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Abstract: Linear infrastructures, such as railways, tunnels, and pipelines, play essential roles in eco-
nomic and social development worldwide. However, under the influence of geohazards, earthquakes,
and human activities, linear infrastructures face the potential risk of damage and may not function
properly. Current monitoring systems for linear infrastructures are mainly based on non-contact
detection (InSAR, UAV, GNSS, etc.) and geotechnical instrumentation (extensometers, inclinometers,
tiltmeters, piezometers, etc.) techniques. Regarding monitoring sensitivity, frequency, and coverage,
most of these methods have some shortcomings, which make it difficult to perform the accurate,
real-time, and comprehensive monitoring of linear infrastructures. Distributed acoustic sensing
(DAS) is an emerging sensing technology that has rapidly developed in recent years. Due to its
unique advantages in long-distance, high-density, and real-time monitoring, DAS arrays have shown
broad application prospects in many fields, such as oil and gas exploration, seismic observation, and
subsurface imaging. In the field of linear infrastructure monitoring, DAS has gradually attracted
the attention of researchers and practitioners. In this paper, recent research and the development
activities of applying DAS to monitor different types of linear infrastructures are critically reviewed.
The sensing principles are briefly introduced, as well as the main features. This is followed by a
summary of recent case studies and some critical problems associated with the implementation of
DAS monitoring systems in the field. Finally, the challenges and future trends of this research area
are presented.

Keywords: distributed acoustic sensing (DAS); linear infrastructure; field monitoring; distributed
fiber-optic sensing

1. Introduction

Linear infrastructures, such as railways, highways, pipelines, tunnels, embankments
and power transmission lines, are a general type of civil infrastructures with long spans.
They have the characteristics of long lengths, wide distribution ranges, and long service
lives and they are widely distributed in complex and changeable natural environments.
They form the backbone of society and play important roles in economic and social de-
velopment. However, due to the influence of geohazards, earthquakes, corrosion, aging,
human activities, and other multiple factors, linear infrastructures face the potential risk of
structural deterioration and damage during their service lives [1]. In the past few decades,
accidental extraordinary events among linear infrastructures in long-term operations have
aroused widespread concern. For instance, water, oil, and gas pipelines have sometimes
been damaged by nearby earthworks, landslides, and third-party invasions [2,3]; some
dramatic traffic disasters have been caused by rail rust and land subsidence; in some
countries, border protection walls and barriers have been damaged by illegal immigration.
Therefore, to ensure the safe and reliable operation of linear infrastructures and prevent
potential threats in the long run, robust and efficient monitoring systems are required.
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The establishment of monitoring and early warning systems for linear infrastructures
is key to ensuring their health conditions and reducing the occurrence of disasters. At
present, linear engineering monitoring mainly relies on manual inspections and field moni-
toring. The former is relatively expensive and intermittent [4]. For the latter, the commonly
used methods are categorized into two types, i.e., remote sensing and contact monitoring
methods. Interferometric synthetic aperture radar (InSAR) and global navigation satel-
lite systems (GNSS) are two popular remote sensing technologies with millimeter-level
accuracy for displacement monitoring [5,6]. In recent years, unstaffed aerial vehicle (UAV)
photogrammetry and terrestrial laser scanning (TLS) have provided effective solutions for
ground surface deformation monitoring with higher accuracy [7]. Although these technolo-
gies can obtain large-scale deformation data, monitoring is periodic and only applicable to
surface deformations. For subsurface monitoring, a series of geotechnical instruments have
been developed, e.g., extensometers, inclinometers, tiltmeters, and piezometers [8]. These
can be installed in boreholes of different depths or directly fixed on linear infrastructures to
carry out performance monitoring. In this way, the automatic and continuous monitoring
of key physical parameters can be enabled, as well as early warnings of abnormal states or
accidents. However, most of the instruments are based on single-point measurements and
struggle to realize long-distance monitoring. For the above reasons, powerful and robust
monitoring technologies for linear infrastructures are urgently needed to provide accurate
and comprehensive measurements in real time.

Distributed acoustic sensing (DAS) is a new type of fiber-optic sensing technology that
has rapidly developed in recent years. It not only has the advantages of ordinary fiber-optic
sensing technologies (e.g., anti-electromagnetic interference, corrosion resistance, slender-
ness, and flexibility) but it can also measure dynamic strains (e.g., vibrations and sound
waves) along fiber paths in a long-distance, fully distributed, and real-time manner [9].
In the past decade, there have been many successful applications of DAS in the field of
geophysical detection, such as vertical seismic profile (VSP) acquisition [10–12], hydraulic
fracturing monitoring [13–15], earthquake observation [16–18], and structural detection
and imaging [19–21]. In the fields of acoustics [22,23] and biology [24,25], DAS has also
shown its powerfulness. With the rapid development of demodulation techniques, the
applications of DAS have gradually extended from land to ocean [26–28], glaciers [29,30],
and volcanoes [31,32].

For linear infrastructures, DAS provides a novel monitoring solution. The large-scale,
long-distance, and real-time sensing capabilities of DAS mean that it has unreplaceable
advantages for field monitoring. In addition, fiber-optic cables have strong environmental
adaptability and can easily collect huge monitoring data along their fiber lengths. Therefore,
DAS can be tailored for monitoring linear infrastructures in complex and harsh environ-
ments. In recent years, researchers and practitioners worldwide have carried out a large
number of field investigations on linear infrastructures using DAS, such as pipeline leakage
monitoring [33,34] and rail track health monitoring [35,36]. Figure 1 briefly shows some
current and potential application scenarios of DAS for monitoring linear infrastructures
and related geohazards.

This paper presents a critical review of the recent developments and applications
of DAS for monitoring linear infrastructures. After a brief introduction to the sensing
principles, the developmental investigations into applying DAS to monitor different types
of linear infrastructures are described in detail. Finally, the major bottlenecks in DAS-based
linear infrastructure monitoring are summarized and the development trends of DAS are
pointed out. This review is expected to provide valuable insights into the application of
DAS for monitoring linear infrastructures and also useful solutions for practitioners and
policymakers in related areas.
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2. Distributed Acoustic Sensing (DAS)
2.1. Sensing Principles

DAS is a cutting-edge distributed sensing technology that uses light as the information
carrier and standard telecommunications-grade optical fibers as the sensing medium for
seismic records. Common DAS systems consist of an interrogation unit and a sensing cable.
DAS interrogation units continuously inject short-pulse lasers into cables. When light passes
through the fiber cores of these cables, the incident light is scattered in different directions
due to spatial variations in the refractive index of the fiber cores and different kinds of
scattered light are generated, as shown in Figure 2. When optical fibers are disturbed
and subjected to strain, temperature, and vibrations, the properties of the scattered light
change (wavelength, light intensity, frequency, etc.). By analyzing certain characteristics
of scattered light, the changes in various physical parameters (temperature, axial strain,
and strain rate) can be revealed. DAS interrogators detect Rayleigh backscattered light
along with the fibers and analyze the phase information of coherent Rayleigh scattered
light to obtain dynamic strain (vibrations, acoustic waves, etc.) measurements [30], as
shown in Figure 3. A review of the literature that introduces the sensing principles of DAS
in detail can be found in [16]. As well as Rayleigh backscattered light, Brillouin and Raman
scattering light is also generated at every point along the optical fibers. Distributed strain
sensing (DSS) and distributed temperature sensing (DTS) can be performed using these
scattering phenomena.

2.2. Sensing Performance

In the past 10 years, many technological companies and research institutions have
carried out research and development for DAS applications. As we all know, the interroga-
tion unit is the sensing “heart” that fundamentally determines the sensing performance
(including spatial resolution, detection distance, response capability, etc.). Table 1 briefly
shows the basic parameters of several commercially available DAS interrogators.
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Table 1. Comparison of the basic parameters of DAS interrogators.

Parameter
HDAS

(Aragon
Photonics)

Helios DAS
(Fotech)

MS-DAS2000
(Ovlink)

IDAS3
(Silixa)

CRI-4400
(Halliburton)

QuantX
(OptaSense)

Strain sensitivity (ε) 10−9 10−9 10−9 10−9 10−9 10−9

Spatial resolution (m) 10 2 2 1 1 2
Sensing range without

repeaters (km) 70 50 20 50 50 50
Sensors 2022, 22, x FOR PEER REVIEW  4  of  23 
 

 

 

Figure 2. Scattering spectra of an optical fiber. In the figure, ε represents strain, T represents tem‐

perature, V0 is the original light wave frequency, VB represents the Brillouin shift and VR represents 

the Raman shift. 

 

Figure 3. Generic concept of the principles of DAS. Reproduced with permission from Ref. [38]. 

2021, John Wiley & Sons 

2.2. Sensing Performance 

In the past 10 years, many technological companies and research institutions have 

carried out research and development for DAS applications. As we all know, the interro‐

gation unit is the sensing “heart” that fundamentally determines the sensing performance 

(including spatial resolution, detection distance, response capability, etc.). Table 1 briefly 

shows the basic parameters of several commercially available DAS interrogators. 

Table 1. Comparison of the basic parameters of DAS interrogators. 

Parameter 

HDAS 

(Aragon 

Photonics) 

Helios DAS 

(Fotech) 

MS‐DAS2000 

(Ovlink) 

IDAS3 

(Silixa) 

CRI‐4400 

(Halliburton) 

QuantX 

(OptaSense) 

Strain sensitivity (ε)  10−9  10−9  10−9  10−9  10−9  10−9 

Figure 2. Scattering spectra of an optical fiber. In the figure, ε represents strain, T represents
temperature, V0 is the original light wave frequency, VB represents the Brillouin shift and VR

represents the Raman shift.

Sensors 2022, 22, x FOR PEER REVIEW  4  of  23 
 

 

 

Figure 2. Scattering spectra of an optical fiber. In the figure, ε represents strain, T represents tem‐

perature, V0 is the original light wave frequency, VB represents the Brillouin shift and VR represents 

the Raman shift. 

 

Figure 3. Generic concept of the principles of DAS. Reproduced with permission from Ref. [38]. 

2021, John Wiley & Sons 

2.2. Sensing Performance 

In the past 10 years, many technological companies and research  institutions have 

carried out research and development for DAS applications. As we all know, the interro‐

gation unit is the sensing “heart” that fundamentally determines the sensing performance 

(including spatial resolution, detection distance, response capability, etc.). Table 1 briefly 

shows the basic parameters of several commercially available DAS interrogators. 

Table 1. Comparison of the basic parameters of DAS interrogators. 

Parameter 

HDAS 

(Aragon 

Photonics) 

Helios DAS 

(Fotech) 

MS‐DAS2000 

(Ovlink) 

IDAS3 

(Silixa) 

CRI‐4400 

(Halliburton) 

QuantX 

(OptaSense) 

Strain sensitivity (ε)  10−9  10−9  10−9  10−9  10−9  10−9 

Figure 3. Generic concept of the principles of DAS. Reproduced with permission from Ref. [38]. 2021,
John Wiley & Sons.

It can be seen from Table 1 that these interrogation units can meet the needs of
large-scale, long-distance, high-density, and real-time detection. They have excellent
dynamic response capabilities and can sense a wide band of vibration waves. Therefore,
the application of DAS in the field of linear infrastructure monitoring can make full use of
its sensing performance and give full play to its sensing advantages.
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2.3. Installation and Layout of Fiber-Optic Cables

Deformation coupling is one of the key factors affecting the data quality of DAS.
When the coupling between a fiber-optic cable and its surroundings is weak, the cable
cannot accurately capture external vibration information, which adversely affects the data
quality. In recent years, researchers have carried out a large number of experimental studies
on the deformation coupling between sensing cables and monitoring objects and have
gained abundant knowledge in this aspect [39–42]. Based on a series of theoretical and
experimental studies, Zhu et al. claimed that confining pressure can effectively enhance
cable–soil deformation compatibility and expand the deformation sensing range [40].
Zhang et al. proved through a large number of pullout tests that the micro-anchors installed
on fiber-optic cables can effectively ensure cable–soil interface bonding [41]. However, for
linear infrastructures with large spatial spans, there is still the challenge of guaranteeing
that good coupling conditions are always valid during field monitoring.

To enhance the coupling effect between fiber-optic cables and instrumented structures,
researchers have designed a variety of cable installation techniques, as listed in Table 2.
It is necessary to choose the appropriate cable layout method according to the specific
monitoring objects and environments. In a sense, the layout of fiber-optic cables is a
key component of DAS monitoring systems, which directly determines the quality of the
monitoring data. Therefore, attention must be paid to the optimized installation and layout
of cables during field instrumentation.

Table 2. Different fiber-optic cable installation and layout methods and their characteristics.

Method Measurement Objects Advantages Disadvantages

Fixture-fixed installation [43] Tunnels, pipelines, etc. Easy installation and low
cost

Poor coupling at some
positions

Slotted and glued installation [44] Formed reinforced
concrete structures Good overall coupling effect Time-consuming

Spot welding installation [45] Steel beams, rails, and other
metal structures

Easy installation and low
cost

Poor coupling at some
positions

Groove installation [46] Geotechnical structures Strong concealment and
good overall coupling effect Time-consuming

3. Applications of DAS in Linear Infrastructure Monitoring

As a new type of fiber-optic sensing technology, DAS has been widely studied by
researchers since its inception. In recent years, practitioners worldwide have tried to
apply DAS to monitor a variety of critical linear infrastructures and there have been many
successful applications. This section briefly introduces the current applications of DAS in
linear infrastructure monitoring and focuses on the conclusions that have been drawn from
these case studies.

3.1. Railway Safety Monitoring
3.1.1. Train Positioning and Speed Monitoring

Railway management departments worldwide need to accurately monitor train po-
sitioning and speed information to ensure the safety of trains. In train positioning and
speed monitoring, track circuit technology is widely used [47]. However, in some extreme
weather conditions, such as super-strong lightning, track circuit technology may not work
properly. Other sensing technologies also have application limitations. For instance, global
positioning systems (GPS) have weak sensing capabilities in closed environments, such as
tunnels, and cannot obtain accurate train motion information.

The development of DAS has provided a new solution for train positioning and speed
monitoring. The advantages of DAS (strong anti-electromagnetic interference, high tempo-
ral resolution, etc.) can make up for the shortcomings of existing monitoring technologies.
DAS systems are also convenient to use to perform field monitoring by just connecting a
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sensing cable to an interrogation unit, as shown in Figure 4. Since trains generate strong
vibration signals during the running process, sensing cables close to trains vibrate strongly,
while sensing cables far away from the trains are undisturbed and only record background
noise. Therefore, the position and running speed of trains can be easily determined by
analyzing the recorded data from the cables at each position.
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As early as 2014, Peng et al. conducted a field study [48]. They laid a 10.2 km sensing
cable along a track to record vibration signals as trains were moving. From the DAS
data, the position and running speed of trains at various time points could be clearly seen,
demonstrating the feasibility of DAS for train positioning and speed monitoring. Since then,
an increasing number of field trials have been carried out [49–51]. However, utilizing DAS
for train positioning and speed monitoring also faces some challenges; for instance, how to
bury sensing cables near tracks without affecting railway transportation and how to quickly
extract effective information from continuous monitoring data. To process sensing data
accurately and quickly, a variety of intelligent algorithms have been developed [36,51,52].
He et al. proposed an improved Canny algorithm for precise train positioning and the
feasibility of this algorithm has been verified through field experiments [52]. The results
showed that the positioning error is less than 10 m. The same authors also proposed a
cubical smoothing algorithm with a five-point approximation to denoise vibration signals
and shorten the calculation time. Wiesmeyr et al. proposed a real-time train tracking
algorithm that runs on the basis of 1 s signals without delay [36]. This algorithm combines
machine learning techniques, such as principal component analysis (PCA) and support
vector machines (SVMs), with image processing methods, such as edge monitoring and
Kalman filtering. The field implementation results showed that this real-time tracking
algorithm achieves 98% accuracy. For the burial of fiber-optic cables, Vidovic et al. proposed
the use of existing fiber-optic cables near tracks for monitoring, which could greatly reduce
monitoring costs [53]. However, the key point is to accurately locate the buried positions,
especially those of the winding parts and redundant parts of cables. In addition, “tap tests”
must be performed to obtain the corresponding relationships between the spatial positions
of fiber-optic cables and channel numbers, which take considerable time to process. Vidovic
et al. suggested the use of train platforms, bridges, and other positions as reference points
in engineering practice [53].

3.1.2. Rail Track Health Monitoring

Ever-increasing railway traffic not only drives social and economic development but
also aggravates the wear and tear of tracks. At present, rail track health monitoring mostly
relies on manual inspections and conventional deformation monitoring devices, such as
track inspection vehicles, accelerometers, and strain gauges near the tracks. However,
both manual monitoring and track inspection vehicle monitoring have certain monitoring
periods and it is impossible to evaluate the health status of tracks in real time. Some sensors,
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such as accelerometers and strain gauges, cannot be deployed around tracks in a large-scale
and intensive manner for monitoring due to their high prices.

Some researchers have proposed the use of distributed fiber-optic sensing (DFOS)
technologies to evaluate the health status of tracks, such as Brillouin optical time domain
analysis (BOTDA) [54] and optical frequency domain reflectometry (OFDR) [55]. These
sensing technologies have a high sampling density and can obtain huge amounts of infor-
mation on the health status of tracks. However, BOTDA cannot realize real-time sensing
and OFDR has limitations in detection distance. On the contrary, DAS has the potential
to greatly extend detection distances with super-high sensitivity, which could provide an
ideal solution to track health monitoring.

In recent years, many successful trials have been introduced [49–51]. Milne et al.
pointed out that DAS can be used to measure track deflections and sleeper end loads [35].
They pasted sensing cables under rails and performed back calculations using the track
strain data that were recorded by the sensing cables, as shown in Figure 5. To verify
the feasibility of this measurement method, the results from the DAS, strain gauges, and
digital image correlation (DIC) were compared, which showed good consistency. Guo
et al. developed an intelligent detection method for track slab deformation based on a
random forest model and carried out field experiments to verify it [56]. The test results
showed that this intelligent algorithm can effectively identify deformations in track slabs
and the recognition rate reaches 96.09%. Wang et al. also pointed out that DAS has the
potential to detect track health status [57]. They used deep convolutional networks to
detect the health status of tracks and conducted field experiments to verify them. The test
results showed that the accuracy of the recognition method reaches 98.04%. The above
experimental results demonstrate the application potential of DAS in the field of track
health monitoring. However, these applications also face some challenges. On the one
hand, some trace vibration characteristics that could identify issues may be submerged
within strong external noise. On the other hand, analyzing the health status of tracks
based on artificial intelligence technology requires a large amount of labeled data, which is
difficult to obtain [57]. In the future, researchers should work closely with railway depart-
ments to develop intelligent algorithms with stronger denoising and higher recognition
capabilities. In addition, researchers could also combine DAS with other technologies to
jointly monitor the health of railway tracks in order to compensate for the lower detection
ability of a single detection technology, thereby breaking through the abovementioned
developmental bottlenecks.
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3.1.3. Roadbed Velocity Structure Imaging

When trains are running at high speeds, some of their energy is transmitted in the
form of seismic waves due to the extrusion, friction, and collision between the trains and
the tracks. The seismic waves excited by trains are good active source seismic wave fields,
which contain the structural and dynamic characteristics of the tracks and roadbeds [58–60].
By analyzing changes in seismic waves, structural defects in roadbeds can be monitored
and disaster warnings for high-speed railways can be realized.

Restricted by multiple factors, such as cost, power, and burial location, it is difficult for
traditional seismic sensing devices (nodal seismographs, narrowband geophones, broad-
band seismographs, etc.) to be deployed on a large scale and for long periods of time
along railways. DAS breaks through the above limitations nicely. The detection units on
fiber-optic cables do not need to be powered separately, only the interrogation units need
to be supplied with power. In addition, there is a large number of existing communication
fiber-optic cables along railways. As long as the cables are connected to interrogation
units, we can form long-distance, real-time and dense seismic sensing networks. Recently,
researchers have monitored and analyzed seismic signals generated by moving trains with
the aid of DAS [61,62]. Shao et al. extracted surface wave signals from DAS records through
seismic interference technology and then used the multi-analysis surface wave (MASW)
method to carry out inversion work. Finally, they successfully obtained the shallow shear
wave velocity structure under a roadbed, which fully demonstrates the feasibility of DAS
in roadbed velocity structure imaging [61].

However, research in this field is still in its infancy. On the one hand, trains are moving
sources and the seismic waves they excite are very complex. On the other hand, DAS is
only sensitive to seismic waves that propagate in specific directions due to its direction
sensitivity. The above factors limit the further development of DAS in the field. It is
believed that with the continuous deepening of research, these bottlenecks can be broken
through and DAS can be integrated with high-speed rail seismology in the future.

3.2. Highway Traffic Monitoring

Highway traffic is an essential part of people’s lives. To monitor highway traffic, a
variety of fixed (radar guns, road sensors, cameras, etc.) and mobile (vehicle GPS, mobile
phones, etc.) monitoring technologies have been developed in recent years. The former
can provide high-resolution monitoring data but their installation and maintenance costs
are high and their space coverage is relatively low. The latter have high space coverage
but their data collection frequency is low, so they cannot perform real-time monitoring
and may also involve personal privacy problems [63]. Therefore, new traffic monitoring
systems are urgently required.

DAS systems could provide an alternative for highway traffic monitoring. Because
fiber-optic cables are buried under roads, this detection method has strong concealment
qualities and the cables embedded underground can avoid physical damage during long-
term monitoring. In recent years, there have been several good examples of applying DAS
to highway traffic monitoring [64–66]. Wang et al. monitored the Pasadena Rose Parade
using a communication cable under the road [67]. By analyzing the vibration information
collected by the cable, they successfully identified traffic characteristic signals, such as
pedestrians, motorcycles, and floats (Figure 6). They also proposed a method to measure
road traffic flow and speed and analyzed urban road traffic conditions before and after
the outbreak of COVID-19 [63]. The results are shown in Figure 7. It can be clearly seen
that the overall traffic flow in the city decreased after the outbreak of COVID-19, while the
speed increased. They also compared the monitoring results from DAS to those from other
monitoring technologies and found that they had good consistency, which successfully
proves the feasibility of DAS in highway traffic monitoring. Catalano et al. proposed the
application of the Hough transform to vehicle counting and demonstrated an algorithm for
the automatic detection and counting of vehicles [68]. Field tests showed that the accuracy
rate of the algorithm reaches 73%.
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Figure 6. Seismic records (10.0–50.0 Hz) showing the vibrations caused by motorcycles, floats, and
bands. Reprinted with permission from Ref. [67]. 2020, Seismological Society of America.

Figure 7. (a) A map showing the changes in average daily traffic volume before and after lockdown
using DAS-based transportation analysis; (b) a map showing the degree of change in mean traffic
speed before and after lockdown using DAS-based transportation analysis [63].

Although DAS has great application potential in highway traffic monitoring, it also
faces many challenges. For instance, the deformation coupling of fiber-optic cables in some
highway sections is limited and it is impossible to accurately record the vibration signals
generated by traveling vehicles as during heavy traffic congestion periods, it is difficult
to accurately distinguish the vibration signals generated by each type of vehicle, which
would adversely affect the traffic flow statistics.

3.3. Pipeline Safety Monitoring

As safe and cheap transportation devices, pipelines are widely used for the transporta-
tion of oil, natural gas, and other products. The real-time monitoring of pipeline operation
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status can effectively maintain pipeline safety and prolong pipeline service life. DFOS is a
technology that developed rapidly in the 1980s. It has been widely used in pipeline safety
monitoring in recent years. For instance, distributed temperature sensing (DTS) technology
is used to monitor pipeline leakages [69,70] and distributed strain sensing (DSS) technology
is used to monitor pipeline deformations [71–73]. However, they are static monitoring
technologies and cannot perform the real-time and dynamic monitoring of pipelines. The
vigorous development of DAS has provided new ideas and solutions for the dynamic
monitoring of pipelines.

3.3.1. Pipeline Intrusion Detection

Intrusion detection is another important function of DAS. By acquiring and analyzing
abnormal vibration signals from cables around pipelines, the location and type of intrusion
events can be roughly determined, as shown in Figure 8. In 2009, Tanimola et al. simulated
several common intrusion events around a pipeline and summarized the characteristics
of the vibration signals from the cable [74]. In the same year, European researchers also
successfully applied DAS to detect oil theft incidents. These cases fully demonstrate
the great potential of DAS in pipeline intrusion monitoring and thereafter, an increasing
number of field monitoring investigations have been carried out [75–78].
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Some researchers have proposed the combination of DAS with artificial intelligence
algorithms, such as pattern recognition, artificial neural networks, and support vector
machines, to process huge amounts of real-time monitoring data [79–82]. Recent works
have used a variety of pattern recognition algorithms to classify and identify different types
of mechanical intrusion signals, e.g., large excavators hitting the ground, large excavators
scraping the ground, and small excavators moving along the ground [83–85]. These
algorithms have shown good classification and recognition effects and can significantly
reduce false alarm rates in intrusion detection. To solve the difficulty in the classification
of human and animal activities in complex and harsh monitoring environments, He et al.
designed a dual-stage recognition network [79]. They carried out field experiments and
explored the recognition accuracy of this network for five different types of intrusion events,
such as animal intrusion, human intrusion, and mechanical excavation. The results showed
that the average recognition rate reaches 97.04%. Furthermore, Yang et al. proposed a
semi-supervised learning method for long-distance pipeline intrusion monitoring, which
effectively improves our ability to identify and locate intrusion events under low signal-
to-noise ratio conditions [80]. Based on DAS and pattern recognition systems (PRS), a
review of the literature that introduces several machine learning techniques for pipeline
surveillance systems can be found in [86].

3.3.2. Pipeline Leakage Monitoring

Negative pressure waves or noise are generated at the positions of leakages in pipelines
and these abnormal vibration signals can be recorded by the surrounding fiber-optic cables.



Sensors 2022, 22, 7550 11 of 22

Therefore, by analyzing the real-time data recorded by DAS, the locations of pipeline
leakages can be found and changes in internal pressure can be inferred. According to
installation positions of fiber-optic cables, the monitoring methods can be divided into
two types: one method type directly pastes cables onto pipe walls and the other buries
cables in the ground soil near pipelines. The former can receive strong signals but the
composition of the signals is complex, which means that data analysis algorithms are
difficult to implement. In addition, pasting fiber-optic cables is also time-consuming.
The latter is easier to implement in engineering practice, especially for buried pipelines.
However, there should be suitable distances between the fiber-optic cables and the pipelines
and the signal strength received by the cables is relatively weak, which may affect the
monitoring sensitivity of DAS to small leakage events.

In recent years, many successful trials have been performed [87–90]. In 2015,
Wu et al. applied DAS to pipeline leakage monitoring. They investigated the response of
surface-glued fiber-optic cables by changing the internal pressure and the diameter of the
leak hole [91]. The test results showed that DAS can respond well when the leak diameter is
greater than or equal to 4 mm and the internal pressure is higher than 0.2 MPa. To explore
whether DAS has the ability to monitor small leakage events, Stajanca et al. conducted
laboratory experiments [34]. They wound a sensing cable helically around a pipeline
and simulated a pipeline leakage event with a low leakage rate. By analyzing the time
domain and frequency domain features of the recorded data, they successfully detected
and located the leak event, thereby proving that DAS is fit for monitoring small pipeline
leakage events (i.e., leak rates down to 0.1% of the pipeline flow volume). In an experiment
carried out by Zuo et al., fiber-optic cables were placed outside of a pipeline [33]. Based
on the wavelet transform and empirical mode decomposition detection algorithms, they
significantly improved the signal-to-noise ratio of monitoring signals (the signal-to-noise
ratio increased to 18.28) and used the frequency domain cumulative average algorithm to
accurately locate pipeline leakages, thereby proving that DAS can realize the non-contact
monitoring of pipeline leakages.

However, the above experiments were carried out indoors. Considering the complexity
of field environments, the performance of DAS may be affected. For instance, when pipeline
leakages are in the early stages, the abnormal vibration signals are easily submerged by
external noise, resulting in leakage events being underreporting. Additionally, when
external interference is too strong, false alarms are easily caused. To improve the leakage
monitoring capability of DAS, Wang et al. proposed the combination of DAS, DTS, and
machine learning algorithms to monitor pipeline leakages [87]. Their experimental results
showed that this method can effectively reduce false positives for leakage events. The
average leakage event recognition rate reaches 98.57%. Furthermore, the recognition time
of this method is only 6.79 ms. It is believed that this method will play an increasingly
important role in monitoring pipeline leakages in the future.

3.4. Tunnel Structure Health Monitoring

As essential public transportation facilities, tunnels can greatly shorten driving dis-
tances, save transportation costs, and protect ecological environments. However, in the
process of tunnel construction, geological disasters, such as water leakages and floods,
often occur [92]. These incidents pose a serious threat to the health of tunnels. Therefore,
there is an urgent need for real-time and comprehensive evaluation technologies to monitor
tunnel health status.

DAS provides a brand new tool for tunnel health monitoring [93–95]. Based on a
scattering-enhanced fiber-optic DAS system, Hu et al. performed the intelligent monitoring
of a tunnel ring [94]. They laid cables on a steel ring structure to monitor vibration frequency.
Using the monitoring data, they assessed and classified the health status of the steel ring
based on machine learning algorithms. The recognition accuracy of the final test was
as high as 97.8%, indicating that DAS can be used to monitor the health condition of
tunnel structures.
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Aiming to mitigate potential disaster events during tunnel construction, Zhang et al.
proposed a DAS-based disturbance event identification method [95]. They laid cables
along a tunnel lining and used a random forest algorithm to analyze the DAS data. They
successfully identified various vibration events during tunnel construction, including
unexpected disasters, such as rockfalls. Its recognition accuracy rate is as high as 92.31%.

3.5. Border Security Monitoring

In this era of cross-border terrorism and illegal immigration, many countries around
the world are actively seeking ways to effectively protect their borders. Traditional border
security technologies (radars, electro-optical/infrared, fencing, etc.) have shortcomings,
such as being susceptible to electromagnetic and terrain interference and requiring the
frequent maintenance of detection devices. DAS offers a new approach to border security.
It can perform long-distance detection, classification, and localization, which enables
timely responses to various border intrusion events (as shown in Figure 9). In addition,
DAS provides low-noise and high-spatial resolution acoustic and seismic sensing that can
detect and identify personnel, vehicle, and even aircraft intrusions. Therefore, DAS-based
border security technology is regarded as a future development direction in the border
security field.

Duckworth et al. investigated DAS responses to different intrusion events and found
that DAS can not only capture the vibration signals of personnel footsteps but also respond
well to intrusion events that are difficult to detect using conventional security technologies,
such as digging, gunshots, underground excavation, and aircraft intrusion [96]. This fully
demonstrates the application potential of DAS in border intrusion monitoring. However,
there are some challenges; for instance, how to quickly discover and locate intrusion events
within huge amounts of monitoring data and how to eliminate the interference of non-
human invasion events (such as animal activities). To solve the above challenges, on the
one hand, artificial intelligence technology (machine learning, deep learning, etc.) could
be used to improve the efficiency of data processing or on the other hand, comprehensive
analysis platforms for multivariate data (DAS data, radar data, video surveillance data,
etc.) could be developed to analyze multivariate information and make comprehensive
decisions in order to reduce the false positive and false negative rates of intrusion events.
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Figure 9. Smart border security system. Reprinted with permission from Ref. [97]. 2020, SCITEPRESS.

3.6. Other Applications

In addition to the applications listed above, there are some other cases that use DAS
to monitor linear infrastructures. For instance, cables buried in airport runways can be
used for aircraft monitoring [98]. A pioneering work was carried out by the scientific
research team of Beijing Jiaotong University. They presented an aircraft acoustic signal
detection system based on DAS and analyzed the seismic waves excited by aircrafts. The
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5 Hz region was shown to be the most meaningful frequency range. Researchers have also
focused on the health monitoring of wind turbine towers and proposed methods to detect
the structural phenomena associated with loose bolts and material damage within the
towers [99]. Based on the amplitude, frequency, power spectrum, and other characteristics
of the data, loose bolts and material damage within towers can be monitored, which is of
great significance for the maintenance of wind towers.

4. Challenges and Future Trends
4.1. Challenges

Various studies have proven the feasibility and reliability of DAS for linear infrastruc-
ture monitoring. However, DAS is not universally effective and has some shortcomings
compared to other fiber-optic sensing technologies. Table 3 compares the advantages and
disadvantages of several fiber-optic sensing technologies. In general, the current challenges
faced by DAS can be subdivided into two categories: technical challenges and challenges
in applying DAS to engineering practice. The technical challenges of DAS are as follows:

• Directional sensitivity. Compared to three-component vibration detection devices
(seismometers, accelerometers, etc.), DAS only has sensitivity along the axial direction
of fiber-optic cables. DAS is highly sensitive to longitudinal waves propagating along
fibers and to transverse waves propagating at 45◦ to fibers. It is only weakly sensitive
to broadside waves [9]. In addition, when seismic wavelengths are close to the gauge
length, the directional sensitivity of DAS becomes more complex [103,104];

• Complex amplitude responses. The absolute amplitude information from DAS signals
is essential to amplitude-based studies, such as attenuation analysis, source inversion,
and subsurface imaging [17]. However, DAS amplitude responses are complex. Previ-
ous studies have shown that the factors affecting DAS amplitude responses include
gauge length [94], cable structure (e.g., tight-buffered versus loose-tube) [29], field
deployment method (e.g., direct burial versus conduit embedding) [105], initial strain
state [106], and near-surface geological conditions [107]. These complex amplitude
responses cause trouble for practitioners when analyzing and interpreting data, which
limits the further application of DAS to a certain extent;

• Sensing distance and spatial resolution. The sensing distance and spatial resolution
of DAS are closely related to pulse width. The shorter the pulse width, the higher
the spatial resolution but the shorter the sensing distance. That means that there is
a contradiction between the sensing distance and the spatial resolution. For linear
infrastructure monitoring (such as crack detection in railway tracks, micro-crack
detection in large infrastructures, border intrusion location, etc.), we expect DAS
to have a higher spatial resolution (at the cm level) and longer sensing distances
(hundreds of km). Recently, researchers have carried out numerous investigations
into overcoming this challenge. For instance, Lu et al. achieved a spatial resolution of
30 cm, a sensing distance of 19.8 km, and a vibration sensing signal-to-noise ratio of
10 dB using the optic swept pulse method [108].

Table 3. Comparison of various fiber-optic sensing techniques [39].

Technique Specifications Measurement
Parameters Characteristics Limitations

FBG

Type: quasi-distributed
Range: ≈100 channels

[100]
Spatial resolution:

2 mm

Temperature,
strain,

pressure, and
displacement

Simple structure,
small size,

lightweight,
good compatibility,

low optical loss, and
high sensitivity

The grating subsides under
high temperatures and

chirps easily under sticking
and compression; it is easily
damaged when processed
and some information is
blocked because of the

quasi-distribution
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Table 3. Cont.

Technique Specifications Measurement
Parameters Characteristics Limitations

DAS

Type: distributed
Typical sensing range:

1–50 km
Typical spatial

resolution:
5–10 m

Strain,
Temperature,

vibrations,
sound waves, and

seismic waves

Single-end
measurement,
wide response

bandwidth,
large measuring range,

and
dynamic monitoring

Huge amounts of
monitoring data;

directional sensitivity

OFDR

Type: distributed
Typical Sensing Range:

1–50 m
Typical Spatial

Resolutions: 1–2 cm

Strain and
temperature

High sensitivity,
High S/N ratio, and

suitable for static
measurements

Not suitable for
long-distance monitoring;
nonlinearity effects [101];
laser intensity noise [102]

BOTDA

Type: distributed
Typical sensing range:

1–50 km
Typical spatial

resolution: 1–10 m

Temperature,
displacement,
deformations,

And deflections

Double-end
measurement,

large measuring range,
and

high accuracy for the
measurement of

absolute temperature
and strain values

Unable to detect breakpoints;
high monitoring risks

brought by double-end
measurement

The main challenges of applying DAS to engineering practice are as follows:

• Spatial positioning of fiber-optic cables. The spatial position of each sensing channel
of fiber-optic cables is a piece of important information that investigators must con-
sider when analyzing DAS data. Investigators need to perform tap tests to obtain the
corresponding relationships between the spatial positions of fiber-optic cables and
sensing channels. For cases that need to deploy fiber-optic cables on site, investigators
can accurately obtain the spatial locations of fiber-optic cables (especially the locations
of redundant sections). However, when using existing fiber-optic cables for monitor-
ing (such as communication fiber-optic cables near railway tracks and underground
communication fiber-optic cables under urban roads), it is very difficult to obtain the
accurate spatial location information of the fiber-optic cables. Because investigators
cannot obtain detailed information about the layout conditions of existing fiber-optic
cables (the layout of fiber-optic cables is not always in ideal straight lines, there can be
many redundant cables, and the cables may twist at some positions), they can only
verify the information through a large number of tap tests to obtain the general spatial
layout of the fiber-optic cables, which is very time-consuming and laborious;

• Deformation coupling. For linear infrastructures with large spans, it is a challenge
to ensure that fiber-optic cables always maintain valid coupling conditions with the
engineering structures or the ground. When the coupling between fiber-optic cables
and their surroundings is weak, the transmission effects of strain and vibrations are
greatly affected, thereby decreasing the signal-to-noise ratio of the recorded data. Many
field tests have fully proven this point [109,110]. In recent years, many researchers have
carried out a lot of research works on cable–soil deformation coupling. The results
of laboratory experiments have demonstrated that the structures of fiber-optic cables
affect the interaction and strain transfer between fiber-optic cables and soil, thereby
affecting the quality of the monitoring data [40,111]. Although a lot of valuable works
on cable–soil deformation coupling have been carried out, in view of the complex
coupling mechanism and the changeable application environments during vibrations,
deformation coupling between fiber-optic cables and their surroundings needs to be
further explored in the future;
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• Data storage, transmission, and processing. Since each sensing unit on cables collects
information at a high frequency, the records are very large. The amount of information
collected by tens of kilometers of fiber-optic cables in a day can even reach the TB level.
These massive amounts of data make storage, transmission, and processing complex
and time-consuming tasks. In terms of data storage, some DAS manufacturers provide
filtering and compression systems that can reduce the number of records. However,
some valuable records can be lost after compression. In terms of transmission, few
wireless network platforms support the transmission of DAS records, so records are
generally transmitted through hard disks and other methods. In terms of processing,
although artificial intelligence algorithms can improve processing speeds, in the face
of TB-level amounts of monitoring data, the speed of data processing still needs to be
improved. In addition, jointly analyzing DAS data and other monitoring data (DTS
data, geophone data, etc.) is also a big challenge.

4.2. Future Trends

Although DAS faces many challenges, as mentioned above, its application prospects
are broad. In linear infrastructure monitoring, the following five trends will be realized in
DAS-based linear infrastructure monitoring in the future:

• Improvements in the performance of DAS systems (sensitivity, spatial resolution,
sensing distance, frequency response range, etc.). In order to expand the application
potential of DAS and improve its monitoring capabilities in complex and harsh en-
vironments, it is necessary to improve the monitoring performance of DAS systems.
For instance, improving the spatial resolution (cm level) could not only increase the
equivalent sensing channel of DAS but also expand the maximum strain/vibration
range [112]. Expanding the frequency response range (MHz level) could make DAS
applicable in the field of the nondestructive detection of engineering structures [113].
Increasing the sensing distance (hundreds of km) could provide DAS with more ad-
vantages in the fields of pipeline, railway, and border monitoring. In recent years,
investigators have carried out many studies on this topic. For instance, in order to
improve the sensitivity of DAS, investigators have proposed fading suppression [114]
and laser phase-noise compensation techniques [115,116], as shown in Table 4. These
techniques allow DAS the sensitivity to detect nano-strains. Investigators have also
proposed that the sensitivity of the DAS could be increased (up to 2.2 times) by build-
ing coils inside sensing cables, which has been verified by field experiments [117].
In addition, the design of special fiber-optic cables is also regarded as an essential
measure to improve the detection capability of DAS. Table 5 shows several specially
designed fiber-optic cables and their performance. In terms of sensing distance, as
far as we know, the longest distance is 175 km. It is believed that with the contin-
ued deepening of research in the future, the monitoring performance of DAS will be
further improved;

Table 4. Comparison of various fiber-optic sensing techniques [118].

Year Method/Technique Sensitivity Reference

2018 Chirped pulse Phi-OTDR with
phase-noise compensation 5pε/

√
Hz@1 kHz [115]

2019 Pulse compression with
phase-noise compensation 92.84pε/

√
Hz@500–2500 Hz [116]
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Table 5. Performance summary of CSE and DSE fibers [93].

Fabrication Method SNR Enhancement
(dB)

Sensing Distance
(km)

CSE fibers
Continuously inscribe Bragg gratings 15 1

Highly doped fibers 14 1.9

DSE fibers
UV exposure 5.5–21.1 50

Femtosecond laser inscription 13–15.8 9.8

• Breakthrough of the directional sensitivity limit. In response to the directional sen-
sitivity of DAS, many research teams have proposed designs for the structures of
fiber-optic cables (such as spirally winding fiber-optic cables) to meet the needs of
multi-component measurements [119–122]. For instance, Hornman et al. designed a
helically wound fiber-optic cable. They spirally wound the cable at a certain angle to
obtain vibration signals at different angles. They found that when the cable is wound
at an angle of 30◦, the cable almost has the same sensitivity to vibrational waves in all
directions [121]. On this basis, Lim and Save proposed an acquisition system using
five equally spaced helical fibers and a straight fiber to obtain six different strain
projections, which reconstructs all components of 3D strain tensors at any location
along fiber-optic cables [122]. They verified the feasibility of the method through nu-
merical simulations. In addition, optimizing the geometric layout of fiber-optic cables
is also regarded as a measure that could improve the directional sensitivity of DAS.
By designing alternative geometric layouts for fiber-optic cables (such as umbrella
and checkerboard layouts) [123], the vibration signals from multiple directions can
be captured to obtain more comprehensive vibration information and improve the
directional sensitivity of DAS;

• Development of data processing software and risk assessment systems. In recent years,
a series of computational intelligence technologies, including fuzzy logic, genetic
algorithms, wavelet analysis, machine learning, and deep learning, have developed
rapidly. These computing algorithms provide the possibility for the efficient and
diversified processing of DAS data. At the same time, these intelligent technologies
can also help researchers and practitioners to mine more potential information, thereby
helping researchers and practitioners to conduct scientific research. The establishment
of risk assessment systems will help management departments to grasp the health
status of linear infrastructures in a timely manner. If key detected parameters exceed
the predetermined thresholds, the risk assessment systems will promptly notify the
management departments through SMS, email, etc., and the management depart-
ments can take corresponding emergency measures to avoid major personnel and
property losses;

• Establishment of a large-capacity network data sharing platform. The establishment
of a data sharing platform could not only effectively relieve the pressure of data
transmission but also allow more researchers and practitioners to conduct scientific
explorations using shared DAS data, thereby promoting the development of DAS;

• Preparation of guidelines to improve standardization in field monitoring. With the
increasing number of engineering practices, there is an urgent need for countries and
regions to develop relevant standards, norms, and guidelines to implement monitor-
ing. In recent years, experts and scholars from all over the world have successively
published several guides for the field of DFOS. However, specifications and guides
for the application of DAS in the field of linear infrastructure monitoring are still
lacking and need to be complied by experts and scholars to enable standardized
engineering monitoring;

• Breakthrough the technical bottleneck for interrogation units. Although sensing cables
are cheap, interrogation units are expensive. The price of a DAS interrogation unit
is nearly RMB one million, which limits the application and promotion of DAS to a
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certain extent. We urgently need to break through the technical difficulties and reduce
the production costs of equipment, thereby allowing the large-scale promotion and
application of DAS.

5. Conclusions

As a new type of fiber-optic sensing technology for long-distance, distributed, and
real-time acoustic monitoring, DAS has received extensive attention from researchers and
practitioners since its inception. With the continuous development of DAS, its application
scenarios are constantly expanding and adapting. For linear infrastructure monitoring, a
large number of field investigations have been conducted. This paper presented a review
of research and development activities in linear infrastructure monitoring based on DAS.
The sensing principles and performance of DAS were briefly described and the different
installation and layout methods for fiber-optic cables were summarized. Compared to
ordinary fiber-optic sensing technologies, DAS can greatly expand the detection distance
(over 100 km), shorten the sensing response time (real-time responses), and also offer a
very high spatial detection density (detection spacing reaching the cm level), which can
enable the monitoring of the health conditions of linear infrastructures.

Although the application of DAS to linear infrastructure monitoring faces many
challenges, such as the huge amounts of monitoring data, the directional sensitivity of
fiber-optic cables, and the difficulties in processing data, the application potential of DAS is
broad. It is believed that with improvements in DAS sensing performance, the research
and development of new cables, breakthroughs in multi-component sensing technology,
and the development of data processing software, DAS will play an increasingly important
role in linear infrastructure monitoring in the future.
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