
Citation: Zhou, X.; Zhang, Y.; Wei, Q.

Few-Shot Fine-Grained Image

Classification via GNN. Sensors 2022,

22, 7640. https://doi.org/10.3390/

s22197640

Academic Editor: Marco Leo

Received: 11 September 2022

Accepted: 3 October 2022

Published: 9 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Few-Shot Fine-Grained Image Classification via GNN
Xiangyu Zhou, Yuhui Zhang and Qianru Wei *

School of Software, Northwestern Polytechnical University, Xi’an 710129, China
* Correspondence: weiqianru@nwpu.edu.cn

Abstract: Traditional deep learning methods such as convolutional neural networks (CNN) have a
high requirement for the number of labeled samples. In some cases, the cost of obtaining labeled
samples is too high to obtain enough samples. To solve this problem, few-shot learning (FSL) is
used. Currently, typical FSL methods work well on coarse-grained image data, but not as well on
fine-grained image classification work, as they cannot properly assess the in-class similarity and
inter-class difference of fine-grained images. In this work, an FSL framework based on graph neural
network (GNN) is proposed for fine-grained image classification. Particularly, we use the information
transmission of GNN to represent subtle differences between different images. Moreover, feature
extraction is optimized by the method of meta-learning to improve the classification. The experiments
on three datasets (CIFAR-100, CUB, and DOGS) have shown that the proposed method yields better
performances. This indicates that the proposed method is a feasible solution for fine-grained image
classification with FSL.

Keywords: deep learning; few-shot learning (FSL); fine-grained image classification; graph neural
network (GNN)

1. Introduction

FSL could be considered as deep learning with few labeled samples. Traditional deep
neural networks (DNN) usually require a large number of high-quality training samples
without bias to avoid overfitting [1–8]. However, due to a number of factors such as privacy,
security, or the high cost of labeling data, many real-world application scenarios cannot
obtain enough labeled training samples. Therefore, it is crucial to investigate how a deep
learning system can efficiently learn and generalize its cognitive capabilities from a small
number of samples. This is especially true for fine-grained image classification where data
acquisition is difficult and labeling is expensive.

Fine-grained image classification involves distinguishing basic categories and then
producing fine subcategories, such as bird species, car models, dog breeds, etc. Currently,
there is a wide range of business needs and application scenarios in industry and in real
life. As shown in Figure 1, fine-grained images have more similarity in appearance and
features than coarse-grained images. In addition, various influences such as pose, perspec-
tive, illumination, occlusion, and background interference can result in large inter-class
differences and small intra-class differences in the data, making classification challenging.
The traditional method of classification by assessing interclass and intraclass distances in
Euclidean space does not seem to work well for fine-grained FSL. Using GNN to assess the
similarity out of Euclidean space can solve this problem.

GNN is a neural network model for representation learning of data suitable for graph-
ical representation in non-Euclidean space. Based on an information diffusion mechanism,
GNN updates node states by exchanging neighborhood information recurrently until a sta-
ble equilibrium is reached [9]. The application of GNN in the field of few-shot classification
can also be regarded as a metric learning method, and the relationships between samples
can be obtained by GNN. Due to its efficient performance and interpretability, classification
algorithms based on GNN have gradually gained acceptance.

Sensors 2022, 22, 7640. https://doi.org/10.3390/s22197640 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22197640
https://doi.org/10.3390/s22197640
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22197640
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22197640?type=check_update&version=3

Sensors 2022, 22, 7640 2 of 17Sensors 2022, 22, x FOR PEER REVIEW 2 of 17

(a) (b)

Figure 1. (a) Generic image recognition (coarse-grained). (b) Fine-grained image recognition.

GNN is a neural network model for representation learning of data suitable for

graphical representation in non-Euclidean space. Based on an information diffusion

mechanism, GNN updates node states by exchanging neighborhood information recur-

rently until a stable equilibrium is reached [9]. The application of GNN in the field of few-

shot classification can also be regarded as a metric learning method, and the relationships

between samples can be obtained by GNN. Due to its efficient performance and interpret-

ability, classification algorithms based on GNN have gradually gained acceptance.

In this paper, we propose a GNN-based fine-grained (GFF) image classification

framework that implicitly models the in-class similarity and inter-class difference based

on node tags. In this graph model, the features (output of the embedding model) and label

information are used as input nodes, and the query sets without labels are classified by

iteratively updating the distance between each node. In the experiments, we found that

the quality of the feature extraction model has a direct impact on the final classification

results, and that a poor embedding model is likely to cause the whole network to fall into

the local optimum. With this in mind, we optimize the embedding model to maximize the

distance between samples of different categories during feature extraction, which effec-

tively improves the classification effect. In summary, our contributions are in the follow-

ing aspects:

• We are the first to explore and use the information transfer of GNN for few-shot fine-

grained image classification. The proposed method can better distinguish the nu-

ances between different categories compared to other classification models.

• We optimize the embedding model. The initial embedding model is learned by the

meta-learning method, which can make the feature extractor effective for both un-

known and known test classes, and prevent it from falling into a local optimum.

We conduct extensive experiments and demonstrate the effectiveness of the pro-

posed method.

2. Related Work

2.1. Few-Shot learning

FSL is typically required to construct a new framework of a neural network using

prior knowledge, which can be classified in three ways: (1) constructing external memory

and introducing prior knowledge into the memory, (2) introducing prior knowledge into

the initialization parameters of the model, and (3) using the training data as prior

knowledge.

Class

Car Dog Bird

Dog

Satsuma Husky Retriever

Figure 1. (a) Generic image recognition (coarse-grained). (b) Fine-grained image recognition.

In this paper, we propose a GNN-based fine-grained (GFF) image classification frame-
work that implicitly models the in-class similarity and inter-class difference based on node
tags. In this graph model, the features (output of the embedding model) and label informa-
tion are used as input nodes, and the query sets without labels are classified by iteratively
updating the distance between each node. In the experiments, we found that the quality of
the feature extraction model has a direct impact on the final classification results, and that a
poor embedding model is likely to cause the whole network to fall into the local optimum.
With this in mind, we optimize the embedding model to maximize the distance between
samples of different categories during feature extraction, which effectively improves the
classification effect. In summary, our contributions are in the following aspects:

• We are the first to explore and use the information transfer of GNN for few-shot
fine-grained image classification. The proposed method can better distinguish the
nuances between different categories compared to other classification models.

• We optimize the embedding model. The initial embedding model is learned by
the meta-learning method, which can make the feature extractor effective for both
unknown and known test classes, and prevent it from falling into a local optimum.

We conduct extensive experiments and demonstrate the effectiveness of the
proposed method.

2. Related Work
2.1. Few-Shot Learning

FSL is typically required to construct a new framework of a neural network using prior
knowledge, which can be classified in three ways: (1) constructing external memory and
introducing prior knowledge into the memory, (2) introducing prior knowledge into the
initialization parameters of the model, and (3) using the training data as prior knowledge.

Models such as Convolutional LSTM [10], GRU [11], a variant of LSTM, and Neural
Turing Machine [12], which improves the read and write operation of LSTM, are applied
in the field of small-sample image classification with the idea of introducing an external
memory and modifying the external memory in terms of training sets during training
and use the external memory as prior knowledge during testing. The introduction of
prior knowledge in the initialization parameters, i.e., the meta-learning method, aims to
give the model a kind of learning capability that allows it to automatically learn some
meta-knowledge. Meta-knowledge refers to the knowledge that can be learned outside
the model training process, such as the hyperparameters of the model, the structure and
optimizer of the neural network, etc. Typical networks include MAML (Model-Agnostic
Meta-Learning), proposed by Finn et al. [13] in 2017, and Meta-SGD [14], an SGD-like,

Sensors 2022, 22, 7640 3 of 17

easily trainable meta-learner, which was developed based on MAML so that the model can
learn the direction of optimization and learning rate. In addition, there is also the Reptile, a
scalable meta-learning algorithm, proposed by Alex et al. [15] in 2018, which avoids the
two derivatives of MAML and greatly reduces the calculation.

Currently, the common few-shot classification algorithm uses training data as prior
knowledge, including a fine-tuning-based model and a metric-based model. The idea
of the former is to pre-train the model using large-scale data and fine-tune parameters
using a target few-shot dataset, and the idea of the latter is to extract the features of the
samples through an embedding network for distance analysis to obtain a network that can
perform the relationship discrimination and matching of the different categories. Typical
networks for metric learning include the Prototypical Network, proposed by Snell [16] et al.,
whose idea is to extract prototypical features from samples of the same category and as-
sess the sample category by comparing the Euclidean distance between the query sample
and the prototypical features; the Matching Network [17], which introduces an atten-
tion mechanism; and Relation Network [18], which assesses the relations using adaptive
nonlinear classifiers.

2.2. Fine-Grained Image Classification

The core of fine-grained image classification methods is to focus on the details of the
image to extract discriminative features for classification. Currently, popular methods can
be summarized into three categories: (1) parts localization-based methods, (2) end-to-end
feature learning-based methods, and (3) feature enhancement-based methods.

Early methods usually introduce auxiliary annotation information to locate the key
components of the target. For example, the Part R-CNN proposed by Zhang et al. [19] and
the Deep LAC model proposed by Lin et al. [20] generate multiple regions, then localize the
semantic components of the target using the annotation information, and finally extract the
features of the local regions for classification. Since the above methods need to introduce
additional annotation information, they failed to become mainstream methods for fine-
grained image classification. Researchers focus more on weakly supervised methods,
i.e., end-to-end methods based on discriminative feature learning, which directly extract
more discriminative features for classification by developing a powerful deep model or
a new loss function. The core of the RA-CNN model proposed by Fu et al. [21] and the
MAMC model combined with metric learning [22] is to gradually focus on key regions
through the attention mechanism, and determine the final result based on the classification
of the features of these regions. The main technical route of the Bilinear CNNs, proposed
by Lin et al. [23], and the Compact Bilinear model, proposed by Yang et al. [24], is to use
two branches to extract image features, then fuse the top-level features, and finally obtain a
high-order feature that fuses all channel information for classification.

In recent years, some methods have combined the idea of local feature location and
discriminative feature learning to obtain strong discriminative features from the perspective
of feature enhancement. To make the model focus on the refined regions rather than the
overall components, Chen et al. proposed a special learning model, DCL [25]. In this
method, the image scrambled in a certain local region and the original image are input to
the model together to destroy the overall structure of the image. The model is then forced
to learn the local details of the image, so that the features extracted by the model can be
enhanced. The WS-DAN model, proposed by Hu et al. [26], introduces a data augmentation
framework that first generates an attention map through weakly supervised learning to
represent multiple discriminative parts of the target, and then uses two data augmentation
methods to strengthen the discrimination of features.

2.3. FSL for Fine-Grained Classification

With the gradual deepening of research on few-shot learning and fine-grained image
classification, researchers begin to consider how to solve the problem of few-shot learning
for fine-grained image classification. Wei et al. proposed the problem of Few-Shot Fine-

Sensors 2022, 22, 7640 4 of 17

Grained image classification (FSFG) in [27], and proposed a matching network PCM for
slicing bilinear features. The method obtains the local features of the target by decomposing
bilinear features, and adopts task-oriented learning in the learning process to adapt to the
FSL problem. Subsequently, Li et al. proposed two few-shot fine-grained classification mod-
els, CovaMNet and DN4, to measure the relationship between images by the relationships
between local features [28,29]. Although the above methods focus on the importance of
local regions, they ignore the influence of irrelevant local regions. In this context, Hou et al.
proposed a cross-attention network, CAN [30], to localize relevant regions, which uses the
attention mechanism to reweight local features.

Similarly, Zhang et al. proposed the DeepEMD model with a new weighted distance
formula [31] and reached the leading level. They considered the few-shot classification
problem as an optimal matching problem, divided the image into multiple patches, and
then introduced the distance metric EMD to calculate the best matching cost between
each patch of the image to represent the similarity between them, to realize the mining of
key regions.

2.4. GNN-Based Methods in FSL

Recently, GNN has been widely used in the field of few-shot learning. Specifically,
Garcia et al. first utilized GNN to solve few-shot learning problems, where the embedding
model and GNN model were trained end-to-end as one [32]. Liu et al. proposed a trans-
ductive propagation network (TPN). The TPN utilizes the entire query set for transductive
inference to further exploit intra-class similarity and inter-class dissimilarity [33]. Kim et al.
proposed an edge-labeling graph neural network [34]. Gidaris et al. reconstructed the
classification weights using a denoising autoencoder network on the GNN-based few-shot
model [35]. To explicitly model the distribution-level relation, Yang et al. proposed the
distribution propagation graph network (DPGN) [36]. The GNN-based model is significant
to be explored widely because of its interpretability and acceptable performance.

3. Materials and Methods
3.1. Data Organization and Definition of Task

The dataset consists of the training set Dtr (including Ttr and Tte) and the test set Dte
(including Ttr and Tte). These two sets are disjoint, i.e., Dtr ∩Dte = ∅, to ensure that the
trained model is also suitable for new tasks.

In the N-way K-shot problem, the number of categories is N, the number of support
samples of each category is K, and the training data is sampled as follows: N classes are
randomly selected in Dtr, and K samples are randomly selected for each of the N classes
to construct Ttr (i.e., there are N×K support samples in Ttr). A sample from one of these
classes is randomly selected as a query sample to construct Tte, and Ttr ∩ Tte = ∅. During
the training of each task, all samples in Ttr and Tte of Dtr are input into the model. The label
of the query sample is used as the ground truth for prediction.

For testing, Ttr and Tte are constructed on Dte in the same way as for training. The
training and testing tasks share the same N-way K-shot problem, i.e., there are also N×K
labeled samples and an unknown sample that are input into the model when testing. The
output category is the prediction label of test sample (i.e., Tte).

3.2. Model Design

The whole model of this algorithm is shown in Figure 2. First, the embedding model
is pre-trained by meta-learning, the trained model is used as the initial embedding model
for formal training, and then the embedding model ϕ(x) and GNN model are trained
end-to-end.

Sensors 2022, 22, 7640 5 of 17

Sensors 2022, 22, x FOR PEER REVIEW 5 of 17

labeled samples and an unknown sample that are input into the model when testing. The
output category is the prediction label of test sample (i.e., T).

3.2. Model Design
The whole model of this algorithm is shown in Figure 2. First, the embedding model

is pre-trained by meta-learning, the trained model is used as the initial embedding model
for formal training, and then the embedding model φ(x) and GNN model are trained
end-to-end.

Figure 2. The whole process of the algorithm, including pre-training and formal training; φ(x) is
the embedding model.

The embedding model (feature extraction model) is composed of four convolutional
layers to process each 32 × 32 image with three channels into a 64-dimensional feature
vector, which is input as a node into the graph in the following work. The process is shown
in Figure 3. Our work aims to address the few-shot problem. In supervised learning, the
insufficient training examples can lead to overfitting. Compared with the limited
knowledge from few examples, the deep models with a large number of learning param-
eters are too complicated [13,14]. Therefore, we chose a lightweight embedding model
with fewer parameters and low depth.

Figure 3. The process of feature extraction.

The GNN model (classification model) was developed to obtain the distribution of
features for classification. There are N × K + 1 nodes, representing the embedding

Figure 2. The whole process of the algorithm, including pre-training and formal training; ϕ(x) is the
embedding model.

The embedding model (feature extraction model) is composed of four convolutional
layers to process each 32 × 32 image with three channels into a 64-dimensional feature
vector, which is input as a node into the graph in the following work. The process is
shown in Figure 3. Our work aims to address the few-shot problem. In supervised
learning, the insufficient training examples can lead to overfitting. Compared with the
limited knowledge from few examples, the deep models with a large number of learning
parameters are too complicated [13,14]. Therefore, we chose a lightweight embedding
model with fewer parameters and low depth.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 17

labeled samples and an unknown sample that are input into the model when testing. The

output category is the prediction label of test sample (i.e., Tte).

3.2. Model Design

The whole model of this algorithm is shown in Figure 2. First, the embedding model

is pre-trained by meta-learning, the trained model is used as the initial embedding model

for formal training, and then the embedding model φ(x) and GNN model are trained

end-to-end.

Figure 2. The whole process of the algorithm, including pre-training and formal training; φ(x) is

the embedding model.

The embedding model (feature extraction model) is composed of four convolutional

layers to process each 32 × 32 image with three channels into a 64-dimensional feature

vector, which is input as a node into the graph in the following work. The process is shown

in Figure 3. Our work aims to address the few-shot problem. In supervised learning, the

insufficient training examples can lead to overfitting. Compared with the limited

knowledge from few examples, the deep models with a large number of learning param-

eters are too complicated [13,14]. Therefore, we chose a lightweight embedding model

with fewer parameters and low depth.

Figure 3. The process of feature extraction.

The GNN model (classification model) was developed to obtain the distribution of

features for classification. There are N × K + 1 nodes, representing the embedding

Sample 1

Sample 2

Sample n

Train

.

.

.

Model

 update
Loss

Model

 update
Loss

Model

 update
Loss

Classifierᵩ1(x)

Classifierᵩ2(x)

Classifierᵩn(x)

Pre-train

Support

set

Query

set

Support

set

Query

set

Support

set

Query

set

.

.

.

Support

set

Query

set

Label Input Classification

result

ᵩ*(x)

Embedding

model GNN model

3

32

32

32

16

16

8

8

64

4

4

128
1

1

64

Figure 3. The process of feature extraction.

The GNN model (classification model) was developed to obtain the distribution of
features for classification. There are N×K + 1 nodes, representing the embedding vectors
of all samples in the task T. There are edges between every two nodes in the graph.
The weight of each edge represents the relationship between two images (which can be
understood as distance or similarity).

As shown in Figure 4, an iteration of GNN contains two modules: Adjacency Block and
Convolution Block. After the Adjacency Block is executed once, the connection between
nodes is changed once. After the Convolution Block is executed once, the features of the
nodes are changed once.

Sensors 2022, 22, 7640 6 of 17

Sensors 2022, 22, x FOR PEER REVIEW 6 of 17

vectors of all samples in the task T. There are edges between every two nodes in the graph.

The weight of each edge represents the relationship between two images (which can be

understood as distance or similarity).

As shown in Figure 4, an iteration of GNN contains two modules: Adjacency Block

and Convolution Block. After the Adjacency Block is executed once, the connection be-

tween nodes is changed once. After the Convolution Block is executed once, the features

of the nodes are changed once.

Figure 4. The training process of the graph neural network. Perform each Convolution Block after

Adjacency Block.

3.3. Pre-Training Feature Extractor

Before formal training, the feature extractor is pre-trained. The feature extraction

model is optimized by meta-learning. Then, it is connected with a full-connection layer as

a classifier model f to start training.

Based on supervised learning, the model f is trained based on the empirical loss Ltr

by SGD, expressed in the following equation:

θ′ = θ − β∇Ltr (1)

where β is the learning rate of the base-learner. Unlike in [13], it is learnable and not man-

ually defined. The meta-learner aims to learn an acceptable θ and β that can guide the

base-learner to obtain the temporary parameters θ′ for the current task. The setting of

learnable β can make it more automatic to update the parameters θ to avoid overfitting

or underfitting.

The training loss of the task, Ltr, is computed as follows:

Ltr =
1

|Ttr|
∑ l(fθ(x), y)

(x,y)∈Ttr

 (2)

where l represents the cross-entropy loss, x is the input image with the label y, and |Ttr|

is the number of training samples for this task.

Mathematically, the objective of the proposed meta-learning model can be formu-

lated as follows:

min
θ,β

Lte = min
θ,β

1

|Tte|
∑ l(fθ′(x), y)

(x,y)∈Tte

 (3)

where Lte is the test loss of each task, and |Tte| is the number of test samples for the cur-

rent task.

With the above analysis, we can summarize the training process of the meta-learning

model as follows:

Adjacency Block

Convolution Block

Figure 4. The training process of the graph neural network. Perform each Convolution Block after
Adjacency Block.

3.3. Pre-Training Feature Extractor

Before formal training, the feature extractor is pre-trained. The feature extraction
model is optimized by meta-learning. Then, it is connected with a full-connection layer as
a classifier model f to start training.

Based on supervised learning, the model f is trained based on the empirical loss Ltr by
SGD, expressed in the following equation:

θ′ = θ− β∇Ltr (1)

where β is the learning rate of the base-learner. Unlike in [13], it is learnable and not
manually defined. The meta-learner aims to learn an acceptable θ and β that can guide
the base-learner to obtain the temporary parameters θ′ for the current task. The setting of
learnable β can make it more automatic to update the parameters θ to avoid overfitting
or underfitting.

The training loss of the task, Ltr, is computed as follows:

Ltr =
1
|Ttr| ∑

(x,y)∈Ttr

l(fθ(x), y) (2)

where l represents the cross-entropy loss, x is the input image with the label y, and |Ttr| is
the number of training samples for this task.

Mathematically, the objective of the proposed meta-learning model can be formulated
as follows:

min
θ,β

Lte = min
θ,β

1
|Tte| ∑

(x,y)∈Tte

l(f θ′(x), y) (3)

where Lte is the test loss of each task, and |Tte| is the number of test samples for the
current task.

With the above analysis, we can summarize the training process of the meta-learning
model as follows:

(θ,β)← (θ,β)− α∑Ti∈p(T)∇Lte (4)

where α is the manually determined learning rate for training the meta-learner, and p(T) is
the distribution of a set of tasks in a meta-training epoch.

The details of the pre-training are shown in Algorithm 1.

Sensors 2022, 22, 7640 7 of 17

Algorithm 1. Pre-training feature extractor

Input: Meta-learner learning rate α, the pre-training model f, few-shot task distribution p(T), the
batch size I
Output: good initialization parameters θ∗, learnable base-learner learning rate β

1: Randomly initialize θ, β
2: for i = 1; i ≤ I; i = i + 1 do

3: Sample n tasks from p(T);
4: for j = 1; j ≤ n; j = j + 1 do
5: LTj

tr
= 1∣∣∣Tj

tr

∣∣∣ ∑
(x,y)∈Tj

tr

l(fθ(x), y);

6: Backward LTj
tr

as ∇Ltr;

7: θj = θ− β∇Ltr;

8: LTj
te
= 1∣∣∣Tj

te

∣∣∣ ∑
(x,y)∈Tj

te

l
(

fθj (x), y
)

;

10: end for

11: Backward
n
∑

j=1
LTj

te
as ∇Lte;

12: Update (θ,β)← (θ,β)− α∇Lte ;
13: end for

3.4. Formal Training

After pre-training, the embedding model is created with initial parameters. In the
formal training stage, it is merged with the GNN classification model and a fully connected
layer to form the whole model g for end-to-end training.

In each training round, the support samples and query samples are input to the
embedding model. Then, the feature is generated and concatenated with the labels to form
a node set. The initial node set expression is shown in (5):

Y = {(∅(xi), h(xi))}i∈[1,N×K+1] (5)

where ∅(xi) represents the feature vector of image xi obtained by the feature extraction
model, and h(xi) represents the one-hot encoding of the category of image xi. Then, the
nodes are input to the GNN model for classification training, including the creation of the
adjacency matrix (Adjacency Block) and the modification of features (Convolution Block).

• Adjacency Block: The relationship between every two nodes is expressed as follows:

R(i, j) = MLP(abs(i, j)) (6)

where MLP is a multi-layer neural network whose input is the Euclidian distance
between two nodes. After obtaining all R(i, j), adjacency matrix A can be constructed.

• Convolution Block: The new nodes are obtained by a graph convolution neural
network, which is formulated as follows:

X(k+1) = ρ
(
∑ θ(k)A(k)X(k)

)
(7)

where ρ is a nonlinear activation function, θ is a learned parameter, and X is the matrix
of features.

After several iterations of learning the feature distribution and learning potential
features, an adjacency matrix can be created to represent the final distribution.

Finally, a fully connected layer is applied to output the possibility of distributed
categories, which is used to calculate the cross-entropy loss:

L =
N

∑
i=1

yque log
(

y∗que

)
(8)

Sensors 2022, 22, 7640 8 of 17

where N is the number of categories, yque is the label of the query sample xque in Tte, and
y∗que represents the categories of possibility distribution of xque.

We update the parameters of the whole model by back-propagation:

θ′ = θ− η∇L(θ) (9)

where θ is the parameter set before update, η is the learning rate, and∇L(θ) represents the
partial derivative of the loss with respect to θ.

The details of formal training are shown in Algorithm 2.

Algorithm 2. Formal training

Input: Meta-learner learning rate η, the whole model g (including embedding model ∅ with θ∗),
few-shot task distribution p(T), the number of batches N, the batch size I, the number of
iterations n
Output: good parameters θ̂

1: Randomly initialize other parameters (θ refers to all the parameters of g);
2: for i = 1; i ≤ N; i = i + 1 do

3: Sample I tasks from p(T);
4: for j = 1; j ≤ I; j = j + 1 do

5: Get nodes Y = {(∅(xi), h(xi))}i∈[1,N×K+1];
6: Get the initial matrix of features X(0);

7: for k = 1; k ≤ n; k = k + 1 do
8: R(i, j) = MLP(abs(i, j));

9: X(k) = ρ
(

∑ θ(k−1)A(k−1)X(k−1)
)

;

10: end for
11: L = ∑N

i=1 yque log
(

y∗que

)
;

12: end for
13: Backward ∑I

j=1 L as ∇L;
14: Update θ← θ− η∇L(θ) ;
15: end for

4. Experiment and Discussion
4.1. Dataset

The experiments are mainly conducted on a public dataset, CIFAR-100, with 100 categories
of 600 color images of size 32× 32 each, collected by Krizhevsky et al. [37]. As shown in
Table 1, each image has a class label and a super class label for fine- and coarse-grained
classification, respectively. We use the class label as the experiment label.

Table 1. The labels of CIFAR-100.

Super Class Classes

aquatic mammals beaver, dolphin, otter, seal, whale
fish aquarium fish, flatfish, ray, shark, trout

flowers orchids, poppies, roses, sunflowers, tulips
food containers bottles, bowls, cans, cups, plates

fruit and vegetables apples, mushrooms, oranges, pears, sweet peppers
household electrical devices clock, computer keyboard, lamp, telephone, television

household furniture bed, chair, couch, table, wardrobe
insects bee, beetle, butterfly, caterpillar, cockroach

large carnivores bear, leopard, lion, tiger, wolf
large man-made outdoor things bridge, castle, house, road, skyscraper

large natural outdoor scenes cloud, forest, mountain, plain, sea
large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo

medium-sized mammals fox, porcupine, possum, raccoon, skunk

Sensors 2022, 22, 7640 9 of 17

Table 1. Cont.

Super Class Classes

non-insect invertebrates crab, lobster, snail, spider, worm
people baby, boy, girl, man, woman
reptiles crocodile, dinosaur, lizard, snake, turtle

small mammals hamster, mouse, rabbit, shrew, squirrel
trees maple, oak, palm, pine, willow

vehicles 1 bicycle, bus, motorcycle, pickup truck, train
vehicles 2 Lawn mower, rocket, streetcar, tank, tractor

We import CIFAR-100 directly from the torchvision.datasets library and normalize the
images into a dataset. During training, we set the random seed to 1. For the N-way task, N
categories in 100 categories were randomly selected as a test set Dte, and the remaining data
were used as the training set Dtr. In the pre-training stage, Dte and Dtr are divided in the
same way as in the formal training stage to ensure the rationality of the experiment, i.e., the
categories included in Dte and Dtr remained unchanged throughout the experiment.

To prove the validity threats of the proposed technology, we also evaluated the pro-
posed method on other two datasets: (1) Caltech-UCSD Birds-200-2011 (CUB) [38], which
contains 11,788 images of 200 sub-categories of birds, and (2) Stanford Dogs (DOGS) [39],
which consists of 20,580 images from 120 dog species.

4.2. Network Structure Setting

The embedding architecture consists of four convolutional layers resulting in a
64-dimensional feature embedding [32]:

{3 × 3-conv(32 filters), batch normal, relu, max pool(2, 2)};
{3 × 3-conv(64 filters), batch normal, relu, max pool(2, 2)};
{3 × 3-conv(128 filters), batch normal, relu, max pool(2, 2)}; and
{3 × 3-conv(64 filters), batch normal, relu}.
This simple architecture is suitable for fast prototyping. When pretraining the em-

bedding model, a softmax layer is added after it to output the probability distribution of
various classes.

As shown in Figure 5, the GNN model consists of three Adjacency Blocks and three
Convolution Blocks that are stacked alternately. The last block is for classification. The
Convolution Block consists of a matrix multiplication operation, a linear layer, a batch-
normalization layer, a ReLu layer, and a concatenation operation. The Adjacency Block
contains an operation to calculate Euclidean distance and three convolutional layers:

{1 × 1-conv(64 filters), batch normal, relu};
{1 × 1-conv(32 filters), batch normal, relu}; and
{1 × 1-conv(1 filter)}.
The input are N × K + 1 features, each of which is (64 + N)-dimensional. The output

is a probability distribution of categories.

4.3. Experimental Settings

Pre-training is carried out in the way of supervised learning. The Adam optimizer is
used with a learning rate of 0.01. We perform meta-training of the models for 50,000 episodes,
each of which contains 32 internal tasks (i.e., the batch of tasks is 32). For the N-way K-shot
task, N categories are randomly selected in Dtr during training. K samples are randomly
selected in each category to form the training subset, Ttr, which contains N×K images in
formula (2). The test subset Tte in Formula (3) is created by selecting N categories from the
other categories in Dtr and randomly selecting K samples in each category. We update the
optimizer in each epoch, calculate the accuracy of the model in the validation set every
1000 epochs, and record the minimum loss. It should be noted that the samples selected
in the pre-training stage are all from the training set Dtr, which ensures that each query
sample in the test set is evaluated independently.

Sensors 2022, 22, 7640 10 of 17Sensors 2022, 22, x FOR PEER REVIEW 10 of 17

Figure 5. The architecture of the GNN model.

The input are 𝑁 × 𝐾 + 1 features, each of which is (64 + N)-dimensional. The output

is a probability distribution of categories.

4.3. Experimental Settings

Pre-training is carried out in the way of supervised learning. The Adam optimizer is

used with a learning rate of 0.01. We perform meta-training of the models for 50,000 epi-

sodes, each of which contains 32 internal tasks (i.e., the batch of tasks is 32). For the N-

way K-shot task, N categories are randomly selected in Dtr during training. K samples

are randomly selected in each category to form the training subset, Ttr, which contains

N × K images in formula (2). The test subset Tte in formula (3) is created by selecting N

categories from the other categories in Dtr and randomly selecting K samples in each cat-

egory. We update the optimizer in each epoch, calculate the accuracy of the model in the

validation set every 1000 epochs, and record the minimum loss. It should be noted that

the samples selected in the pre-training stage are all from the training set Dtr, which en-

sures that each query sample in the test set is evaluated independently.

In the pre-training process, the labels are set as follows: the selected categories in each

task are randomly used from 0 to N-1 as label identifiers, representing N of all categories

in CIFAR-100. In this way, the convenience of the experiment is realized and the diversity

of tasks is ensured to improve the generalization effect of the model. For example, as

shown in Figure 6, the two tasks could randomly select some categories that are the same,

while the class rose is marked 0 in the Task 1 and 1 in the Task 2. In predictive distribution,

this label is predicted in two tasks with different positions in the predictions of the classi-

fier. This approach to labeling is also used for formal training and testing procedures.

Adjacency

Block

Convolution

Block

Adjacency

Block

Convolution

Block

Adjacency

Block

V(0)=[x1
(0),x2

(0), ,xi
(0)]

(i=(NxK+1)x(64+N))

P(Y|T)

Convolution

Block(last)

1x1 conv

(64 filters)

BatchNorm

Relu

1x1 conv

(32 filters)

BatchNorm

Relu

1x1 conv

(1 filter)

abs(xi
(k)

-xj
(k)

)

A(0)

V(1)

V(1)A(1)

V(2)

V(2)A(2)

Linear

BatchNorm

A(k)xV(k)

Relu

V
*(k)

Concatenate

(V
(k)

,V
*(k)

)

Linear

A(k)xV(k)

Figure 5. The architecture of the GNN model.

In the pre-training process, the labels are set as follows: the selected categories in each
task are randomly used from 0 to N-1 as label identifiers, representing N of all categories in
CIFAR-100. In this way, the convenience of the experiment is realized and the diversity of
tasks is ensured to improve the generalization effect of the model. For example, as shown
in Figure 6, the two tasks could randomly select some categories that are the same, while
the class rose is marked 0 in the Task 1 and 1 in the Task 2. In predictive distribution, this
label is predicted in two tasks with different positions in the predictions of the classifier.
This approach to labeling is also used for formal training and testing procedures.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 17

Figure 6. Two different types of tasks.

In formal training, we set the batch size of the training stage to 16 based on experience

and comparison of multiple experiments. We train the whole model for 20,000 episodes,

and each episode contains 16 internal tasks. For each task, we construct Ttr in the same

way as in pre-training, and randomly select a sample from one of the N classes included

in Ttr as the query sample (i.e., Tte). Each task has N × K + 1 sample images as the input

of the model. The loss is calculated based on the comparison between the output and the

actual label number. The back-propagation is performed once in each round. The Adam

optimizer with the initial learning rate of 0.01 is used. Then, the learning rate is reduced

exponentially by:

ητ = η0 × g
τ
T (10)

where η0 is the initial learning rate, g = 0.9 is the hyperparameter, τ is the current it-

eration number, and T = 20,000 is the total number of training epochs.

In the testing process, K images are randomly extracted from each category of Dte,

containing only N target categories to construct Ttr. One image is randomly selected from

one of the categories as Tte. We set the parameters of the whole model and feed these

N × K + 1 images into the network to obtain the classification result. To ensure the effi-

ciency of the experiment, after every 1000 rounds of training, a round of testing on the Dte

is conducted to calculate the loss and accuracy, and the lowest loss was recorded. The

training was stopped when the lowest loss was not updated for 10 consecutive times.

All the experiments were carried out on a workstation with Intel Core i7-11700K CPU

(eight cores, 3.80 GHz) and the NVIDIA GeForce RTX 3060 GPU (12 GB memory).

4.4. Ablation Study

We performed various experiments to evaluate the effectiveness of our algorithm.

All the experiments were performed on the CIFAR-100 dataset, if not stated otherwise.

The method of [32] was set as the baseline for ablation experiments.

We performed several ablation experiments to prove that the optimization of the fea-

ture extraction is useful for both unknown and known test classes, and can avoid falling

into a local optimum. Taking the five-way one-shot as an example, if we directly connect

the embedding model and the GNN model for end-to-end training, following the method

of [32], the classification accuracy is about 36%, and the loss value was low enough. We

suspect that the whole network may fall into a local optimum, and the optimized embed-

ding model can solve this problem. To check this, we fix the embedding model and update

only the GNN model. The accuracy is about 30%. However, if we fix the embedding model

after optimization, the accuracy is up to 41%.
To further prove the importance of optimizing the embedding model, we compared

the accuracy of GNN with or without pre-training on CIFAR100, CUB, and DOGS, as

shown in Table 2.

Table 2. Classification accuracies (%) of GNN with or without pre-training.

Classifer

0:rose

1:lion

2:bear

3: bus

4:wolfTask1

Classifer

0:fox

1:rose

2:pine

3: bed

Task2 4:lion

Figure 6. Two different types of tasks.

In formal training, we set the batch size of the training stage to 16 based on experience
and comparison of multiple experiments. We train the whole model for 20,000 episodes,
and each episode contains 16 internal tasks. For each task, we construct Ttr in the same
way as in pre-training, and randomly select a sample from one of the N classes included
in Ttr as the query sample (i.e., Tte). Each task has N×K + 1 sample images as the input
of the model. The loss is calculated based on the comparison between the output and the

Sensors 2022, 22, 7640 11 of 17

actual label number. The back-propagation is performed once in each round. The Adam
optimizer with the initial learning rate of 0.01 is used. Then, the learning rate is reduced
exponentially by:

ητ = η0 × g
τ
T (10)

where η0 is the initial learning rate, g = 0.9 is the hyperparameter, τ is the current iteration
number, and T = 20, 000 is the total number of training epochs.

In the testing process, K images are randomly extracted from each category of Dte,
containing only N target categories to construct Ttr. One image is randomly selected
from one of the categories as Tte. We set the parameters of the whole model and feed
these N×K + 1 images into the network to obtain the classification result. To ensure the
efficiency of the experiment, after every 1000 rounds of training, a round of testing on the
Dte is conducted to calculate the loss and accuracy, and the lowest loss was recorded. The
training was stopped when the lowest loss was not updated for 10 consecutive times.

All the experiments were carried out on a workstation with Intel Core i7-11700K CPU
(eight cores, 3.80 GHz) and the NVIDIA GeForce RTX 3060 GPU (12 GB memory).

4.4. Ablation Study

We performed various experiments to evaluate the effectiveness of our algorithm. All
the experiments were performed on the CIFAR-100 dataset, if not stated otherwise. The
method of [32] was set as the baseline for ablation experiments.

We performed several ablation experiments to prove that the optimization of the
feature extraction is useful for both unknown and known test classes, and can avoid
falling into a local optimum. Taking the five-way one-shot as an example, if we directly
connect the embedding model and the GNN model for end-to-end training, following the
method of [32], the classification accuracy is about 36%, and the loss value was low enough.
We suspect that the whole network may fall into a local optimum, and the optimized
embedding model can solve this problem. To check this, we fix the embedding model and
update only the GNN model. The accuracy is about 30%. However, if we fix the embedding
model after optimization, the accuracy is up to 41%.

To further prove the importance of optimizing the embedding model, we compared
the accuracy of GNN with or without pre-training on CIFAR100, CUB, and DOGS, as
shown in Table 2.

Table 2. Classification accuracies (%) of GNN with or without pre-training.

Pre-Training Cifar100 CUB DOGS

5-way 1-shot - 36.7 51.8 47.0√
49.2 (↑ 12.5) 61.1 (↑ 9.3) 49.8 (↑ 2.8)

5-way 5-shot - 62.3 73.7 63.3√
67.5 (↑ 5.2) 78.6 (↑ 4.9) 65.3 (↑ 2.0)

In formal training, we try to optimize the network parameters only once for N classes
randomly selected for each task according to the testing process of meta-learning [4], and
then perform end-to-end training for the whole model after obtaining a specific embedding
model. However, the effect is weak. The reason for the analysis is that the parameters of
the embedding model change too much during the training of each task, which causes the
failure of convergence of the whole model. We assume that this problem can be improved
if the parameters of the specific embedding model are fixed to train the model, i.e., only
the GNN classification model is trained. Although the effect is improved, the accuracy of
five-way one-shot is still only about 32%. The reason is that the classification criteria of
feature extraction and the classifier are different in this way, and the criteria applicable
to the embedding model directly used for the classifier cannot achieve the desired effect
when the embedding model is required as the feature extractor. However, the two parts
must be consistently matched to support each other in FSL. Thus, it can be confirmed

Sensors 2022, 22, 7640 12 of 17

that the classification accuracy depends on the effectiveness of the learned embedding
network and is therefore limited by the insufficient differential representations of the
embedding network.

We also try to change the pre-training section for a full classification of all categories.
The accuracy is improved compared to that of the GNN classification model without
pre-training, as shown in Table 3. However, it does not reach the effect of the proposed
method. We suspect that the full classification results in the embedding model overfitting
to all categories in training data. In contrast, the feature extractor can be better applied to
unknown test categories by learning the initial embedding model through meta-learning.
For the five-way tasks, the classification accuracy is 12.5%, 5.2%, and 3.2% higher than that
of the original GNN-based classification model for 1-shot, 5-shot, and 10-shot, respectively,
and the effects are significantly improved. This approach is more in line with the idea of
formal training and effectively helps the formal training to avoid falling into a local optima.

Table 3. Classification accuracies (%) with different pre-training methods in the 5-way K-shot cases.

Method 1-Shot 5-Shot 10-Shot

GNN (Raw, Baseline) 36.7 62.3 69.3

GNN + Pre-training
(full classification) 47.3 63.8 68.9

GNN + Pre-training
(meta-learning) 49.2 67.5 72.5

GNN + Pre-training
(meta-learning) + Enhancement 49.5 67.6 72.3

In general supervised learning, when the number of training samples is insufficient,
the supervised learning model could easily have an overfitting problem. To solve this
problem, some data enhancement operations such as random cropping, mirroring, and
resizing are usually performed to increase the number of training images. Similarly, the
proposed task-oriented model with insufficient training tasks will also suffer from the
overfitting problem. We also tried to perform data enhancement in our experiment to
achieve a better performance, but the experimental results were not satisfactory. The
method is referred to as “GNN+Pre-training (meta-learning) + Enhancement” in Table 3.
As shown in Figure 7, after adding data augmentation, the model converges slightly faster
than before, but the accuracy is not improved. The reason is analyzed as follows: Unlike
general supervised learning, where the number of training samples plays an important role,
for task-oriented learning, the more training samples, the better the performance. However,
for the few-shot problem, it is difficult to increase the number of training categories, and
task expansion may not be effective.

4.5. Performance and Analysis

Several representatives of general neural networks, meta-learning-based and metric-
based classification methods, are selected for comparison on CIFAR-100. For the ordinary
deep-learning-based methods, there are k-means [40] and DC [41]. For the meta-learning-
based methods, we select MAML [13] and MetaCurvature [42], which is an enhanced
version of MAML. For the metric-based methods, ProtoNet [16], MatchNet [17], and
TADAM [43] are selected. In addition, DeepEMD [31], IDeMe-Net [44], MixtFSL [45],
IER [46], MCRNet [47], and MTL [48] are also used as state-of-the-art methods.

Sensors 2022, 22, 7640 13 of 17

Sensors 2022, 22, x FOR PEER REVIEW 13 of 17

As shown in Figure 7, after adding data augmentation, the model converges slightly faster
than before, but the accuracy is not improved. The reason is analyzed as follows: Unlike
general supervised learning, where the number of training samples plays an important
role, for task-oriented learning, the more training samples, the better the performance.
However, for the few-shot problem, it is difficult to increase the number of training cate-
gories, and task expansion may not be effective.

(a) (b)

Figure 7. Classification accuracies with or without data enhancement in (a) the 5-way 1-shot case
and (b) the 5-way 5-shot case.

4.5. Performance and Analysis
Several representatives of general neural networks, meta-learning-based and metric-

based classification methods, are selected for comparison on CIFAR-100. For the ordi-
nary deep-learning-based methods, there are k-means [40] and DC [41]. For the meta-
learning-based methods, we select MAML [13] and MetaCurvature [42], which is an en-
hanced version of MAML. For the metric-based methods, ProtoNet [16], MatchNet [17],
and TADAM [43] are selected. In addition, DeepEMD [31], IDeMe-Net [44], MixtFSL [45],
IER [46], MCRNet [47], and MTL [48] are also used as state-of-the-art methods.

We compare GFF to other methods, splitting the data into the test set and the training
set in the same way. For the five-way one-shot and five-shot experiments, we repeatedly
take 500 testing episodes on CIFAR-100 and record their average accuracy. The perfor-
mance comparison is shown in Table 4. As shown in the table, our results significantly
outperform the state-of-the-art models, e.g., one-shot (3.8%) and five-shot (6%). Com-
pared to the original GNN-based model, other methods perform better for one-shot, but
not for five-shot. Therefore, we infer that GNN might be more useful in the representation
of the distance between samples in the case of multiple shots. It is obvious that our method
performs significantly better than other baselines, due to the optimized feature extractor.

Table 4. Classification accuracies (%) with different methods in the 5-way K-shot cases on CIFAR-
100.

Method 1-Shot 5-Shot
K-Means [40] 38.5 ± 0.7 57.7 ± 0.8

DC [41] 42.0 ± 0.2 57.0 ± 0.2
MAML [13] 41.7 ± 0.6 56.2 ± 0.6

MetaCurvature [42] 41.1 ± 0.7 55.5 ± 0.8
ProtoNet [16] 41.5 ± 0.7 57.1 ± 0.8
MatchNet [17] 43.9 ± 0.7 57.1 ± 0.7
TADAM [43] 40.1 ± 0.4 56.1 ± 0.4

DeepEMD [31] 45.4 ± 0.4 61.5 ± 0.6

Figure 7. Classification accuracies with or without data enhancement in (a) the 5-way 1-shot case and
(b) the 5-way 5-shot case.

We compare GFF to other methods, splitting the data into the test set and the training
set in the same way. For the five-way one-shot and five-shot experiments, we repeatedly
take 500 testing episodes on CIFAR-100 and record their average accuracy. The performance
comparison is shown in Table 4. As shown in the table, our results significantly outperform
the state-of-the-art models, e.g., one-shot (3.8%) and five-shot (6%). Compared to the
original GNN-based model, other methods perform better for one-shot, but not for five-
shot. Therefore, we infer that GNN might be more useful in the representation of the
distance between samples in the case of multiple shots. It is obvious that our method
performs significantly better than other baselines, due to the optimized feature extractor.

Table 4. Classification accuracies (%) with different methods in the 5-way K-shot cases on CIFAR-100.

Method 1-Shot 5-Shot

K-Means [40] 38.5 ± 0.7 57.7 ± 0.8
DC [41] 42.0 ± 0.2 57.0 ± 0.2

MAML [13] 41.7 ± 0.6 56.2 ± 0.6
MetaCurvature [42] 41.1 ± 0.7 55.5 ± 0.8

ProtoNet [16] 41.5 ± 0.7 57.1 ± 0.8
MatchNet [17] 43.9 ± 0.7 57.1 ± 0.7
TADAM [43] 40.1 ± 0.4 56.1 ± 0.4

DeepEMD [31] 45.4 ± 0.4 61.5 ± 0.6
IDeMe-Net [44] 46.2 ± 0.8 64.1 ± 0.4

MixtFSL [45] 44.9 ± 0.6 60.7 ± 0.7
IER [46] 47.4 ± 0.8 64.4 ± 0.8

MCRNet [47] 41.0 ± 0.6 57.8 ± 0.6
MTL [48] 46.1 ± 0.8 61.4 ± 0.8

GFF (ours) 49.2 ± 0.8 67.5 ± 0.8

Earlier related few-shot works such as ProtoNet use fixed distance measures such as
Euclidean or cosine distance for classification [16]. All learning in these metric learning-
based studies takes place in feature embeddings. Compared to the previous fixed metrics
or fixed features and shallow learning metrics, RelationNet [18], which can be viewed
as learning of both a deep embedding and a deep nonlinear metric (similarity function),
can achieve better classification performance. It learns a suitable metric in a data-driven
manner by using a flexible functional approximator to learn the similarity between classes,
without having to manually select the correct metric (Euclidean, cosine, etc.). Based on the
idea of RelationNet, the proposed method changes similarity function from deep nonlinear
metric to GNN, and uses its information transfer property to measure the relationships

Sensors 2022, 22, 7640 14 of 17

between inter-classes and intra-classes more flexibly and effectively for fine-grained FSL.
Thus, better results can be obtained.

To demonstrate the generality of the proposed method in the fine-grained FSL domain,
we compare the method with state-of-the-art methods on CUB and DOGS. As shown in
Table 5, GFF achieves leading results in most cases.

Table 5. Classification accuracies (%) with different methods in the 5-way K-shot cases on CUB
and DOGS.

Methods
CUB Dog

5-Way 1-Shot 5-Way 5-Shot 5-Way 1-Shot 5-Way 5-Shot

MatchNet [8] 57.6 ± 0.7 70.6 ± 0.6 45.0 ± 0.7 60.6 ± 0.6
ProtoNet [7] 53.9 ± 0.7 70.8 ± 0.6 42.6 ± 0.6 59.5 ± 0.6

RelationNet [9] 58.9 ± 0.5 71.2 ± 0.4 43.3 ± 0.5 55.2 ± 0.4
MAML [4] 58.1 ± 0.4 71.5 ± 0.3 44.8 ± 0.3 58.6 ± 0.3
DN4 [33] 55.2 ± 0.9 74.9 ± 0.6 45.7 ± 0.8 66.3 ± 0.7

PABN [49] 61.1 ± 0.4 76.8 ± 0.2 45.6 ± 0.7 61.2 ± 0.6
CovaMNet [32] 58.5 ± 0.9 71.2 ± 0.8 49.1 ± 0.8 63.0 ± 0.6
LRPABN [50] 63.6 ± 0.8 76.1 ± 0.6 45.7 ± 0.8 60.9 ± 0.7

GFF (ours) 61.1 ± 0.4 78.6 ± 0.3 49.8 ± 0.8 65.3 ± 0.8

The running times of the testing process on CIFAR-100 for the partial compared
methods at the same batch-size setting are shown in Figure 8, and analyzed as follows: The
metric-based methods (i.e., ProtoNet, MatchNet, and TADAM) run longer than the ordinary
deep-learning-based methods (K-Means, DC). This is because the class labels are predicted
by metric-based methods through calculating the distance or similarity scores between the
sample features and the prototypes of each class, which increases the computational cost.
Moreover, since the prototype of each class is computed from the support set in the target
domain, metric-based methods require more running time as the number of samples in the
training set increases. MAML, which is based on meta-learning, predicts the category of an
image by the fully connected layer. Therefore, its running time is less than that of the metric
learning methods. The running time of the MetaCurvature model increases sharply due to
the large number of parameters, which is the longest among all the compared models.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 17

(a) (b)

Figure 8. The running time of a single sample test phase for different methods in (a) the 5-way 1-
shot case and (b) the 5-way 5-shot case.

In the proposed method, the model complexity of the computation part of the dis-
tance is slightly higher than that in other metric learning methods, as is the running time.
However, a slight increase in model complexity and running time is acceptable consider-
ing the significant performance gain of the model.

5. Conclusions and Future Work
In this paper, we propose the GFF model to solve few-shot fine-grained image clas-

sification. By obtaining the relational structure of each sample, the method can calculate
the similarity between images more reasonably than other methods that only learn the
sample representation. Particularly, we designed an optimizer of the embedding model
based on meta-learning to obtain a better initial model, which effectively improves the
classification performance and allows the whole network to converge rapidly. This is a
unique attempt. Extensive experiments have shown that GFF achieved the best perfor-
mance of all compared transfer learning solutions on the CIFAR-100 dataset. However,
the limitation of the proposed method is that the training time cost is too large.

From the perspective of pre-training, our experiments confirm that the optimization
of the embedding model is of great importance to improve the performance of the whole
algorithm. The next study will focus on improving the embedding model by combining
the attention mechanism to obtain a more useful feature representation. In addition, the
diversity of training categories for FSL is particularly important. For some FSL problems
with few categories, how to increase the number of categories may become a future re-
search direction. In this context, it may be possible to combine the ideas of a Generative
Adversarial Network [51] to create new categories for training.

Author Contributions: Conceptualization, X.Z. and Q.W.; methodology, X.Z.; software, X.Z.; vali-
dation, X.Z.; formal analysis, X.Z. and Y.Z.; investigation, X.Z. and Y.Z.; resources, Q.W.; data cura-
tion, X.Z.; writing—original draft preparation, X.Z.; writing—review and editing, X.Z. and Q.W.;
visualization, Y.Z.; supervision, Q.W.; project administration, Q.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (no.
62001386).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Figure 8. The running time of a single sample test phase for different methods in (a) the 5-way 1-shot
case and (b) the 5-way 5-shot case.

Sensors 2022, 22, 7640 15 of 17

In the proposed method, the model complexity of the computation part of the distance
is slightly higher than that in other metric learning methods, as is the running time. How-
ever, a slight increase in model complexity and running time is acceptable considering the
significant performance gain of the model.

5. Conclusions and Future Work

In this paper, we propose the GFF model to solve few-shot fine-grained image classifi-
cation. By obtaining the relational structure of each sample, the method can calculate the
similarity between images more reasonably than other methods that only learn the sample
representation. Particularly, we designed an optimizer of the embedding model based on
meta-learning to obtain a better initial model, which effectively improves the classification
performance and allows the whole network to converge rapidly. This is a unique attempt.
Extensive experiments have shown that GFF achieved the best performance of all com-
pared transfer learning solutions on the CIFAR-100 dataset. However, the limitation of the
proposed method is that the training time cost is too large.

From the perspective of pre-training, our experiments confirm that the optimization
of the embedding model is of great importance to improve the performance of the whole
algorithm. The next study will focus on improving the embedding model by combining
the attention mechanism to obtain a more useful feature representation. In addition, the
diversity of training categories for FSL is particularly important. For some FSL problems
with few categories, how to increase the number of categories may become a future research
direction. In this context, it may be possible to combine the ideas of a Generative Adversarial
Network [51] to create new categories for training.

Author Contributions: Conceptualization, X.Z. and Q.W.; methodology, X.Z.; software, X.Z.; val-
idation, X.Z.; formal analysis, X.Z. and Y.Z.; investigation, X.Z. and Y.Z.; resources, Q.W.; data
curation, X.Z.; writing—original draft preparation, X.Z.; writing—review and editing, X.Z. and Q.W.;
visualization, Y.Z.; supervision, Q.W.; project administration, Q.W. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No. 62001386).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This paper is accompanied by the source code of the proposed algo-
rithm publicly available at: https://github.com/Zhou-xy99/GFF (accessed on 10 September 2022).

Acknowledgments: The authors are thankful to all the participants who dedicated their time and
effort to complete this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, T.; Kou, G.; Peng, Y.; Shi, Y. Classifying with adaptive hyper-spheres: An incremental classifier based on competitive learning.

IEEE Trans. Syst. Man Cybern. Syst. 2017, 50, 1218–1229. [CrossRef]
2. Gunduz, H. An efficient stock market prediction model using hybrid feature reduction method based on variational autoencoders

and recursive feature elimination. Financ. Innov. 2021, 7, 1–24. [CrossRef]
3. Fong, B. Analysing the behavioural finance impact of ’fake news’ phenomena on financial markets: A representative agent model

and empirical validation. Financ. Innov. 2021, 7, 1–30. [CrossRef]
4. Depren, Ö.; Kartal, M.T.; Kılıç Depren, S. Recent innovation in benchmark rates (BMR): Evidence from influential factors on

Turkish Lira Overnight Reference Interest Rate with machine learning algorithms. Financ. Innov. 2021, 7, 1–20. [CrossRef]
5. Zhang, T.; Zhang, X. A mask attention interaction and scale enhancement network for SAR ship instance segmentation. IEEE

Geosci. Remote Sens. Lett. 2022, 19, 1–5.
6. Zhang, T.; Zhang, X. HTC+ for SAR Ship Instance Segmentation. Remote Sens. 2022, 14, 2395. [CrossRef]
7. Zhang, T.; Zhang, X. A polarization fusion network with geometric feature embedding for SAR ship classification. Pattern

Recognit. 2022, 123, 108365. [CrossRef]
8. Zhang, T.; Zhang, X.; Liu, C.; Shi, J.; Wei, S.; Ahmad, I. Balance learning for ship detection from synthetic aperture radar remote

sensing imagery. ISPRS J. Photogramm. Remote Sens. 2021, 182, 190–207. [CrossRef]

https://github.com/Zhou-xy99/GFF
http://doi.org/10.1109/TSMC.2017.2761360
http://doi.org/10.1186/s40854-021-00243-3
http://doi.org/10.1186/s40854-021-00271-z
http://doi.org/10.1186/s40854-021-00245-1
http://doi.org/10.3390/rs14102395
http://doi.org/10.1016/j.patcog.2021.108365
http://doi.org/10.1016/j.isprsjprs.2021.10.010

Sensors 2022, 22, 7640 16 of 17

9. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural networks. IEEE Trans. Neural
Netw. Learn. Syst. 2020, 32, 4–24. [CrossRef]

10. Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for
precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 1–9.

11. Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.

12. Graves, A.; Wayne, G.; Danihelka, I. Neural turing machines. arXiv 2014, arXiv:1410.5401.
13. Finn, C.; Abbeel, P.; Levine, S. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. In International Conference

on Machine Learning; PMLR: New York City, NY, USA, 2017; pp. 1126–1135.
14. Li, Z.; Zhou, F.; Chen, F.; Li, H. Meta-sgd: Learning to learn quickly for few-shot learning. arXiv 2017, arXiv:1707.09835.
15. Nichol, A.; Achiam, J.; Schulman, J. On first-order meta-learning algorithms. arXiv 2018, arXiv:1803.02999.
16. Snell, J.; Swersky, K.; Zemel, R. Prototypical networks for few-shot learning. Adv. Neural Inf. Process. Syst. 2017, 30, 4080–4090.
17. Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D. Matching networks for one shot learning. Adv. Neural Inf. Process. Syst. 2016,

29, 3630–3638.
18. Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P.H.; Hospedales, T.M. Learning to compare: Relation Network for Few-Shot Learning.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 1199–1208.

19. Zhang, N.; Donahue, J.; Girshick, R.; Darrell, T. Part-based R-CNNs for fine-grained category detection. In Proceedings of the
13th European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 834–849.

20. Lin, D.; Shen, X.; Lu, C.; Jia, J. Deep lac: Deep localization, alignment and classification for fine-grained recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1666–1674.

21. Fu, J.; Zheng, H.; Mei, T. Look closer to see better: Recurrent attention convolutional neural network for fine-grained image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July
2017; pp. 4438–4446.

22. Sun, M.; Yuan, Y.; Zhou, F.; Ding, E. Multi-attention multi-class constraint for fine-grained image recognition. In Proceedings of
the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 805–821.

23. Lin, T.Y.; RoyChowdhury, A.; Maji, S. Bilinear CNN models for fine-grained visual recognition. In Proceedings of the IEEE
International Conference on Computer Vision, Boston, MA, USA, 7–12 June 2015; pp. 1449–1457.

24. Gao, Y.; Beijbom, O.; Zhang, N.; Darrell, T. Compact bilinear pooling. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 317–326.

25. Chen, Y.; Bai, Y.; Zhang, W.; Mei, T. Destruction and construction learning for fine-grained image recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 5157–5166.

26. Hu, T.; Qi, H.; Huang, Q.; Lu, Y. See better before looking closer: Weakly supervised data augmentation network for fine-grained
visual classification. arXiv 2019, arXiv:1901.09891.

27. Wei, X.S.; Wang, P.; Liu, L.; Shen, C.; Wu, J. Piecewise classifier mappings: Learning fine-grained learners for novel categories
with few examples. IEEE Trans. Image Process. 2019, 28, 6116–6125. [CrossRef]

28. Li, W.; Xu, J.; Huo, J.; Wang, L.; Gao, Y.; Luo, J. Distribution consistency based covariance metric networks for few-shot learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, January 27–February 1 2019; Volume 33,
pp. 8642–8649.

29. Li, W.; Wang, L.; Xu, J.; Huo, J.; Gao, Y.; Luo, J. Revisiting local descriptor based image-to-class measure for few-shot learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
pp. 7260–7268.

30. Hou, R.; Chang, H.; Ma, B.; Shan, S.; Chen, X. Cross attention network for few-shot classification. In Proceedings of the Advances
in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 4005–4016.

31. Zhang, C.; Cai, Y.; Lin, G.; Shen, C. Deepemd: Differentiable earth mover’s distance for few-shot learning. arXiv 2020,
arXiv:2003.06777.

32. Garcia, V.; Bruna, J. Few-shot learning with graph neural networks. arXiv 2017, arXiv:1711.04043.
33. Liu, Y.; Lee, J.; Park, M.; Kim, S.; Yang, Y. Transductive propagation network for few-shot learning. arXiv 2018, arXiv:1805.10002.
34. Kim, J.; Kim, T.; Kim, S.; Yoo, C.D. Edge-labeling graph neural network for few-shot learning. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 11–20.
35. Gidaris, S.; Komodakis, N. Generating classification weights with gnn denoising autoencoders for few-shot learning. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
pp. 21–30.

36. Yang, L.; Li, L.; Zhang, Z.; Zhou, X.; Zhou, E.; Liu, Y. Dpgn: Distribution propagation graph network for few-shot learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 13390–13399.

37. Krizhevsky, A.; Hinton, G. Learning multiple layers of features from tiny images. Handb. Syst. Autoimmune Dis. 2009, 1.
38. Wah, C.; Branson, S.; Welinder, P.; Perona, P.; Belongie, S. The Caltech-Ucsd Birds-200—2011 Dataset; California Institute of

Technology: Pasadena, CA, USA, 2011.

http://doi.org/10.1109/TNNLS.2020.2978386
http://doi.org/10.1109/TIP.2019.2924811

Sensors 2022, 22, 7640 17 of 17

39. Khosla, A.; Jayadevaprakash, N.; Yao, B.; Li, F. Novel dataset for fine-grained image categorization: Stanford dogs. In Proceedings
of the CVPR Workshop, Long Beach, CA, USA, 16–20 June 2019; Volume 2.

40. Jin, X.; Han, J. K-Means Clustering. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA,
2010; pp. 563–564.

41. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 84–90. [CrossRef]

42. Park, E.; Oliva, J.B. Meta-curvature. Adv. Neural Inf. Process. Syst. 2019, 32.
43. Oreshkin, B.; Rodríguez López, P.; Lacoste, A. Tadam: Task dependent adaptive metric for improved few-shot learning. Adv.

Neural Inf. Process. Syst. 2018, 31.
44. Chen, Z.; Fu, Y.; Wang, Y.X.; Ma, L.; Hebert, M. Image Deformation Meta-Networks for One-Shot Learning. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 8680–8689.
45. Afrasiyabi, A.; Lalonde, J.F.; Gagné, C. Mixture-based feature space learning for few-shot image classification. In Proceedings of

the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 9041–9051.
46. Rizve, M.N.; Khan, S.; Khan, F.S.; Shah, M. Exploring complementary strengths of invariant and equivariant representations for

few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Montreal, QC,
Canada, 11–17 October 2021; pp. 10836–10846.

47. Zhong, X.; Gu, C.; Huang, W.; Li, L.; Chen, S.; Lin, C.W. Complementing representation deficiency in few-shot image classification:
A meta-learning approach. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milano, Italy,
10–15 January 2021; pp. 2677–2684.

48. Sun, Q.; Liu, Y.; Chua, T.S.; Schiele, B. Meta-transfer learning for few-shot learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 403–412.

49. Huang, H.; Zhang, J.; Zhang, J.; Wu, Q.; Xu, J. Compare more nuanced: Pairwise alignment bilinear network for few-shot
fine-grained learning. In Proceedings of the 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai,
China, 8–12 July 2019; pp. 91–96.

50. Huang, H.; Zhang, J.; Zhang, J.; Xu, J.; Wu, Q. Low-rank pairwise alignment bilinear network for few-shot fine-grained image
classification. IEEE Trans. Multimed. 2020, 23, 1666–1680. [CrossRef]

51. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S. Generative adversarial networks. Commun. ACM
2020, 63, 139–144. [CrossRef]

http://doi.org/10.1145/3065386
http://doi.org/10.1109/TMM.2020.3001510
http://doi.org/10.1145/3422622

	Introduction
	Related Work
	Few-Shot Learning
	Fine-Grained Image Classification
	FSL for Fine-Grained Classification
	GNN-Based Methods in FSL

	Materials and Methods
	Data Organization and Definition of Task
	Model Design
	Pre-Training Feature Extractor
	Formal Training

	Experiment and Discussion
	Dataset
	Network Structure Setting
	Experimental Settings
	Ablation Study
	Performance and Analysis

	Conclusions and Future Work
	References

