demanding computational complexity of self-
attention in the Transformer, we only used the Transformer block at the coarsest resolution.

3.2.1. Transformer Block

For the convenience of subsequent representation, we define the input feature map

pl
i ∈ R

H
2l ×

W
2l ×F as pi ∈ RH′×W ′×F. The expected input form of Transformer is {N, D}, N is

equivalent to the length of the sequence in NLP, and D is the dimension of each token in
sequence. For the computer vision task, we need to reduce the two-dimensional feature
map into a one-dimensional sequence to satisfy the Transformer’s input. The first step is to
divide each feature map into Np image blocks of the same size, where Np = H′

p ×
W ′
p , and

P = 4 is the size of each image block set in this paper, so the size of the input is reduced
from {F, H′, W ′} to

{
Np, P2 × F

}
. In the second step, feed these N image blocks into the

linear projection layer. In all Transformer blocks, the constant latent vector size D is used,
so we mapped them to D dimensions and added position information to these N patch
embedding. In the third step, after experimental verification, similar to BERT [37], we
added a learnable embedding tl

0 ∈ RD, and the final output is tl ∈ R(Np+1)×D. The exact
procedure is shown in Equation (1).

tl =
[
tl
0; tl

1; . . . ; tl
N

]
=
[
tl
class; xl

1E; xl
2E; . . . ; xl

Np
E;
]
+ Epos, x ∈ RP2×F, E ∈ R(p2×F)×D, Epos ∈ R(Np+1)×D (1)

The Transformer block comprises a token mixer layer and a multi-layer perceptron
(MLP) layer. In Figure 3, the token mixer consists of a layer norm and the multi-head
attention, while the MLP consists of a layer norm and a feedforward network containing
two linear transformations. Map the input of the Transformer layer tl

i to query Q, key K,
and value V. When the matching degree of Q and K is higher, the weight is higher. The
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self-attention mechanism is described in Equation (2), where dk is the dimension of Q, K,
and V.

Sel f Atten(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (2)
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The MHA linearly projects each query, key, and value to different subspaces for h
times with the projected dimensions dq, dk, and dv. Then, as shown in Equation (3), after
performing h self-attention calculations, concatenate the results obtained each time.

MultiHeadAtten(Q, K, V) = Concat(Sel f Atten1, . . . , Sel f Attenh) (3)

Finally, through the MLP layer, the final output is obtained after the residual connec-
tion. In this paper, we set the number of Transformer blocks to 4.

3.2.2. Image-like Feature Fusion Module

The Transformer block outputs a set of patch embeddings. When applied to image-
dense prediction tasks, we need to re-fuse them into the representation of image-like
features. Based on this, we designed an image-like feature fusion module, which is used to
gradually convert the embedding output by the Transformer into image-like feature maps.
The overall flow of this fusion module is shown in Figure 4.
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The input of this fusion module is (NP + 1) patch embeddings, where Np patches{
tl
i

}N

i=1
are extracted from the initial image, and the remaining one tl

0 is added manually.

The tl
0 is generally used for the final classification or detection in vision tasks, and we ex-

plored its effectiveness in the MVS task. The randomly initialized classification embedding
encodes the characteristics of the whole dataset and avoids bias. For the input (Np + 1)
embeddings, we map them to Np and then reset the tensor using rearrange operation.
According to the position of the initial patches in the image, a feature map with the size of
H′
p ×

W ′
p is obtained. The dimension of channels is adjusted to R by using 1× 1 convolution,

and the scale is restored using a transposed convolution with both the kernel size and step
size of 4 to return to the original input feature shape H′ ×W ′. The input embeddings have
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been converted to a feature map with a specific size, which can be used for subsequent
image tasks.

3.3. Depth Inference for MVS

Referring to previous approaches [10–12], we used the plane scanning principle to
generate the cost volumes and infer the depth of the reference view from the input (N + 1)
feature maps. Because the construction of the 3D cost volume and the computation of
self-attention in the Transformer block consume a large amount of memory, we adopt a
multi-stage approach from coarse-to-fine, build the cost volume pyramid, and gradually
refine the depth map estimation.

Similar to MVSNet [10], {Ki, Ri, ti}N
i=0 is the camera intrinsic, rotation matrix, and

translation vector for the corresponding feature map. When i = 0, it is denoted as ref view,
and the rest is source view. For different stages, we used the differentiable homography to
warp the source image’s feature map to the reference view after setting M depth hypotheses
d. The differentiable homography is calculated as:

Hl
i(d) = Kl

iR
i

(
I− (t0 − ti)nT

0
d

)
R−1

0 (Kl
0)
−1

, (4)

where the scaled camera intrinsic of feature map corresponding to the l level pyramid
denote as Kl , and I being the unit matrix. Given the camera parameters and the depth hy-
potheses d, the possible correspondence of pixels between the different views can be found.

A source image is warped to different depths to form a feature volume. A cost volume
is constructed by aggregating the variance of the N source image feature volumes and
the reference feature volume. After regularizing the cost volume, a probability volume
is produced using the 3D convolutional decoding network [11]. The depth of each pixel
can be calculated from Equation (5) by multiplying the probability of the pixel at the
corresponding depth with that depth and then summing the results at different depths to
get the final pixel-level depth value. The depth hypotheses are further narrowed using the
coarsest resolution depth map as an a priori, and the depth map is constantly refined by
building a cost volume pyramid.

Dl(p) =
M−1

∑
m=0

dPl
p(d) (5)

3.4. Loss Function

Like other coarse-to-fine multi-stage MVS methods, we sampled the ground truth
depth into the corresponding level pyramid and employ L1 loss as the supervision signal
to compute the absolute distance between the ground truth depth and the predicted depth.
The loss function is defined as follows:

L =
L−1

∑
l=0

∑
p∈Ω
‖Dl

GT(p)−Dl(p)‖1 (6)

where Ω is the set of valid pixels, GT is the ground truth, and l denotes the l-th level of
the pyramid.

4. Experiments
4.1. Dataset

We used the publicly available DTU dataset [8] to train and evaluate our model. The
dataset utilizes an industrial robot arm mounted with a structured light scanner to capture
multiple views of an object and provides a reference 3D surface geometry of the viewed
object. The camera position is strictly controlled, and the camera parameters of each view
can be obtained.
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The DTU dataset contains 124 scenes from 49 or 64 positions under 7 lighting condi-
tions, from directional to diffuse. To verify the effectiveness of the proposed algorithm,
we followed the previous methods [10,11] to divide the training set and the evaluation set.
The training set consisted of 79 scenes, and the evaluation set contained 22 scenes, each
recording 49 images from different angles.

BlendedMVS dataset [38] is a novel large-scale synthetic dataset, containing more than
17k MVS training samples and 113 scenes. However, this dataset does not provide ground
truth point clouds, and there is no pipeline for point cloud evaluation. Therefore, we only
used the BlendedMVS dataset to qualitatively display the visualization results.

4.2. Metrics

In the MVS task, some commonly used metrics evaluate the difference between
the reconstructed point clouds and the ground truth point clouds. We chose accuracy,
completeness, and overall score to evaluate our algorithm. Accuracy calculates the distance
between the predicted 3D points and the true value provided by the structured light sensor
in millimeters. Completeness reports the distance between the ground truth value and
the predicted points, which measures the integrity of the MVS reconstruction [39]. Since
accuracy and completeness are a pair of trade-off metrics, to avoid the situation where only
high-precision points are retained to improve the accuracy of the algorithm while ignoring
the integrity of the reconstructed scene, we used the overall to calculate the average score of
accuracy and completeness. In MVS 3D reconstruction, these lower metrics indicate higher
model performance.

4.3. Implementation Details

We implemented MVS-T with PyTorch and trained it on an NVIDIA GeForce TITAN
RTX GPU with 24 GB memory. We used Adam [40] to optimize the proposed method with
hyperparameters β1 = 0.9, β2 = 0.999. We set the batch size to 16 and trained 27 epochs.
The initial learning rate is set to 0.001 and decayed by a factor of 0.5 after the 10th, 12th,
14th, and 20th epochs.

In training, we adopted three views with the resolution of 160 × 128 as inputs to
build a two-level pyramid. For the coarsest resolution level, the M = 48 depth hypotheses
were uniformly sampled from 425 mm to 935 mm. In the next level, we set M = 8 for
depth refinement, since the coarse depth map predicted at the previous level provides a
priori. According to the literature [10], we used [41] to fuse the depth maps, generate a
dense point cloud, and then used the MATLAB script provided by the DTU dataset for
metric evaluation.

4.4. Experimental Performance
4.4.1. Results on DTU Dataset

In the evaluation phase, we set the input views to 3 and the image size 160 × 128. This
section compares the method we proposed with other learning-based MVS approaches.
The comparison results on objective metrics are shown in Table 1.

Colmap [7] is a traditional MVS pipeline which can incrementally reconstruct 3D mod-
els by finding the corresponding relationship between image pairs. However, the matching
points of this method are sparse in low-resolution images. AA-RMVSNet [13] presents an
adaptive aggregation recurrent MVS network that uses long short-term memory (LSTM)
and performs with better accuracy. In addition to current stereo matching algorithms based
on 3D cost volumes, CasMVSNet [14] presents a cascade approach to save memory and
time. CVP-MVSNet [11] infers high-resolution depth maps using a compact, lightweight
network for better reconstruction performance. AACVP-MVSNet [12] introduces the atten-
tion layer to improve feature extraction ability and uses similarity metrics to aggregate cost
volumes, which performs best in completeness. MVSTER [24] and TransMVS [22] are both
Transformer-based methods. Compared to other advanced methods, our algorithm trades
off accuracy and completeness and achieves the best result in the overall metric.
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Table 1. Comparison of reconstruction quality in objective metrics.

Method Acc. (mm) Comp. (mm) Overall (mm)

Colmap [7] 6.5778 10.1405 8.2930
AA-RMVSNet [13] 0.8207 3.4115 2.1161
CasMVSNet [14] 1.4045 1.6096 1.5071

CVP-MVSNet [11] 1.1964 1.0569 1.1267
AACVP-MVSNet [12] 1.1329 0.8814 1.0071

MVSTER [24] 2.6132 1.9704 2.2918
TransMVS [22] 1.0248 1.3075 1.1662

Ours 0.9296 1.0120 0.9708

The visual comparison is shown in Figure 5. The reconstruction results of AA-
RMVSNet are demonstrated in Figure 5a, which retains relatively accurate points in ex-
change for accuracy at the cost of integrity, resulting in a sparse reconstructed point cloud.
Figure 5b,c represent the reconstruction results of CasMVSNet and CVPMVSNet, respec-
tively, both of which use a coarse-to-fine approach to increase the reconstruction quality
while reducing memory consumption. The reconstructed point cloud of AACVP-MVSNet
in Figure 5d is more complete but compared with our results in Figure 5e, the noise is more,
and accuracy is lower. Thus, the 3D reconstruction of low-resolution images using our
method produces good visualization results.
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4.4.2. Results on BlendedMVS Dataset

To evaluate the generalization of the proposed MVS-T, we used the model trained
on DTU dataset without any fine-tuning to reconstruct 3D scenes in the BlendedMVS
dataset. The input images were resized to 160 × 128 and the camera parameters were
scaled correspondingly. Figure 6 shows the 3D reconstruction results of our method on the
BlendedMVS. The top row shows the results of the outdoor large scene, and the bottom
row is the sculpture and small objects. Although the input is low-resolution images, the
scene complexity span is large, and the shooting trajectories are different, our method can
still complete the 3D points reconstruction of different scenes.
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4.5. Ablation Study
4.5.1. Effectiveness of Different Components

We used the TFA module to build the feature pyramid, focusing on high-level and
low-level image information, and the Transformer blocks to make the networks pay more
attention to global image information, effectively improving the accuracy of the recon-
structed scene. We conducted ablation experiments to evaluate the effectiveness of the
modules suggested in this paper, and the results are displayed in Table 2. Compared with
the initial model, the complete model we proposed is 22.3% lower in accuracy and 4.25%
lower in completeness.

Table 2. Quantitative performance with different components.

Model Settings Mean Distance
TFA Transformer Acc. Comp. Overall

(a) 1.1964 1.0569 1.1267
(b)

√
0.9635 1.0257 0.9946

(c)
√ √

0.9296 1.0120 0.9708

4.5.2. Evaluation Patch Size Settings

The Transformer needs to divide the input into fixed patches, and we studied the
influence of patch sizes in Table 3. It can be seen that when the size of the patch is too large
or too small, the performance will decrease. Therefore, patch size = 4 achieves the optimum
in all objective metrics.

Table 3. Ablation study on the size of patch on DTU dataset.

Acc. Comp. Overall

patch size = 8 1.0182 1.1022 1.0602
patch size = 4 0.9296 1.0120 0.9708
patch size = 2 0.9465 1.0237 0.9851
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We visualized and compared their reconstructed 3D point cloud for different patch
sizes, and the results are shown in Figure 7. The red box indicates that the 3D point cloud
has less noise and higher accuracy when the patch size = 4. From the images in the blue
box, we can see the completeness of the reconstructed point cloud under different patch
sizes. When the patch size = 2, the point cloud is sparser, and when the patch size = 8, the
point cloud integrity is low.
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4.5.3. Explore on Learnable Token

As mentioned in Section 3.2.2., we explored the validity of adding a classification token
similar to BERT [37] and different fusion methods from token embeddings to image-like
features. The results are shown in Table 4. The -cls means no additional classification token
is added. The ignore means a classification token is added for training but directly ignored
during feature fusion, the add means adding the classification token to other tokens, and
the map concatenates this classification token with the rest of the tokens. As seen in the
table, the classification token can guide the model to better focus on the information of the
whole dataset and improve the metrics.

Table 4. Ablation study on the learnable token and image-like fusion methods.

-cls ignore add map

Acc. 0.9287 0.9296 0.9856 0.9724
Comp. 1.0363 1.0120 1.0692 1.0505
Overall 0.9825 0.9708 1.0274 1.0114

4.5.4. Number of Different Transformer Blocks

To select the appropriate number of Transformer blocks, we adjusted the Transformer
blocks T and conducted experiments. As is demonstrated in Table 5, T = 4 achieves best in
all indicators.

Table 5. Ablation study on the number of Transformer blocks.

T Acc. Comp. Overall

6 0.9731 1.0575 1.0153
4 0.9296 1.0120 0.9708
2 1.0148 1.0824 1.0486



Sensors 2022, 22, 7659 12 of 14

4.5.5. Extension on Different Resolution Images

We applied our proposed model on different resolution images, and the results are
shown in Table 6. However, through the experiments, we find that the accuracy of the
reconstructed point cloud is improved, but the improvement in completeness is not signifi-
cant. This may be due to the fact that we only use low-resolution images during training,
and there is insufficient extraction of high-resolution image details.

Table 6. Results on different resolution images.

Image Size Acc. Comp. Overall

160 × 128 0.9296 1.0120 0.9708
320 × 256 0.7695 1.0163 0.8929
640 × 512 0.5348 1.2394 0.8871

1280 × 1024 0.4089 0.9584 0.6836

5. Conclusions

To reconstruct high-quality 3D scenes from low-resolution multi-view images, we
propose a Transformer based multi-stage MVS network (MVS-T). The method focuses
on shallow information while building pyramid features and applies Transformer self-
attention to perceive global context features, providing more practical information for
3D reconstruction. Experimental results have shown that our method outperforms other
advanced works on low-resolution image 3D reconstruction, balancing the accuracy and
completeness of the reconstructed point clouds. Although our method achieves good results
in the MVS reconstruction of low-resolution images, limited by the computational overhead,
we did not discuss 3D reconstruction at high-resolution. In the future, we will attempt to
design a lightweight and compact network to explore MVS tasks on high-resolution images.
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