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Abstract: In order to increase the accuracy of ocean monitoring, this paper proposes an improved
adaptive median filtering algorithm based on the tangential interference ratio to better suppress
marine radar co-channel interference. To solve the problem that co-channel interference reduces the
accuracy of radar images’ parameter extraction, this paper constructs a tangential interference ratio
model based on the improved Laplace operator, which is used to describe the ratio of co-channel
interference along the antenna rotation direction in the original radar image. Based on the idea of
between-class variance, the tangential interference ratio threshold is selected to divide co-channel
interference into high-ratio regions and low ones. Moreover, an improved adaptive median filter is
used to process regions of high ratio based on the median of sub-windows, while that of low-ratio
regions is processed by the adaptive median filter based on the median of current windows. Radar-
measured data from Bohai Bay, China are used for algorithm validation and experimental results show
that the proposed filtering algorithm performs better than the adaptive median filtering algorithm.

Keywords: co-channel interference; adaptive median filtering algorithm; tangential interference ratio;
between-class variance

1. Introduction

Relying on the advantages of detection in low-visibility conditions, marine radar is
regarded as one of the key instruments in the future of ocean monitoring, pilotage and
collision avoidance [1]. Especially in terms of ocean information extraction, if reliable
winds [2], waves [3], currents [4], tides [5], sea ice [6] or oil spill [7] measurements can
be obtained from marine radars, the costs associated with traditional field means such as
anemometers, buoys or manual visual inspection can be significantly reduced [8]. Therefore,
marine radar is considered to be one of the key means of ocean information extraction
today, and the land-based or shipborne marine radar have received extensive attention.
However, the co-channel interference signal is of high strength, which reduces the quality
of radar images and affects the accuracy of echo information extraction from the radar
images. Since it is spread throughout the entire radar image, accurate suppression of the
co-channel interference has become a challenge under the trend of an increasing demand
for ocean monitoring.

In the processing of co-channel interference, domestic and foreign scholars have pro-
posed many methods. Generally speaking, the methods of co-channel interference removal
can be divided into hardware and software methods. The hardware approach suppresses
the interference signal by adjusting the transceiver design parameters [9–13]. The authors
of [9] proposed a coherent front-end based on the phase-synchronous optoelectronic oscil-
lator (OEO) with low phase noise; the SNR of the echo pulses has an improvement relative
to the signal before pulse accumulation. In [10], a new radio frequency interference (RFI)
mitigation method based on joint fractional Fourier transform (FRFT) and complex empir-
ical mode decomposition (CEMD) is proposed. A standard component within the radio
frequency (RF) radar receiver is proposed in [11] to suppress the co-channel interference.
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In [12], an improved histogram method for pulse repetition interval (PRI) deinterleav-
ing based on pulse correlation is proposed, with the aim of radar pulse deinterleaving.
However, the frequency band selection of radars is subject to many factors. The effect
of the methods above is greatly reduced when all radar frequency bands are occupied.
In addition, when two ships are close to each other, the effect on co-channel interference
suppression is limited [13].

The software methods mainly include mean filtering, median filtering, adaptive filter-
ing, Wiener filtering and filtering based on wavelet transform [14–20]. In [14], an improved
adaptive mean filtering algorithm is proposed by assigning a certain weight to the pixel
gray values of the noise points in the filter template, which can effectively remove pulse
noise points. The authors of [15] proposed a non-local mean (NLM) filtering algorithm
to enhance image quality in a highly turbid environment. In [16], a fully 3D non-local
mean parallel approach is designed and implemented. To demonstrate its high applica-
bility and scalability, different algorithm mapping strategies on a GPU architecture and
multi-GPU framework are adopted. In [17], the computational model of weighted mean
filtering and the characteristics of a high-performance computer architecture are studied.
Moreover, an efficient hierarchical image-weighted mean filtering parallel algorithm for
Open Computing Language (OpenCL) is designed and implemented. According to the
respective correlation matrices of images and noise, many works have been conducted
on the Wiener filter [18–20]. The purpose of [18] is to confirm that image quality can be
improved by the median modified Wiener filter (MMWF) technique, and the authors of [19]
proposed a synthetic aperture radar (SAR) image anti-speckle filter based on an extended
adaptive Wiener filter (EAWF), extended guided filter (EGF) and weighted least squares
(WLS) filter. In [20], contrast-limited adaptive histogram equalization (CLAHE) is used
to improve contrast, and the Wiener filter is used for noise reduction. Adaptive filtering
uses the filter parameter results obtained at the previous moment to automatically adjust
those at the present moment to achieve optimal filtering [21–24]. In [21], the formalism
for combining the Bayesian maximum entropy strategy with the variational analysis (VA)
paradigm is presented to improve the Bayesian maximum entropy–variational analysis
(BMEVA) performance for high-resolution radar imaging and denoising. The feasibility
of integrating an adaptive filter approach for the compensation of platform motion arte-
facts is investigated in [22] for the extraction of respiratory motion signatures. In [23],
an algorithm based on the fuzzy impulse detection technique is proposed, which can
remove impulse noise efficiently from highly corrupted images while preserving image
details. The authors of [24] proposed a novel adaptive Type-2 fuzzy filter for removing
salt and pepper noise from images. In this study, two approaches have been proposed for
finding the threshold between different types of pixels by designing a primary membership
function (MF). The above software-based methods eliminate image interference or noise to
a certain extent, but they still have room for improvement in image target protection or
computational speed.

In this paper, we consider an improved adaptive median filtering algorithm based
on the tangential interference ratio for radar co-channel interference suppression. In this
work, we aim to automatically identify regions of different interference ratios to optimize
the selection of filtering windows. The major contributions of this paper are as follows:

• Based on the source of radar co-channel interference and the storage form of radar
echo data, the Laplace operator is improved to better identify radial interference.

• Radar images are processed with the improved Laplace operator and binarized to
establish the tangential interference ratio model. Based on the idea of between-class
variance, the tangential interference ratio threshold is determined, which provides a
classification basis for different filtering methods in high-ratio regions and low ones.

• We explore the improved adaptive median filtering algorithm, using different filtering
windows for high-ratio regions and low ones. On the basis of protecting the details of
radar echo images to the maximum extent, the gray values of interference points are
replaced with the median of pixel points in the adaptive window.
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The remainder of this paper is organized as follows. Section 2 introduces the improved
method of Laplace operator based on the radar co-channel interference source and radar
echo data storage form. Section 3 explains the principles of the OTSU algorithm firstly,
and then introduces the construction process of the tangential interference ratio model and
finally gives the algorithm flow. The effectiveness of the proposed algorithm is provided in
Section 4, and the conclusion is given in Section 5.

2. Improvement of Laplace Operator
2.1. Characteristics of Co-Channel Interference

During the working process of a marine radar, it will be interfered with by the electro-
magnetic waves emitted by other nearby radars in the same frequency band, resulting in the
generation of radial interference on the radar grayscale images—that is, co-channel inter-
ference. Co-channel interference can be divided into co-channel synchronous interference
and co-channel asynchronous interference.

∆t =
∣∣∣∣ 1
PRF1

− 1
PRF2

∣∣∣∣ (1)

where PRF1 and PRF2 denote the pulse repetition frequency transmitted by the two radars,
respectively. T1 and T2 represent the pulse widths of the two radars, respectively; let ∆t be
given by (1).

When ∆t ≤ T1, the interference of the first radar with the other one is known as
co-channel synchronous interference, and vice versa as co-channel asynchronous interfer-
ence [25]. This paper mainly discusses the suppression of the latter. Considering that the
radar co-channel interference signal appears as a radial bright spark with obvious direc-
tionality on the echo images, this paper improves the Laplace operator, which is suitable
for point detection, to become a line detection template.

2.2. Improvement of Laplace Operator

The Laplace operator of a two-dimensional function f (x, y) is the second-order deriva-
tive defined as follows [26]:

∇2 f (x, y) =
∂2 f (x, y)

∂x2 +
∂2 f (x, y)

∂y2

= f (x + 1, y) + f (x− 1, y)− 2 f (x, y) (2)

where ∇ represents the direction in which the value of a continuously differentiable
multivariate function increases the fastest at a certain point. ∂ is the partial derivative
of f (x, y) with respect to a variable. The difference method is used to calculate second-
order derivatives of the Laplace operator in the x and y directions, and the second-order
difference in the two-dimensional function f (x, y) in the x and y directions can be obtained
as follows [27]:

∂2 f (x, y)
∂x2 = f (x + 1, y) + f (x− 1, y)− 2 f (x, y) (3)

∂2 f (x, y)
∂y2 = f (x, y + 1) + f (x, y− 1)− 2 f (x, y) (4)

Therefore, the difference form of the Laplace operator is

∇2 f (x, y) =
∂2 f (x, y)

∂x2 +
∂2 f (x, y)

∂y2

= f (x + 1, y) + f (x− 1, y) + f (x, y + 1) + f (x, y− 1)− 4 f (x, y) (5)

It is written in the form of a matrix as follows [28]:
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template1 =

 0 1 0
1 −4 1
0 1 0

 (6)

The matrix has the same values in the four directions of up, down, left and right. Since
the co-channel interferences in the situation involved in this paper are all radial bright
sparks along the radial direction, the traditional Laplace operator is not suitable because of
its directionality-free characteristic.

In order to better detect co-channel interference and enhance the radial grayscale
mutation, the improved Laplace operator is defined as follows:

∇2 f (x, y) = 3( f (x− 1, y) + f (x, y) + f (x + 1, y))
− 3

2 ( f (x− 1, y− 1) + f (x, y− 1) + f (x + 1, y− 1))
− 3

2 ( f (x− 1, y + 1) + f (x, y + 1) + f (x + 1, y + 1))
(7)

The template of the improved operator can be expressed as

template2 =

 −1.5 3 −1.5
−1.5 3 −1.5
−1.5 3 −1.5

 (8)

3. Improved Algorithm

The median filtering method is a nonlinear smoothing technique, which replaces
the gray value of each pixel with the median value of all pixel gray values in a certain
neighborhood window of the point. The principle of the median filtering method is to
use a sliding template of a certain structure to sort the pixels in the template according to
the size of the pixel value [29], and generate a data sequence that monotonically increases
(or decreases). It is commonly used because it can remove nearly all interference or noise,
with little impact on the original image. However, in addition to the large amount of
computation required by the median filtering method, the original median filtering method
does not have a proper distinction between interference ratios, so that it is not effective in
removing co-channel interference in high-ratio regions. In this paper, the concept of the
tangential interference ratio is introduced into the median filtering algorithm. The idea of
between-class variance is introduced to find the threshold between high-ratio regions and
low ones in the binarized image. Finally, a tangential interference ratio model is constructed
to filter out radar co-channel interference.

3.1. Radar Image Collection and Analysis

The data in this paper were collected from the Bayuquan radar station in Yingkou, China.
Figure 1 is an echo image received by the radar antenna. The irregular echoes on the

left side of Figure 1 are the sea ice echoes, and the red box in the middle is the breakwater
built to prevent the invasion of waves. As the research object of this paper, the radar co-
channel interference signal appears as bright sparks throughout the direction perpendicular
to the X axis, i.e., the direction of the detection radial. The two red boxes on the right of
Figure 1 are examples of co-channel interference signals. The positive direction of the X axis
represents the rotation direction of the antenna and the direction of the Y axis represents the
direction of the detection radial. The whole image contains 1000× 3000 pixels, the angular
resolution of the X axis direction is 0.1◦ and the distance resolution of the Y axis direction
is 3.75 m.

3.2. Median Filtering Algorithm

The echo signal received by radar antennae is often polluted by a lot of interference and
noise during its formation and transmission. In addition to the Gaussian noise generated by
the machine itself, there is also co-channel interference. In order to suppress and eliminate
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these interferences and noise, thus improving the quality of images, it is necessary to
perform denoising processing on the image—that is, filtering processing.

Figure 1. Original radar image in Cartesian coordinate system.

The median filtering algorithm proposed by Tukey has been widely used to remove
polluted points in images. The standard median filtering algorithm selects pixels in digital
images or sequences and pixels around the adjacent pixels, and then takes the pixel value in
the middle position after sorting as the pixel value of the current pixel [30]. This method al-
lows the surrounding pixel values to be close to the true value, thereby eliminating isolated
polluted points [31]. However, as the interference or noise ratio increases, the standard
median filtering algorithm is not effective in preserving image details. The standard median
filtering algorithm is described as follows Algorithm 1.

Algorithm 1 Median filtering algorithm

Step 1: Obtain first address of the original image and size of the image;
Step 2: Open up a memory buffer to temporarily store the processing results and initialize
it to 0;
Step 3: Scan pixels in the binarized image through the loop statement, and sort the
pixel values of each element in its neighborhood in ascending order. Finally, assign the
obtained intermediate value to the pixel corresponding to the current point in the target
image;
Step 4: Repeat step 3 until all pixels in the original image are processed;
Step 5: Copy running result from the memory buffer to the data region of the original
image to complete filtering process.

In recent years, a variety of adaptive algorithms based on the median filtering algo-
rithm have appeared. The extreme median filter (EM) proposed in [32] firstly divides all
pixels into two categories according to the criterion: noise points and signal points. Then,
the noise point is replaced by the median value of the neighborhood of that point according
to the spatial correlation. The authors of [33] proposed the switching median filter (SM)
algorithm, and a further optimized progressive switching filter (PSM) algorithm based on
the SM algorithm is proposed in [34]. The minmax algorithm and the weighted median
filter (WM) algorithm are proposed in [35,36], respectively. These algorithms have allowed
useful explorations in improving the performance of median filters, but have their own
limitations in practical applications because of the different interferences or noises that
they deal with. The SM algorithm works well when dealing with low interference or noise
conditions, but its performance gradually approaches that of the standard median filtering
algorithm as the signal-to-noise ratio (SNR) of input images decreases. The PSM algorithm
is a cyclic operation, which takes a long time to execute, and it has the requirement of
estimating parameters in advance, which limits its real-time application. Although the
minmax algorithm reduces the accumulation of propagation of error to a certain extent,
the blurring of details is not well resolved. The WM algorithm reduces the loss of details
by weighting, but its denoising performance also decreases.



Sensors 2022, 22, 7573 6 of 14

Taking the EM algorithm as an example, the filtering method can be expressed as

yij =

{
med(W[xij]), xij ∈ N
xij, xij ∈ S

(9)

where xij denotes each pixel of the image, i and j denote the row and column coordinates
of the pixel, respectively, W[xij] denotes a window of points in the image xij, med(W[xij])
means taking the median of all points in the window W[xij], yij is the output of image xij
processed by the EM algorithm, N is the set of noise points and S is that of signal points.

The EM algorithm shows advantages in both speed and performance. However, most
of the improved median filtering algorithms, including the EM algorithm, are oriented to
the identification of interference or noise points, rather than to the judgment of its ratio.
In fact, due to the change in the ratio of co-channel interference, the existing median filtering
algorithm cannot effectively remove them in high-ratio regions.

3.3. Model Construction

After using the improved Laplace operator to detect the co-channel interference and
binarizing the original radar image I1000×3000 , the interference judgment matrix B1000×3000

is obtained. A 60-column row vector is used as a sliding window to traverse the entire
radar image, and the tangential interference ratio is stored in turn to construct a tangential
interference ratio model. The interference points are divided into high-ratio regions and low
ones by setting a threshold. Among this, we complete the classification with the inter-class
variance. The interference ratios obtained in previous steps are divided into two categories;
the within-class variance of the two categories is calculated by the method of second-order
cumulative moment. The largest inter-class variance between them is then obtained by
class separability measurements as the division principle of high-ratio regions and low ones.
For the interference points in low-ratio regions, the adaptive median filtering algorithm is
used to remove the co-channel interference. For high-ratio regions, the adaptive median
filtering algorithm is further improved. Starting from the defined minimum window size,
we determine whether median value of the current sub-window is an interference point.
If not, we take its gray value and assign it to the current pixel point; otherwise, we expand
the window size to judge again. When the last ∆n pixels of the filter window are removed,
this is the sub-window defined in this paper. In this process, ∆n is the difference between
the actual tangential interference ratio in the region and the ratio threshold. A flowchart of
the improved adaptive median filtering algorithm based on between-class variance can be
represented by the following figure.

After obtaining the interference judgment matrix, the first step is to construct a tangen-
tial interference ratio model. By setting a threshold, the interference points are divided into
high-ratio regions and low ones. The tangential interference ratio model is a graph drawn
according to the statistical law of the interference ratio in the x-direction in the Cartesian
coordinate system. A 1× 50 sliding window is used to traverse each row of the original
radar image matrix in turn; the ratio of interference points to the pixel blocks of the window
is saved in turn and then drawn into a curve graph. In this paper, we take 4.4 n miles,
5.3 n miles and 6.1 n miles to the radar detection center as examples, and the tangential
interference ratio model is expressed as follows.

The dotted line in magenta in Figure 2 represents the interference ratio everywhere
along the tangential direction at a distance of 4.4 n miles. Similarly, the solid line in cyan
and the dot dash line in blue represent the interference ratio at 5.3 n miles and 6.1 n miles,
respectively.

In the second step, since the existing median filtering algorithm has a poor denoising
effect on the dense regions of co-channel interference, this paper proposes a method based
on between-class variance to find the tangential interference ratio threshold to distinguish
high-ratio regions from low-ratio regions. Suppose that the tangential interference ratio
obtained in the previous step is represented in ρ levels (0, 1, 2, . . ., ρ). Let ρi denote the
number of interference points at ratio level i, and D denote the total number of interference
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points [37]. The probability of occurrence of level i is given by pi = ρi/
ρ

∑
i=0

ρi. Let the

tangential ratio of interference points be divided into ρL and ρH according to the threshold
ρN . ρL consists of interference points with a tangential interference ratio level of [0, . . ., ρN ],
and ρH consists of interference points with a tangential interference ratio level of [ρN +
1, . . ., ρ]. The innovation of this paper is mainly aimed at the processing of the points with
a level of ρH . Let PH(ρN) and PH(ρN) denote the cumulative probability. µL(ρN) and
µH(ρN) represent the mean levels. σ2

L(ρN) and σ2
H(ρN) denote the variances of the classes

ρL and ρH , respectively. The specific calculation rule is given as Figure 3.

Figure 2. Tangential interference ratio model at 4.4 n miles, 5.3 n miles and 6.1 n miles.

Figure 3. Flowchart of the improved adaptive median filtering algorithm.
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The probability of occurrence of a interference point with a tangential interference
ratio [0, . . ., ρN ] can be given by

PL(ρN) =
ρN

∑
i=0

pi (10)

Similarly, the probability of occurrence of a interference point with a tangential inter-
ference ratio [ρN + 1, . . ., ρ] is

PH(ρN) =
ρ

∑
i=ρN+1

pi = 1− PL(ρN) (11)

We divide the tangential interference ratio into ρL and ρH , according to the knowledge
of probability theory [38]:

µ = PL(ρN)µL(ρN) + PH(ρN)µH(ρN) (12)

where µL(ρN) and µH(ρN) are the mean values of these two types of tangential interference
ratio regions, respectively, and µ is the global mean value.

According to the concept of variance, the expression of between-class variance is

σ2
b (ρN) = PL(ρN)(µL(ρN)− µ)2 + PH(ρN)(µH(ρN)− µ)2

= PL(ρN)PH(ρN)(µL(ρN)− µH(ρN))
2 (13)

According to Equation (13), we traverse each tangential interference ratio obtained
in the first step in turn [39]. When σ2

b (ρN) takes the maximum value max{σ2
b (ρN)}, the

threshold of the high and low tangential interference ratio regions ρL and ρH is defined.
The algorithm used to accomplish this task is as follows Algorithm 2.

Algorithm 2 Tangential interference ratio model construction

Step 1: Obtain first address of the original image and size of the image;
Step 2: Open up a memory buffer to temporarily store the processing results and initialize
it to 0;
Step 3: Obtain the binarized image and scan it with a certain row vector window; save
the ratio of interference points in the window;
Step 4: Scan pixels in the binarized image through the loop statement;
Step 5: Repeat step 4 until all pixels in the binarized original image are processed; using
the maximum between-class variance method to find the threshold of the interference
ratio, the obtained interference points are divided into high-ratio regions and low ones.

By calculation, max{σ2
b (ρN)} = 9.8% is the tangential interference ratio threshold

selected in this paper. The high and low tangential interference ratio regions segmented by
this threshold are as follows.

The bright sparks in Figure 4a,b represent regions of high and low tangential inter-
ference ratio, respectively. In order to better understand Figure 4a,b, a part of the original
image has been extracted and displayed on the left side of the corresponding picture.
The left side of Figure 4a is the tangential interference points with interference ratio greater
than 9.8%, while Figure 4b is the opposite.

3.4. Improvement of Median Filtering Algorithm

The method described in this section is optimized for regions of high tangential
interference ratio in Section 3.3.

Due to the characteristics of high tangential interference ratio regions being greatly
interfered with by the other interference in the window during the median filtering process,
the adaptive median filtering in the window cannot fundamentally improve the interference
removal effect. This section reduces the interference by adaptively changing the elements
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in the window. The core of the traditional median filtering algorithm is yij = med(W[xij])
when a point is judged to be an interference or noise point [40]. This paper sorts the gray
value elements in the selected window firstly to obtain Sort(W[xij]). Then, the last ∆n
elements in the window are removed, where ∆n is the difference between the tangential
interference ratio at this point and the ratio threshold ρN . The new window obtained
after this step is defined as Wsub[xij] in this paper. This step draws most of the high-
brightness interference in the window to the outside, thus greatly avoiding its influence on
the filtering effect.

(a)

(b)
Figure 4. Comparison of high and low tangential interference ratio regions. (a) High tangential
interference ratio regions, (b) low tangential interference ratio regions.

Figure 5a is the processing result of the adaptive median filtering algorithm. The
method in this paper can effectively suppress more co-channel interference, such as the part
highlighted by the arrow in Figure 5a, thus showing that the improved adaptive median
filtering algorithm has better performance.

(a)

(b)
Figure 5. Comparison of processing results. (a) Results of adaptive median filtering algorithm,
(b) results of the proposed algorithm.
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4. Experiment and Simulation

In this paper, several commonly used image quality evaluation parameters are used to
evaluate the advantages and disadvantages of the improved algorithm and several other
filtering methods.

Let f (x, y) be the original radar image signal received by the radar receiver, and f̂ (x, y)
be the image signal processed by different algorithms. The Root Mean Square Error (RMSE)
represents the average error between image pixels [41], which is defined as

RMSE =

√√√√ 1
H ×W

H

∑
x=1

W

∑
y=1

( f (x, y)− f̂ (x, y))
2

(14)

where H and W represent the size of the image data.
The mesh surface graphs of the original radar image, the image processed by the

adaptive median filtering algorithm and that processed by the algorithm in this paper are
represented in Figure 6a–c.

(a)

(b)

(c)

Figure 6. Comparison of mesh surface graphs between algorithms. (a) Mesh surface graph of
original radar image, (b) mesh surface graph of the image processed by the adaptive median filtering
algorithm, (c) mesh surface graph of the image processed by the proposed algorithm.

Compared with the adaptive median filtering method, the RMSE of the method in
this paper is reduced from 3.8060 to 2.0561 by (14). The proposed algorithm removes some
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interference points in the filter window and optimizes the selection of the median, whereas the
RMSE is sensitive to outliers in data. Therefore, through calculation, the proposed algorithm
reduces the RMSE of the radar image by 1.7499, which improves the image quality.

Peak Signal to Noise Ratio (PSNR) is the most common and widely used image
objective evaluation index; it is based on the error between corresponding pixels, i.e.,
an error-sensitive image quality evaluation [42]. The PSNR is expressed as follows:

PSNR = 10× log10
65025
RMSE

(15)

where PSNR is a measure of image quality. An increase in PSNR represents higher image
quality. Compared with the adaptive median filtering method, the PSNR of the algorithm in
this paper increased from 42.3 to 45 by (15). It can be seen that the proposed algorithm can
better remove the co-channel interference in the radar image and improve the image quality.

When the Signal to Noise Ratio (SNR) is used to judge the quality of filtered images,
the larger its value is, the more thorough the image filtering is. SNR is also a key indicator
for evaluating image filtering quality, which can be given by

SNR = 10× log10

H
∑

x=1

W
∑

y=1
f̂ (x, y)2

H
∑

x=1

W
∑

y=1
( f (x, y)− f̂ (x, y))

2
(16)

By calculation, the radar images processed by the adaptive median filtering algorithm
and the proposed algorithm have PSNRs of 10.8453 and 15.9134, respectively. The higher
SNR indicates that the improvement of the proposed algorithm is more suitable for radar
co-channel interference.

In order to prove the universality and effectiveness of the proposed algorithm in
suppressing radar co-channel interference, the adaptive median filtering algorithm and
the proposed algorithm are used to filter 20 radar images, and the RMSE, PSNR and SNR
are calculated, as shown in Table 1. In order to better verify the effectiveness of method in
this paper, we draw SNR line graphs of images processed by the adaptive median filtering
algorithm and the proposed algorithm under different tangential interference ratios.

It can be seen from Table 1 and Figure 7 that the PSNR and SNR of the algorithm in this
paper are both larger than those of the adaptive median filtering algorithm, which shows
that the former is more thorough in filtering and has less impact on the ocean information
of the original image. In addition, the effect of the proposed algorithm is more obvious as
the tangential interference ratio increases.

Figure 7. Relationship between SNR and tangential interference ratio of images processed by differ-
ent algorithms.
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Table 1. Comparison of RMSE, PSNR and SNR between algorithms.

Number Adaptive Median Filtering Algorithm Improved Algorithm
RMSE PSNR SNR RMSE PSNR SNR

1 3.2669 42.9895 11.7073 2.2625 44.5849 14.3718
2 3.3671 42.8582 11.4970 2.2543 44.6008 17.4794
3 3.4815 42.7131 11.4867 2.1845 44.7372 15.1643
4 3.5736 42.5998 11.2664 2.1168 44.8740 15.5058
5 3.7216 42.4235 11.2098 2.1660 44.7742 15.6986
6 3.7948 42.3389 10.8543 2.1527 44.8009 15.4729
7 3.8089 42.3228 10.9757 2.2140 44.6791 15.4185
8 3.8290 42.3000 10.6038 2.1050 44.8984 15.4398
9 3.8306 42.2981 10.6602 1.9375 45.2584 16.2738

10 3.9080 42.2112 10.6859 2.1595 44.7872 15.5649
11 3.9200 42.1979 10.8312 1.8700 45.4124 17.0951
12 3.9502 42.1646 10.8808 1.7030 45.8187 18.0732
13 3.9571 42.1570 10.6083 1.8101 45.5537 17.2207
14 3.9592 42.1548 10.3614 1.8407 45.4809 16.7618
15 3.9642 42.1493 10.2517 2.3126 44.4897 14.5196
16 3.9912 42.1198 10.3289 1.8404 45.4818 16.8225
17 3.9947 42.1160 10.7881 1.8982 45.3747 17.1216
18 4.0455 42.0611 10.4583 1.7304 45.7493 17.6863
19 4.0469 42.0596 10.2852 1.7037 45.8168 17.6102
20 4.0696 42.0353 10.4553 1.7924 45.5965 17.4258

Therefore, it can be concluded that the improvement of the adaptive median filtering
algorithm in this paper is better than the algorithm before improvement, as it can deal with
co-channel interference well and maintain the original ocean information. This improved
image feature can be adapted to the later extraction of ocean information, especially the
extraction of weak echo signals such as sea ice echoes.

5. Conclusions

The application of the median filtering algorithm and its various improved algorithms
in the software removal of radar co-channel interference is studied. By improving the
Laplace operator, a line detection template is formed, thereby enhancing the radial grayscale
mutation of the radar image. In the filtering of interference points, the algorithm in this
paper inherits the advantages of the adaptive median filtering algorithm. At the same time,
the proposed algorithm establishes a tangential interference ratio model and determines
the ratio threshold based on maximum between-class variance. For interference points in
low-ratio regions, we replace the values of interference points with the median of current
windows. Moreover, the median of the current window after removing the last ∆n elements
is used to replace the value of interference points in high-ratio regions, so as to prevent
the gray value of the dense interference point from interfering with the selection of the
median value.

Results show that the proposed algorithm can effectively remove the co-channel inter-
ference in original radar image data. The RMSE of the image processed by the improved
algorithm dropped from 3.8060 to 2.0561, while both PSNR and SNR increased. It is proven
that the proposed algorithm has a more obvious effect on removing the co-channel interfer-
ence, and has less influence on the useful signal of original images. The proposed algorithm
can also be applied to the removal of interference or noise in other situations. For further
research, due to the complexity of sea conditions, research based on the proposed algorithm
and the echo characteristics of rain, snow and waves would be meaningful.
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