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Abstract: Composites of functionalized single walled carbon nanotubes (SWCNTs) and gold nanopar-
ticles (Au NPs) of ≈15 nm diameter were drop-cast on a printed circuit board (PCB) substrate
equipped with interdigitated electrodes to make a hybrid thin film. Addition of Au NPs decorated
the surface of SWCNTs networked films and acted as catalysts which resulted into an enhanced
sensitivity and low ppb concentration detection limit. The compositions of the film were character-
ized by scanning electron microscope (SEM). SWCNTs clusters were loaded with various amount
of Au NPs ranging from 1–10% (by weight) and their effect on Nitric oxide (NO) sensitivity was
studied and optimized. Further, the optimized composite films were tested in both air and nitrogen
environments and as well as over a wide relative humidity range (0–97%). Sensors were also tested
for the selectivity by exposing to various gases such as nitrous oxide, ammonia, carbon monoxide,
sulfur dioxide and acetone. Sensitivity to NO was found much higher than the other tested gases.
The advantage of this sensor is that it is sensitive to NO at low ppb level (10 ppb) with estimated
response time within 10 s and recovery time around 1 min, and has excellent reproducibility from
sensor to sensor and works within the wide range of relative humidity (0–97%).

Keywords: chemiresistive sensor; carbon nanotubes; nitric oxide sensor; gold nanoparticles and
carbon nanotubes; ppb concentration detection; NOx sensor

1. Introduction

Nitric oxide detection has a wide application from environmental monitoring, indus-
trial process control, combustion studies, oceanographic study to medical diagnoses [1–4].

While it is possible today to measure trace gases such as NO, Nitrous oxide (N2O),
and Dimethyl sulfide (DMS) in the atmosphere, the sensors to measure dissolved gases in
seawater real time and in situ are limited to Carbon dioxide (CO2), Methane (CH4), and
hydrogen sulfide (H2S) [5]. Measurement of climatically relevant trace gases are necessary
to quantify ocean sources and sinks, and to understand their impact on global climate
change. Several of these climatically relevant gases are known to be produced under low
oxygen conditions, such as the oxygen minimum zones in the open ocean, and ‘dead zones’
in the coastal ocean. Global warming is the working hypothesis for the observed expansion
of open ocean Oxygen Minimum Zones (OMZs); increased stratification reduces upper
ocean ventilation and Aeration [6–8]. Expansion of hypoxia in the coastal zone is linked
to eutrophication associated with excess nutrients in river runoff, from sources such as
chemical fertilizers applied to farms, fields, and lawns [9]. Marine life becomes highly
stressed under hypoxic conditions, and dramatic ecological impacts can occur, including
massive kills of fish and shellfish and harmful algae blooms. Longer lasting impacts
also occur since juvenile fish are more likely to be affected than mature fish, resulting
in detrimental follow-on effects such as economic losses. For Texas, with a doubling
in population predicted by 2050, the impact of hypoxia on the coastline’s ecosystem and
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economy is especially concerning [10]. There is a critical need for a deeper understanding of
gas cycling in hypoxic zones. The development of an in situ N2O sensor is a priority; N2O is
a known greenhouse gas and can therefore feedback on global warming via increased OMZ
expansion [11,12]. Today highly precise measurement of dissolved gases like N2O and NO
rely on laboratory-based analyses such as mass spectrometry and gas chromatography [13].
The oceanographic community needs a new, small, low-power, real time dissolved gas
sensor that can be tuned to different gases of interest to allow high spatial resolution
sampling for specific gases of interest. A platform independent sensor can be used on
floats, gliders, CTDs, and AUVs for open water and coastal surveys of dissolved gases.
In addition, NO has been recognized as an atmospheric pollutant and a potential health
hazard. The Occupational Safety and Health Administration (OSHA) have set a permissible
exposure limit (PEL) for nitric oxide gas at 25 ppm. Another application is for medical
diagnosis, NO concentration variation in breath can signify neuro degenerative diseases or
lung related dieses [14,15]. An average, healthy person has an exhaled NO concentration
of 6.7–16.2 parts per billion (ppb), while that of an asthma patient has a concentration in
the range of 34.7–51.1 ppb [16]. For all these reasons a detector is required which can detect
lower concentration of NO selectively and reliably.

Nitric oxide (NO) is a gaseous, free radical, highly unstable and a reactive molecule
and detection of such molecules is relatively difficult especially at low concentrations
and in high humidity environment [17]. Currently most commonly used techniques to
monitor NO gas concentration are electrochemical devices, electron magnetic resonance
spectroscopy, chemiluminescence analyzer, transistor-based devices and X-ray photoelec-
tron [18–20]. Some of these techniques are designed to detect NO in solutions in vivo and
not in situ; other instruments are highly sensitive, accurate and in situ but generally bulky
and complicated. There is a great need of development of a new technology-based device
that can detect NO selectively in real time with small footprint, hand-held, easy to operate,
and consume less power. Chemiresistive sensor technology seems a good fit to satisfy
these needs.

There have been a few studies on NO sensing with most of them using metal oxides such as
WO3, Cr2O3, In2O3, ZnO, and SnO2 [21–27]. Metal oxide sensors operate at higher temperatures
(350–800 ◦ C) needing a heating element with high-power consumption, and experience poor
selectivity. Some researchers also studied conducting polymers such as polyethylene imine,
polyaniline, Polyaniline/WO3 and reported good sensitivity, however these studies were only
performed in either dry or limited humidity environment [4,28]. Recently, single-walled carbon
nanotubes (SWCNTs) sensors have been demonstrated to detect NO at room temperature [4,29].
SWCNTs receiving considerable attention because of their outstanding structural, electrical,
optical, mechanical, and thermal characteristics [30,31]. However, sensors made of pristine
CNTs are often unable to detect certain gases with desirable sensitivity and selectivity. The
lack of sensitivity and selectivity can be overcome by functionalizing the nanotubes. CNTs
sensors for air pollutants such as NOx and NO2 gases are well studied but for NO gas studies
are limited. Researchers have used polymer-coated CNTS, SWCNTs-COOH, MWCNTs-COOH,
(3-aminopropyl) triethoxysilane-SWCNTs, and PEI-SWCNTs for NO detection [4,32–35].

In this study, we fabricated gold nanoparticles (Au NPs) decorated- SWCNTs-COOH
sensing materials and studied their sensitivity to NO in various humidity backgrounds.
Acid treatment is a common approach to add carboxylic group to CNTs. This step will also
introduce defects in the carbon nanotube network in a controlled manner and facilitate
target gas molecules adsorption and charge transfer at the defect sites [36]. CNTs decorated
with Au NPs have been extensively studied for gas sensing and researchers have reported
enhanced sensitivity toward gaseous species such as H2, H2S, NO2, NH3, CO, CO2, and
ethanol compared to pure nanotube gas sensors [28,30,37–44].

Our work shows a simple drop casting method that introduce a composite of Au NPs
and SWCNTs-COOH onto an interdigitated electrode to make a reliable, sensitive, and cost-
effective gas sensor with enhanced sensitivity to NO gas at room temperature. The sensor
can reliably detect 10 ppb NO in situ in a wide humidity range of 0–97%, which is suitable



Sensors 2022, 22, 7581 3 of 14

for dissolved NO detection in the headspace of Sea water using a semipermeable membrane
to allow only gas sample (no water) passing through it to a chamber at different undersea
levels for the oceanographic study and for human breath analysis in medical diagnosis.

2. Materials and Methods

Single-walled carbon nanotubes (>90% purity) were purchased from US Research
Nanomaterials, Inc. (Houston, TX, USA). These purified nanotubes were further treated
with sulfuric acid (98% wt., Sigma Aldrich) and nitric acid (68% wt., Sigma Aldrich) as
described in the literatures to add various oxygen containing groups and opening up of
the nanotubes’ caps [45–47]. About 30 mg of pristine SWCNTS were taken in a flask and
then slowly 40 mL of mixed acid consisting of sulfuric acid and nitric acid with the volume
ration of 3:1 was added. The mixture was refluxed at 120 ◦C for 4 h. The solution was
then diluted with de-ionized water and centrifuged to recover the SWCNTs-COOH. The
material was further washed with de-ionized water multiple times to bring the pH value of
the filtrate to neutral. SWCNTs-COOH were dispersed (0.03% by weight) in DI water. The
suspension was sonicated for about 30 min.

Gold nanoparticles were synthesized using the classical, well described Turkevich
method [48–51]. First, all the glassware and magnetic stirrer were thoroughly cleaned
with aqua regia (mixture of nitric acid and hydrochloric acid, in a molar ratio of 1:3) and
then rinsed with de-ionized water. This step avoids aggregation of residual gold particles
during the synthesis procedures [52]. Gold (III) chloride hydrate (HAuCl4) and Trisodium
citrate (Na3C6H5O7) were purchased from Sigma Aldrich (Burlington, MA, USA). HAuCl4
solution (1 mM, 80 mL) was taken into a flask and heated to a boiling temperature with a
uniform stirring. After reflux started, Na3C6H5O7 (38.8 mM, 9 mL) was slowly added. The
color of the solution changed from yellow to dark purple. After about 40 min of reflux, the
mixture was slowly cooled down to room temperature. Finally, the product was centrifuged
to obtain Au NPs and stored in the dark place to minimize the photo induced oxidation.

The hybrid composites as the sensing material were prepared by mixing SWCNTs-
COOH with Au NPs (pH 7). First, to optimize the Au NPs loading onto the SWCNTs-COOH
network, three compositions were prepared by varying the amount of Au NPs 1%, 5%, and
10% (by weight) in the SWCNTs-COOH dispersion. The composite materials were stirred
overnight at room temperature.

The substrate of the sensor chip was made by grade FR-4 PCB. This sensor chip
contains an array of 16 gold printed interdigitated electrode (IDE). The IDEs were micro-
fabricated using screen printing technique on a 2 × 1 cm2 chip area and each IDE had
a finger width of 70 µm and gap size of 102 µm. Each IDE was manually drop casted
with 0.3µL of composite materials. The sensor chip was air dried overnight and with the
evaporation of the solvent, the deposited nanomaterials form a network of the composites
that bridge the fingers of the IDEs. This nanoarchitecture provides a high surface area
and continuous electrical connectivity between the fingers of IDEs. Base resistance of the
sensors varied according to Au NPs loading amount. As expected, the conductivity of the
sensors increased as amount of Au NPs increased. The base resistance of the sensors varied
from ≈640 Ω (10% Au NPs) to ≈15 kΩ (1% Au NPs).

The gas sensing experiments were carried out by sequential exposure of the sensors
to various concentrations of certified NO gas in a cylinder (2.5 ppm balanced in nitrogen,
Praxair) premixed with either zero air or nitrogen (Praxair). An Environics 2000 (Environics
Inc., Tolland, CT, USA) gas blending and dilution system was used for producing desired
concentrations of NO at different humidity levels. For the electrical resistance measurement
of each sensor channel, the sensor chip was connected to a Keithley 2700 (Keithley Instru-
ments, Inc., Scottsdale, AZ, USA) via an interface board. A constant 400 CCM sample flow
of desired concentration of NO gas were introduced to the sensor chip in a small chamber
with a Teflon cover which sits on top of the sensor chip to evenly disburse the gas steam
to all sensor channels. The experimental setup of sensor testing is discussed in our earlier
publication [53]. To monitor temperature and humidity around the sensor area, a surface
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mount humidity and temperature sensor (Texas Instruments, HDC 1000YPAT) was placed
next to the sensor chip under the Teflon cover and humidity was adjusted from 0–97%. All
NO gas exposures were introduced after 10 min of nitrogen flow for baseline recording to
allow humidity and baseline stabilization. Each NO measurement was consisted of 1 min
(0.02–1.5 ppm) exposure followed by a 5 min of nitrogen purge, alternate sample exposure
and purge cycles were introduced at room temperature.

3. Results and Discussion
3.1. Sensor Characterization

A sensor chip with different composites varying Au NPs loading was prepared. As
expected, the conductance of the sensors varied based on the Au NPs loading in the CNTs
composites, higher loading increased the conductance [54]. As prepared SWCNTs-COOH
(0% Au NP) measured base resistance 30 KΩ, adding 1% Au NPs measured 11 KΩ, adding
5% Au NPs measured 1.8 KΩ, and adding 10% Au NPs measured 624 Ω. To find the
optimum gold particle to CNTs ratio, sensors were tested with various concentrations of
NO gas (0.02–1.5 ppm) in Nitrogen background as shown in Figure 1. All four materials
showed sensitive response to NO gas and the 5% AuNPs loaded material showed the
highest response in the dry condition, see Figure 1A. This material also showed the highest
concentration dependent sensor response in the humid condition, see Figure 1B. SWCNTs-
COOH (0% Au NP) only responded to high concentrations of NO gas (0.2–1.5 ppm). The
10% Au NPs composite showed higher response in the humid condition, but the response
was not concentration dependent and saturated after 0.12ppm. Therefore, 5% Au NP
with SWCNTs-COOH was selected as Material 1 for further study. In humid conditions,
Material 1 as prepared in water with pH 7 showed lower response due to the NO gas reacts
with water and produce nitrous acid. To take advantage of the acid-base chemistry, we
modified the Material 1 by adjusting the composite solution’s pH to 10 to make a basic
material—Material 2. Materials with pH > 10 resulted in lower baseline stability. Therefore,
we selected Materials 2 prepared in pH 10 solution for our humid study.
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Figure 1. Response of a sensor chip to 0.02, 0.04, 0.12, 0.5 and 1.5 ppm NO gas. Each line represents
the composite material made with varying loading of Au NPs onto SWCNTs-COOH. (A) sensor
response in dry condition (B) sensorresponse in 92% RH.

The images of the morphology of the SWCNTs-COOH, Au NPs, composite Material 1,
and composite Material 2 were obtained using Field emission scanning electron microscopy
(FESEM) Hitachi S-4800 SEM. The sensing material were deposited on a silicon substrate
instead of imaging the chip directly which was made on PCB substrate. As shown in
Figure 2A, the acid treated SWCNTs appeared as a tangled network of bundles of multiple
nanotubes, which were densely aggregated to make a cluster. The average diameter of
the SWCNTs-COOH and composite materials nanotubes appears to be 6–10 nm and the
length of the bundles is 0.1–1 µm. The surface was rough, and several fragmentations
were observed. This is expected as previous researchers have reported that the strong
oxidizing agents, e.g., sulfuric acid and nitric acid etched the graphitic structure and
caused the change in the structural integrity [47,55]. The image/morphology of Au NPs
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in Figure 2B showed the development of spherical nanoparticles with diameter about
15–20 nm. Particles seems to be mostly free of agglomeration. This is an expected size
as reported by the previous researchers [48–51,56]. Turkevich method is well studied by
many researchers using the variations in HAuCl4/sodium citrate ratio, pH of the solution,
and temperature. These factors influence the nanoparticle size and stabilization. Figure 2C
showed presence of Au NPs on SWCNTs-COOH. Au NPs can be observed as bright sphere
attached to nanotubes. Figure 2D shows presence of NaOH crystals on SWCNTs-COOH-Au
NPs network.
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NPs (C) Composite Material 1 (D) composite Material 2.

Figure 3 shows I-V characteristics of Material 1 and Material 2. I-V plots were measured
using HP Semiconductor Analyzer 4155A. The current was measured when a bias voltage
of −5 to 5 V was applied in air environment at ambient room temperature and humidity.
Material 1 showed higher conductivity than Material 2.

Typical sensor responses of Material 1 and Material 2 to NO gas at room temperature
were obtained, see Figure 4. The four sensors of each material were exposed to NO
concentrations of 0.02, 0.04, 0.12, 0.5 and 1.5 ppm at 0% RH and room temperature (≈26 ◦ C)
at the shown interval. The sensors were purged with a nitrogen at the flow rate of 400 CCM
for the first 10 min to obtain a stable baseline and then 5 min purge after each 1 min NO
exposures. In the figure, four sensor channels with the identical sensing material are shown
as the colored response curves. The response curves plotted here are normalized resistance
(R − R0)/R0, where R0 is the baseline resistance right before the NO gas exposure and R is
the resistance at any time t during the NO gas exposure. In Figure 4A, the sensors fabricated
from the Material 1 showed clear sensitivity to 0.02 and 0.04 ppm NO concentrations, while
Material 2 barely showed sensitivity to these lower concentrations with the heavy drifted
baseline, see Figure 4B. In addition, Material 2 showed significant baseline drift at the
beginning of the measurement. This initial drift is caused by the current applied to the
sensors for resistance measurement as well as the shifting from ambient humidity to the
cylinder humidity (0% RH). Both sensing materials showed high reproducibility when
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exposed to different concentrations of the NO gas. The sensor responses of four replicates
of Material 1 and Material 2 to various concentrations of NO with the corresponding
calibration curves are shown in Figure 4C,D, respectively. The sensor response and the
concentration relationship were logarithmic, y = a + bLn(C) where y is the normalized
sensor response and C is the concentration of NO gas. Sensors response time were <10 s
and sensors recovery time were around 1 min. The sensor response variation with four
identical sensors to NO gas was calculated by the standard deviation as 1.81% for Material
1 and 5.52% for Material 2. Sensors made from both materials showed good and acceptable
reproducibility.
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Sensors 2022, 22, 7581 7 of 14

Both composite materials showed sensitivity to NO gas. All materials showed increase
in the electrical resistance when exposed to various concentration of NO. Unpaired electron
on the NO molecule makes it very reactive and donated it to the CNTs. Because of a
lone pair of electrons that can be transferred from NO to carbon nanotubes while the NO
adsorbed on Au NPs/SWCNTs-COOH composite, the electron-donation from the target gas
leads to a reduction in the number of hole carriers in SWCNTs, shifting of the Fermi level
from valence band increasing their separation, and thus increasing the electrical resistance.
Both composite materials responded to NO similarly indicating these materials are p-type
materials that has been studied by other groups [40,57]. Additionally, for the polar and
highly reactive NO gas, the charge transfer mechanism for the sensor response is due to
the adsorption of the NO gas molecules onto the SWCNTs bundles where the Au NPs
assisted the adsorption, which is mainly attributed by the intertube electron modulation
effect because the gas molecule adsorption is stronger on the functionalized surface of the
nanotubes than on an interstitial space between the nanotube bundle [58].

Gold nanoparticle decorated SWCNTs-COOH showed higher sensitivity to NO gas
compared to bare SWCNTs-COOH. The gold nanoparticles acted as the binding sites for
NO gas adsorption. The improved response with Material 1 sensors might be attributed
to the functionalization of carboxylic groups on the CNTs. Acid treatment introduces
COOH and OH groups as well as defect sites on the nanotubes surface [59,60]. Gold
nanoparticles will attach to this high energy defect sites compared to clean sp2 bonded
lattice to lower the energy barrier allowing easier electronic interaction between gold
and carbon nanotubes [61]. As shown in Figure 5, when sensor is exposed to NO gas,
gas molecules can be adsorbed on the surface of Au NPs, which can lead to decrease
the work function of Au NPs. These lower work function sites can enhance the electron
transfer from the Au NPs to SWCNTs network, which in further traps the p-type carriers
in the CNT network and resulting in the increase in the resistance of the sensor [23,62,63].
However, Material 2 had pH 10 during the functionalization process and that would have
deprotonated the -COOH group on the nanotubes and result in the reduced adsorption
and hence less interaction with NO gas. Deprotonation would cause electronic structural
changes in nanotubes and shifts Fermi level of the nanotubes and as a result the electrical
resistance increase is not as much as Material 1 [64].
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3.2. Humidity Effect on Sensor Response

Sensors made from Material 1 and Material 2 were exposed to various concertation
of NO gas in different relative humidity (RH) background. Relative humidity was set at
desired level using Environics gas dilution system and when a stable humidity level was
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achieved, NO exposures were introduced to the sensors at the time intervals shown in
Figure 6. Figure 6 shows that sensor channels with Material 1 and the sensor channels with
Material 2 provided varied responses to NO gas at RH of 40%, 55%, 72%, 89%, 92% and
97%. Material 1 showed good sensitivity to NO at 40%, 92% and 97% RH where sensor
responses varied according to concentration of NO gas, but in the range of 55–89% RH,
Material 1 showed noisy and random responses which was not concentration dependent.
Material 2 showed sensitivity to NO gas over the whole relative humidity range of 40–97%.
At 40% and 55% RH both material’s responses reduced significantly compared to the results
in dry air. This lower sensitivity can be attributed to water molecules interference with
the charge transfer process at the functional groups of the materials. Material 1 showed
significantly increase in sensitivity to NO gas at RH ≥ 92% and Material 2 at RH ≥ 72%.
This behavior of Material 1 and Material 2 in humid environment can be attributed to an
additional mechanism occurred that is associated with NO gas dissolution into the water
molecules in the sample stream by the following reaction.

NO (g) 
 NO (aq) (1)

4NO (aq) + H2O 
 N2O (aq) + 2HNO2 (aq) (2)

HNO2 + H2O 
 H+ (aq) + NO2
− (aq) (3)
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When NO molecule interacts with water molecule it forms nitrous acid (HNO2) which
further dissociates into hydrogen ion (H+) and nitrite ion (NO2−) thus influence the sensing
material’s pH. It is reported that NO solubility in neutral media is very low but in alkaline
media solubility of NO gas is much higher [65]. Higher NO concentration will result
into higher H+ ions and thus bring larger change to sensing material’s pH. Material 2
with added NaOH is more basic which will allow higher solubility of NO. As the RH
goes higher, dissociation of HNO2 is higher due to its alkaline nature which pulls the
third equilibrium to the right side and allows more NO molecules to dissolve and thus
results in the higher pH change and subsequently higher resistance and therefore higher
sensitivity. At higher humidity of 92 and 97%, the sensor response peak direction changed
from positive to negative for Material 2. This behavior may be attributed to the combination
of limited COOH groups presence and the higher dissociation of HNO2 at higher humidity.
Higher protonation rate occurring at higher humidly can result into access of H+ ion
flow beyond the fully protonation of the limited COOH groups present on the nanotubes
and that can shift the Fermi level towards the intrinsic Fermi level (n-type) and thus
flip the sensor response in opposite direction [66]. This interesting phenomenon needs
further investigation.

For Material 1, as it is a neutral material and the NO solubility in neutral media is
much lower compared to Material 2. Lower dissociation of HNO2 would cause a lower
amount of protonation of the -COOH group and thus smaller pH change and subsequently
resulted in less resistance change and therefore lower sensitivity at a higher humidity level.

For the practical applications, a humidity sensor needs to be placed with these NO
sensors to accurately measure the RH level that will lead to the calibration curves for NO
concentration prediction accordingly. Material 1 should be used for NO detection in dry
condition and Material 2 should be used for humid conditions (40–89% RH) as it provides
a reliable result. For applications where humidity is constant, both sensors can detect ppb
level NO concentrations in 90–97% RH.

3.3. Air and Nitrogen Environment Effect

Sensing materials response to NO gas in air environment was briefly studied. Gas
vendor provides NO cylinders always balanced with nitrogen due to reactivity of NO in
oxygen environment. In presence of oxygen, NO converts to NO2 gas. For this reason,
all our experiments were caried out in nitrogen environment. However, we wanted to
check our sensor response to NO in air background. We only tested lower concentrations
of NO in air. Both Materials were tested for NO concentrations 0.02, 0.04, 0.12 and 0.5 in
air and nitrogen in dry environment as shown in Figure 7A,B. Material 1 showed slightly
higher sensitivity in nitrogen at higher concentrations but Material 2 showed about similar
sensitivity in air and nitrogen. These results are in accordance with the previous reports [15].
In air, oxygen doping will cause Fermi level shift as well as NO will interact with oxygen
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molecule to make different oxygen containing compounds (NO2) and this will result into a
different sensing mechanism involving oxygen.
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3.4. Selectivity and NO Detection Limit

Selectivity of both Material 1 and Material 2 was studied by exposing sensors to CO2,
NH3, SO2, acetone, N2O and CO gases in air in dry environment. Instead of exposing the
sensors to one specific concentration of these gases, we exposed them to the concentra-
tions which are commonly found in the environment. Figure 8 shows normalized sensor
responses of both Material 1 and Material 2 to various gases. Material 1 showed much
higher response to NO than to other gases. Material 2 also showed higher response to NO
and a little response to SO2, acetone and N2O, and no response to CO2, NH3 and CO at all.
Since the responses of both materials were much higher to NO gas than to the other gases
available in their commonly observed concentrations, which indicated these two materials
are selective to NO gas. Similar study will be conducted in the humid environment.
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Figure 8. Comparison of sensitivity for Material 1 and Material 2 sensors to commonly interfering
concentration of CO2, NH3, SO2, acetone, N2O and CO gases at room temperature in air background.

To explore detection limit of Material 1, four Material 1 sensors were exposed to 10, 30,
60 and 200 ppb NO concentrations at 0% RH and 600 CCM flow. Material 1 showed clear
response to 10 ppb NO concentration, see Figure 9. We see an obvious sensor response to
10 ppb and expected or can be extrapolated to lower ppb detection level in N2 background.
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4. Conclusions

We have demonstrated for the first time the use of hybrid Au NPs and SWCNTs-COOH
composites as highly sensitive nanomaterials for the detection of NO gas. Our sensing
materials can detect 10 ppb NO gas at room temperature in real time and possibly even
single digit ppb detection level. Our sensor fabrication technique is simple and cost-effective
compared to other methods which involve sputtering, electron beam evaporation, multi-
layer deposition, chemical vapor deposition or chemical attachment of preformed metal
clusters. Both composite materials showed good reproducibility with 1.81% (Material 1)
and 5.52% (Material 2) variation from sensor to sensor. Both composite materials showed
sensitive response in high humidity background. A sensor chip containing both Materials 1
and Material 2 composites can detect 10 ppb NO gas in the range of 0–97% RH. Sensors
made by both composite materials worked successfully in either air or nitrogen background.
Results of selectivity study to different potential interfering gases such as CO2, NH3, SO2,
acetone, N2O and CO gases indicate the sensors are selective to NO gas. This study
demonstrates that tuning the nanoarchitecture and pH value of the sensor materials are the
key for improving sensor performance. Our sensors exhibit low ppb level detection, room
temperature operation, reproducibility, selectivity, miniaturization, and real time operation
and thus meets the needs for the applications in conjunction with a smart phone and other
hand-held devices for the application of NO mapping under ocean, breath diagnosis, and
in ambient air for environmental monitoring and industrial process monitoring.
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