
Citation: Xiao, Y.; Kang, C.; Yu, H.;

Fan, T.; Zhang, H. Anomalous

Network Traffic Detection Method

Based on an Elevated Harris Hawks

Optimization Method and Gated

Recurrent Unit Classifier. Sensors

2022, 22, 7548. https://doi.org/

10.3390/s22197548

Academic Editors: Leandros

Maglaras, Helge Janicke and

Mohamed Amine Ferrag

Received: 25 August 2022

Accepted: 29 September 2022

Published: 5 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Anomalous Network Traffic Detection Method Based on an
Elevated Harris Hawks Optimization Method and Gated
Recurrent Unit Classifier
Yao Xiao , Chunying Kang *, Hongchen Yu, Tao Fan and Haofang Zhang

School of Data Science and Technology, Heilongjiang University, Harbin 150000, China
* Correspondence: kangchunying@hlju.edu.cn; Tel.: +86-1868-689-1162

Abstract: In recent years, network traffic contains a lot of feature information. If there are too
many redundant features, the computational cost of the algorithm will be greatly increased. This
paper proposes an anomalous network traffic detection method based on Elevated Harris Hawks
optimization. This method is easier to identify redundant features in anomalous network traffic,
reduces computational overhead, and improves the performance of anomalous traffic detection
methods. By enhancing the random jump distance function, escape energy function, and designing a
unique fitness function, there is a unique anomalous traffic detection method built using the algorithm
and the neural network for anomalous traffic detection. This method is tested on three public network
traffic datasets, namely the UNSW-NB15, NSL-KDD, and CICIDS2018. The experimental results
show that the proposed method does not only significantly reduce the number of features in the
dataset and computational overhead, but also gives better indicators for every test.
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1. Introduction

The network environment has gotten more complex in recent years as the internet
advances. While people use the Internet’s convenience, several types of cyber-attacks
come with it. This is still needed to be addressed to network security issues. This issue
affects the performance of anomalous network traffic detection systems. Machine Learning
has been introduced to detect anomalous network traffic detection systems because of
the proliferation of network traffic. Moreover, network traffic includes a large number
of feature information and carries various redundant features. Redundant features are
features that can be difficult to detect and include features that are highly correlated with the
rest of the detection targets and also features that have low correlations with the detection
target. If there are too many redundant features in the network traffic data, it will add time
complexity and space complexity to the algorithm, reduce the detection capability of the
anomalous network traffic detection system and increase the computational overhead of
the algorithm. It is a very difficult field for anomalous network traffic detection to select
the best subset of features from the original data that benefit from the detection methods.

2. Related Works

Because of its high computational overhead and its low search efficiency, the random
search algorithm used in traditional feature selection is difficult to meet the demand for
real-time performance in anomalous traffic detection systems. Because of their faster com-
putational speed, meta-heuristic search algorithms are becoming another alternative to
feature selection algorithms by increasing detection accuracy and efficiency [1]. The cur-
rent research literature is focused on Ant Colony Optimization (ACO), particle swarm
optimization (PSO), Whale Optimization Algorithm (WOA), Genetic Algorithm (GA), etc.
In [2], the output of the classifier is input into a different Support Vector Machine(SVM)
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to train the final detection model and an integrated intrusion detection model is obtained.
However, it is difficult for algorithms like to support vector machines to respond quickly to
intrusive behaviors. Song et al. [3] combines the XGBoost algorithm with the improved
particle swarm optimization algorithm for parameter optimization in an easy solution to
the continuous multivariable optimization problem. The work of Junior et al. [4] uses PSO
to XGBoost to classify new coronary pneumonia images and improve the accuracy rate.
However, when the volume of data is large, the complexity of XGBoost is high, and the
overhead in space and time is relatively large. Mehdi et al. [5] proposed a method for
solving feature subsets by ACO, describing how the ACO algorithm is solving feature
subsets, but the ACO algorithm has the disadvantage that it is very easy to fall into local
optimum.Mehrnaz et al. [6] proposed an intrusion detection model based on the Artifi-
cial Bee Colony algorithm (ABC) and AdaBoost. The model uses ABC in the selection
of features, and then uses AdaBoost for classification. However, this method does not
improve ABC, and it is easy to fall into local optimum and unstable optimum and unstable.
Zhang et al. [7] proposed a Genetic Algorithm (GA) with a Deep Boltzmann Net (DBN)
model for intrusion detection, which not only gives high accuracy for common types of
attacks, but also for small training sets like U2R, but the use of a single dataset does not
achieve overall detection accuracy. In the following work, some algorithms in related works
will be selected for comparison.

Based on the above research, this paper proposes an approach to anomalous traffic
detection using EHHO-GRU. This method is the first to use the relatively novel Harris
Hawks Optimisation (HHO) algorithm as a feature selector that extracts a wide range of
features from anomalous network traffic data and designs a unique fitness function to
optimize the convergence speed of the overall abnormal traffic detection method. The HHO
feature selector is compared to the optimized Elevated Harris Hawks Optimisation-Gated
Recurrent Unit(EHHO) feature selector proposed in this paper. For the first time, the EHHO
feature selector is combined with a GRU neural network to train and test the feature
subset data solved from multiple common datasets. The dimensionality of the feature is
significantly reduced, the computational overhead is reduced and the detection index of
the neural network for abnormal traffic is improved.

3. Materials and Methods
3.1. GRU Neural Network

Recurrent Neural Network (RNN) [8] is a deep learning network for processing serial-
ized data. By introducing recurrent connections between hidden layer units in adjacent
time steps, RNN can effectively use historical information and it can make decisions on time
series data, so it is widely used in the field of network traffic detection [9–11]. However,
the phenomenon of exploding or vanishing gradients after multi-stage propagation of all
time series data will cause the neural network to lose its long-term learning ability. This
phenomenon is called exploding gradients and vanishing gradients.

Therefore, Long-Short Term Memory Neural Network (LSTM) [12] was proposed to
solve the long-term propagation gradient problem. The long short-term memory neural
network not only retains the recurrent memory capability of the outer hidden layer unit of
the RNN, but also has three special gating systems inside its unit. Including forget gate,
input gate, and output gate. It can control the length and weight of memory retention, so it
is also introduced into the field of abnormal traffic detection [13]. However, the algorithmic
complexity of LSTM with three more gating system parameters also increases greatly,
resulting in extremely expensive training of LSTM.

To solve the RNN gradient problem and the high training cost of LSTM at the same
time, Gated Recurrent Unit (GRU) was proposed by Cho et al. [14] Compared to LSTM with
three gating systems, GRU has only two gating systems: an update gate and a reset gate.
In this paper, a gated recurrent unit is used as a detector for abnormal flow. The structure
of the GRU hidden layer unit is shown in Figure 1, where St denotes the state of the hidden
layer unit at time step t, which is jointly determined by the hidden layer unit state St−1 at
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the previous moment and the input Xt at the current time step t, where rt is the reset gate
at time step t and ut is the update gate at time step t. The hidden layer unit state St at time
step t is also used as the input for the next time step.

Figure 1. Gated Recurrent hidden layer unit.

In the GRU hidden layer unit of Figure 1, the output of the current time step is given
by the following equation:

St = (1− ut)� h + ut � St−1 (1)

where h denotes the candidate hidden layer state at time step t, � means that two variables
are multiplied according to their corresponding elements, and its equation is:

h = tanh(UhXt + Wh(St−1 � rt)) (2)

The update gate ut and the reset gate rt can ignore the candidate hidden layer state ct
and the previous hidden layer state St˘1 independently of each other. The hidden layer state
St−1 and the input Xt jointly control the update gate ut and the reset gate rt, and output
a value in [0,1] after compression by the activation function sigmoid, which is used to
denote the degree of activation for update gate ut and reset gate rt. In short, if the activation
function output is 0, the update gate will keep all candidate hidden layer states h, and the
reset gate will ignore all hidden layer states St−1 of the previous time step. The equations
for updating the gate ut and resetting the gate rt are:

ut = σ(UuXt + WuSt−1) (3)

rt = σ(UrXt + WrSt−1) (4)

Uu, Ur, Uh denotes the weight matrix from the input unit to the update gate, reset
gate, and hidden layer unit respectively, Wu, Wr, Wh denotes the weight matrix from the
hidden layer unit to the update gate, reset gate and hidden layer unit respectively. And σ
means the sigmoid function.

3.2. Harris Hawks Optimization

Harris Hawks Optimization (HHO) is a meta-heuristic algorithm proposed by Hei-
dari et al. [15] in 2019. It was inspired by the predation behavior of the Harris hawk on its
prey (hares). The algorithm outperformed other well-known algorithms, including PSO,
GA, GOA, ALO, WOA, BOA, and SMA. Further, the algorithm was tested on 29 benchmark
problems and other tasks that represent real-world engineering tasks [15]. The experiments
had shown very competitive results The algorithm has attracted much attention since its
inception and has been applied to many fields. Chen Huiling et al. [16] used the HHO to
identify the parameters of photovoltaic cells and modules. The research shows that the new
algorithm has good optimization performance, but no one has applied it to the intrusion
detection system for feature selection of abnormal flow data.
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HHO uses mathematical equations to simulate the prey mechanism of Harris hawks
in different situations. In the Harris Hawks Optimization, the prey gradually approaches
the optimal solution with the number of iterations, and the candidate solution is the Harris
Hawk. The overall algorithm includes two parts: the exploration and exploitation phases.
Exploration versus exploitation: exploring unknown actions to gain more information
versus exploiting the information already collected.

3.2.1. Exploration Phase

In this phase, all Harris hawks are considered candidate solutions. In each iteration,
the fitness value is computed for all these possible solutions based on the intended prey.
Exploitation refers to a local search around the area acquired during the exploration phase.
In the exploration phase, Harris Hawks first waits, after which it monitors and evaluates
the search space [lb, ub]. And randomly search for prey under two strategies, update the
position with q as the probability during iteration, and its mathematical expression is:

Xt+1 =

{
Xrand − r1Xrand − 2r2Xt, q ≥ 0.5

(Xrabbit,t − Xm,t)− r3(lb + r4(ub− lb)), q < 0.5
(5)

In the equation, Xt and Xt+1 are the position vector of the Harris Hawk at the iterations
t and t + 1 , respectively, Xrabbit,t is the position of the rabbit (prey) after the t iteration,
and Xrand,t is the randomly selected hawk from the current population at iteration t. Xm,t is
the average position of the Harris hawk in iteration t, lb and ub are the lower and upper
bounds of the search space, respectively, q and r1, r2, r3, and r4 are random numbers in the
interval (0, 1), which The equation is:

Xm,t =
1
N

n

∑
i=1

Xi,t (6)

3.2.2. Transition from Exploration to Exploitation

The operation of the swarm optimization algorithm needs to maintain a balance
between exploration to exploitation. The Harris hawk can switch between different ex-
ploitative behaviors based on the escaping energy of the prey. During the escape behavior
of the prey, its escape energy E will be greatly reduced. HHO also uses the escape energy
equation to complete the conversion between mining and exploration, and its expression is
as follows:

E = 2E0(1−
t
T
) (7)

Among them, E indicates the escaping energy of the prey. E0 denotes the initial state
of its energy, and its expression is E0 = 2rand − 1, and rand is a random number in [0, 1].
t denotes the current iteration round, and T denotes the maximum number of iterations.
When |E| ≥ 1, the Harris Hawks Optimization is in the exploration stage, otherwise it is in
the local mining stage.

3.2.3. Exploitation Phase

In this phase, the exploitation phase is accomplished using four approaches at param-
eter sets. These approaches are based on the position identified in the exploration phase.
Unfortunately, prey often escapes ahead of the Harris Hawk. Therefore, according to the
escape behavior of the prey and its pursuit strategy, Harris Hawk has evolved four attack
strategies, and the HHO algorithm also uses four strategies to simulate the four attacks
of Harris Hawk. In this paper, r is used to denote the probability that the prey escapes
successfully. When r < 0.5, the prey escapes successfully; When r ≥ 0.5, the prey fails to
escape, use the previous E to accompany you with Harris Hawk’s offensive strategy, when
|E| ≥ 0.5, adopt a soft siege, and when |E| < 0.5, execute a forced siege.
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• Soft Besiege
When r ≥ 0.5 and |E| ≥ 0.5, the prey has enough energy to escape, so the Harris Hawk
uses a soft siege strategy, the main purpose of which is to consume the energy of the
prey, and choose the best position to raid and dive to catch the prey, The equation for
its position update is as follows:

Xt+1 = ∆Xt − E|JXrabbit,t − Xt| (8)

∆Xt = Xrabbit,t − Xt (9)

In the equation, Xrabbit,t is the position of the prey at iteration t, Xt is the differ-
ence between the position vector of the rabbit and the current location in iteration
t, J = 2(1 − rand), which is the random jump strength of the rabbit throughout the
escaping procedure, where rand is the a random number inside (0, 1).

• Hard Besiege
When r ≥ 0.5 and |E| < 0.5, the energy of the prey is severely consumed and exhausted.
In addition, the Harris hawks hardly encircle the intended prey to finally perform the
surprise pounce. The mathematical expression for its position update is:

Xt+1 = Xrabbit,t − E|∆Xt]| (10)

∆Xt = Xrabbit,t − Xt (11)

• Soft besiege with progressive rapid dives
When r < 0.5 and |E| > 0.5, the prey still has a chance to escape, and the escape energy
is sufficient. The Harris Hawks would make a soft siege before attacking. In order
to simulate the escape mode of the prey, HHO introduces the Levy function(LF) to
update the mathematical expression of the position in the HHO algorithm:

Xt+1 =

{
Y : Xrabbit,t − E|JXrabbit,t − Xt|, i f f itness(Y) < f itness(Xt)

Z : Y + S× LF(D), i f f itness(Z) < f itness(Xt)
(12)

where D is the space dimension, and S is a 1 × D random vector, that is, S = rand(1,D);
LF(D) is the Levy function:

LF = 0.01× µ× δ

|ν|
1
β

, δ = (
Γ(1 + β)× sin (π×β

2 )

Γ( 1+β
2 )× β× 2

β−1
2

)
1
β (13)

where u and v are random numbers uniformly distributed in [0,1], β = 1.5.
• Hard besiege with progressive rapid dives

When r < 0.5 and |E| < 0.5, the prey has a chance to escape, but the escape energy E is
insufficient, so the Harris hawk adopts a hard besiege with progressive rapid dives,
forming a hard besiege before the raid, and then shrinks them and the prey average
distance. The mathematical expression for its position update is:

Xt+1 =

{
Y : Xrabbit,t − E|JXrabbit,t − Xm,t|, i f f itness(Y) < f itness(Xt)

Z : Y + S× LF(D), i f f itness(Z) < f itness(Xt)
(14)

The HHO uses escape energy E and factor r to configure four attack mechanisms
between Harris hawk and prey to solve the optimization problem.

4. Elevated HHO
4.1. Elevated HHO for Escape Energy Function

The structure of the traditional Harris Hawks Optimization itself has certain defects,
and the search process is prone to the problems of falling into local optimum and low
convergence accuracy. The escape energy equation E is used to adjust the exploration and
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exploitation phases and four attack strategies. The higher the value of E, the more HHO
tends to perform exploration, and vice versa for exploitation. However, in traditional HHO,
E decreases linearly with the number of iterations, which will cause the algorithm to be
biased towards local search and easily fall into local optimum. Therefore, an improved
energy escape function E is proposed in this paper, and a special exponential function is
introduced to adjust the exploration and exploitation phases, so it makes the optimization
algorithm more inclined to perform a global search. Its corresponding energy equation is:

E = 2× E0 × (2× rand× eω), ω = −πt
2T

(15)

where rand is a random number inside (0, 1), t denotes the current iteration round, and T
denotes the maximum number of iterations.

4.2. Elevated HHO for Random Jump Distance Function

The prey jumping distance J in the HHO cannot well simulate the trend of the prey
changing with the decay of the energy for the position update equation. Therefore, this
paper proposes a jumping distance equation J that changes with the escape energy to better
simulate the position of the prey, and make the optimization algorithm better explore the
space of different regions. The improved jump distance equation is:

J = 4× (2× rand× e−
πt
2T )× (1− rand) (16)

where rand is a random number inside (0, 1), t denotes the current iteration round, and T
denotes the maximum number of iterations. This elevated HHO algorithm will be referred
to as EHHO hereinafter. The pseudo code of the HHO algorithm is shown in Algorithm 1,
and the pseudo code of EHHO is shown in Algorithm 2.

Algorithm 1: Pseudo code of standard Harris Hawks Optimisation.
Input: The population size N and maximum number of iterations T
Output: The location of rabbit and its fitness value
Initialize the random population Xi(i = 1, 2, ..., N)
while stopping condition is not met do

Calculate the fitness values of hawks
Set Xrabbit as the location of rabbit (best location)
for each hawk(Xi) do

Update the initial energy E0 :E0 = 2rand - 1 and Update the rabbit energy E
using Equation (3)

if |E|≥1 then
Update the location vector using Equation (5)

if |E|<1 then
if r≥0.5 and |E|≥ 0.5 then Update the location vector using
Equation (8) ;

else if r ≥ 0.5 and |E|<0.5 then Update the location vector using
Equation (10) ;

else if r<0.5 and |E| ≥ 0.5 then Update the location vector using
Equation (12) ;

else if r<0.5 and |E|<0.5 then Update the location vector using
Equation (14) ;

end
end
return Xrabbit
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Algorithm 2: Pseudo code of Elevated Harris Hawks Optimisation.
Input: The population size N and maximum number of iterations T
Output: The location of rabbit and its fitness value
Initialize the random population Xi(i = 1, 2, ..., N)
while stopping condition is not met do

Calculate the fitness values of hawks
Set Xrabbit as the location of rabbit (best location)
for each hawk(Xi) do

Update the initial energy E0 :E0 = 2rand - 1 and jump strength J using
Equation (16)

Update the E using Equation (15)
if |E|≥1 then

Update the location vector using Equation (5)
if |E|<1 then

if r≥0.5 and |E|≥ 0.5 then Update the location vector using
Equation (8) ;

else if r ≥ 0.5 and |E|<0.5 then Update the location vector using
Equation (10) ;

else if r<0.5 and |E| ≥ 0.5 then Update the location vector using
Equation (12) ;

else if r<0.5 and |E|<0.5 then Update the location vector using
Equation (14) ;

end
end
return Xrabbit

4.3. Fitness Function

The selection of the fitness function directly affects the convergence speed of the
optimization algorithm and whether it can find the optimal solution, because the optimiza-
tion algorithm basically does not use external information in the process of optimization,
and only uses the fitness function as the basis to use the adaptation of each individual in
the population degree to search. Because the complexity of the fitness function is the main
component of the complexity of the entire anomalous network traffic detection method,
the design of the fitness function should be as simple as possible to minimize the time
complexity of the calculation. Accordingly, this paper designs the fitness function of the
HHO as follows:

C = α× (1− acc) + β× F
Fmax

(17)

Among them, α is the accuracy weight constant, set to 0.99, acc is the classification
accuracy using the DT classifier, and β is the step weight constant, set to 0.01. where F is
the feature subset, and Fmax is the total feature count. It can be seen from Equation (17) that
the higher the classification accuracy and the lower the dimension of the feature subset,
the better the fitness value of the EHHO algorithm.

4.4. Detailed Execution Flow of EHHO-GRU Abnormal Flow Detection Method

1. Data preprocessing. Delete the feature columns with more than half of the total
missing values in the malware detection dataset, map discrete data into feature
columns with one-hot encoding, and process the missing values in the dataset with
0 padding; in binary classification, set the class label to normal and anomalies are
coded 0 and 1 respectively; the data set is processed in a normalized way to reduce
the influence of the data dimension, and the features that are completely irrelevant
to the label column in the data set are deleted in the way of mutual information
feature selection.
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2. Optimization algorithm initialization. Set the initialization parameters of the EHHO
algorithm population, the number of iterations, and the problem dimension, and deter-
mine the fitness function. Initialize the population and perform binary discretization
of the feature dimensions in feasible solutions.

3. Calculate the fitness. Taking the fitness function as the optimization direction, cal-
culating the fitness value of the feasible solution after iteration, taking the feasible
solution with the best fitness in the population as the prey, and record the optimal
individual information.

4. Determine whether the optimization cycle is terminated, if the termination condition
is met, go to step (5); otherwise, go back to step (3).

5. Output the optimal feature subset and send it to the GRU classifier, and end the
algorithm process.

The overall process is shown in Figure 2.

Figure 2. The overall process.

5. Experiment
5.1. Experiment Environment

In this paper, the specific experimental environment is shown in Table 1. I chose PyTorch
between PyTorch and Keras framework because it is more suitable for academic research.
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Table 1. Experimental environment.

CPU AMD R5 3600X

GPU Nvdia rtx2060

RAM 16 GB

Language Python3.9

Deep Learning Framework Pytorch

5.2. Use of Datasets

In this paper, NSL-KDD [17], UNSW-NB15 [18] and CICIDS2018 datasets were used to
test the EHHO-GRU anomaly detection method. The NSL-KDD dataset and UNSW-NB15
dataset both have divided training and test sets, while the CICIDS dataset is selected to
be subdivided into training and test sets for 10% of the data due to the limitation of the
experimental environment.

• NSL-KDD dataset
The NSL-KDD dataset is a simplified and improved version of the KDDCUP99 dataset.
The NSL-KDD dataset ensures that the intrusion detection model is free from bias and
is more suitable for deep learning for anomalous traffic monitoring. The classification
labels in the multiclassification test are shown in Table 2, which gives details of the
NSL-KDD dataset. In the dichotomous test the classification labels are all 1 except for
the Normal label which is 0. The detailed composition is shown in Table 2.

Table 2. Composition of NSL-KDD dataset.

Attack Category Description Train Test

Normal normal flow record 67,341 9711

Probe

Get detailed statistics
on system and

network
configuration

11,656 7456

DoS
Attacks are designed
to degrade network

resources
45,927 2421

U2R get permission 114 1436

R2L Illegal access to a
remote computer 934 1520

Total 125,972 22,543

• UNSW-NB15 dataset
The UNSW-NB15 dataset is a new public dataset introduced by the Cyber Secu-
rity Experimentation Team at the Australian Cyber Security Centre. Cyber security
researchers often use the UNSW-NB15 dataset to address issues identified in the NSL-
KDD dataset and the KDDCUP99 dataset. The dataset is generated in a hybrid manner
and includes both normal and attack traffic from real-time network traffic, making
it a comprehensive dataset of network attack traffic. There was a total of 49 features
in the dataset to describe a piece of data. There are a total of nine types of abnormal
attack traffic marked as 1 and one type of normal traffic marked as 0 in this dataset,
the details of which are shown in Table 3 below.
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Table 3. Composition of UNSW-NB15 dataset.

Attack Category Description Train Test

Normal normal flow record 37,000 56,000

Backdoor

Techniques to gain
access to programs or
systems by bypassing

security controls

583 1746

Analysis

Intrusion methods of
infiltrating web

applications through
ports and web scripts

677 2000

Fuzzers

An attack that tries to
find a security hole by

passing a lot of
random data, making

it crash

6062 18,184

Shellcode

Attacks that control
the target machine by

sending code that
exploits a specific

vulnerability

378 1133

Reconnaissance

Attacks that collect
computer network

information to evade
security controls

3496 10,491

Exploit

Code that takes
control of the target
system by triggering
a bug or several bugs

11,132 33,393

DoS
Attacks are designed
to degrade network

resources
4089 12,264

Worms

Actively attacking
malignant computer
virus spread through

the network

44 130

Genertic

A technique for
colliding each block
cipher using a hash

function

18,871 40,000

Total 82,332 175,341

• CICIDS2018 dataset
The CICIDS2018 dataset is a collaborative project between the Communications Se-
curity Establishment (CSE) and the Canadian Institute for Cybersecurity Research
(CIC). Previous partial datasets were highly anonymous, did not reflect current trends,
or they lacked certain statistical characteristics for which perfect datasets existed.
The Canadian research team has therefore devised a systematic approach to gen-
erating datasets to analyze, test, and evaluate intrusion detection systems, with a
focus on network-based anomaly detectors. The dataset includes seven different
attack scenarios: Brute-force, Heartbleed, Botnet, DoS, DDoS, Web attacks, and more.
The data is made up of an attack machine consisting of 50 hosts, with 5 sectors of
target machines, including 420 machines and 30 servers. The dataset includes network
traffic and system logs for each machine captured, as well as 80 features extracted from
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the captured traffic using CICFlowMeter-V3. As the dataset is too large to contain
ten datasets and is limited by the experimental environment, a portion of the data
from each dataset is selected to form a new dataset for the experiment, and 10% of
each dataset is extracted hierarchically for generalizability. There are seven types of
abnormal attack traffic marked as 1 and one type of normal traffic marked as 0 in this
dataset, and the detailed composition is shown in Table 4.

Table 4. Composition of CICIDS2018 dataset.

Attack Category Description Train Test

Brute-force attack
Perform brute force

and password
cracking attacks

31,767 21,178

Botnet botnet 17,167 11,445

DoS
Attacks are designed
to degrade network

resources
38,606 25,738

DDoS Distributed Denial of
Service Attack 82,307 54,871

Infiltration Intranet penetration
attack 13,640 9093

SQL SQL injection attack 8 5

Benign benign traffic 69,489 46,326

Total 252,984 168,656

5.3. Dataset Preprocessing Step

• Data normalisation
A min-max normalization process is used to compress the data into the (−1, 1) interval.
One advantage is that it improves the speed of convergence of the model, and another
is that it improves the accuracy of convergence, which is given by:

X′ =
X− Xmin

Xmax − Xmin
(18)

where Xmin denotes the minimum value that occurs after normalization of all samples
for that dimensional feature, Xmax denotes the maximum value that occurs after
normalization of all samples for that dimensional feature, and x′ denotes the result of
normalization of each data sample.

• Character feature unique heat code
In feature engineering, data will appear as category-based features, including character-
based features and discontinuous features. In order to solve the problem that the
classifier does not handle attribute data well, this paper uses the pre-processing part of
the Keras framework to process these category-based data with unique thermal coding.

• Dataset labels
Some datasets commonly used in the field of anomalous traffic detection will have
more than one label, due to the characteristics of the data commonly used in this
field, which, in addition to labeling the different attack method category labels, also
typically use 0: for normal network traffic, 1: for abnormal network traffic, to act as
labels for the network data. Some datasets (e.g., UNSW-NB15 dataset) inherently have
two label columns, while in others (e.g., NSL-KDD dataset), only the attack category
label column exists. In order to better evaluate the generalisability of the anomalous
traffic detection model proposed in this paper, this paper tests and evaluates each
dataset separately for multiple and dual classifications.
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5.4. Experimental Model Parameter Settings

The hyperparameters of the anomalous traffic detection model proposed in this paper
consist of two main parts, one is the hyperparameters of the EHHO feature selection part for
iteration, and the other is the hyperparameters part of the two-layer GRU neural network
classifier. The detailed parameters are shown in Table 5.

Table 5. Detailed experimental hyperparameters.

Category Description

N initial population 30

TO

The maximum number of
iterations of the feature

selection algorithm

See the specific experiment
section for details.

Max depth Decision tree maximum depth 4

Hid dim The number of hidden layer
units in the neural network 128

Lr Neural network learning rate 0.0005

E The number of neural
network iterations 3000

ϕ
Neural network forgetting

rate 0.5

In the feature selection part of this paper, four novel nature-inspired algorithms with
good optimization search results - the Whale Optimisation Algorithm [19], the Genetic
Algorithm [20], the Particle Swarm Optimisation Algorithm [21], and the basic Harris
Hawks Optimisation(HHO) are selected for comparison with the elevated Harris Hawk
Optimisation(EHHO). To reflect the fairness and objectivity of the experiments, the popu-
lation size N was set to 30 for all algorithms, the number of iterations T was set, and the
common parameters of the four algorithms were kept the same.

The performance of the neural network classification model is influenced by the
parameters selected.

5.5. Experimental Evaluation Metrics

The model evaluation criteria [22] are defined as follows:
TP (True Positive): True positives, which are actually intrusion samples and the

number of successfully detected as intrusion samples; FN (False Negative): False negatives,
which are actually intrusion samples but have not been correctly detected, that is, false
negatives Number of samples; FP (False Positive): false positives, which are actually normal
samples but detected as intrusion samples, that is, the number of false positive samples;
TN (True Negative): true negatives, which are actually normal samples and are not falsely
reported the number of samples.

Accuracy: This metric counts the ratio of the number of correctly classified samples to
the entire test set. The higher the accuracy, the better the performance of the neural network
model (Accuracy ∈ [0, 1]). It is the most commonly used model evaluation index in the
field of deep learning, and the accuracy rate is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(19)

Precision: This indicator counts the ratio of correctly identified normal samples to
the total number of predicted normal samples. The higher the precision, the better the
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performance of the neural network model ( Precision ∈ [0, 1]), and the precision rate is
defined as:

Precision =
TP

TP + FP
(20)

Recall: This indicator counts how many positive examples in the sample are predicted
correctly. The higher the precision, the better the performance of the neural network model
(Recall ∈ [0, 1]), and the recall is defined as:

Recall =
TP

TP + FN
(21)

F1-score: F1-Score is also known as F1-Measure. This metric counts the harmonic
mean of precision and recall. The higher the F1-Score, the better the neural network model
(F1− Score ∈ [0, 1]). F1-Score is defined as follows:

F1− score =
2× Precision× Recall

Precision + Recall
(22)

True Positive Rate (TPR): This metric is also known as Recall, and its equation is
the same as Recall. False Positive Rate (FPR): This metric counts the ratio of the number
of attack samples predicted to be normal samples to the actual total number of attacks.
The lower the FPR, the better the performance of the neural network model (FPR ∈ [0, 1]).
The definition of FPR is as follows:

FPR =
FP

TN + FP
(23)

6. Experimental Results and Analysis
6.1. EHHO Algorithm Performance Test

For testing the performance of EHHO’s search, this paper uses HHO and EHHO,
CICDIS2018 dataset to solve the feature subset respectively, with the maximum number
of iteration rounds both set to 1500 and Max depth set to 4. Then the fitness functions of
the two algorithms vary with the number of iteration rounds as shown in Figures 3 and 4.
From the two figures, we can see that HHO converges at close to 1200 rounds, while EHHO
has converged at less than 600 rounds. The lower the fitness function, the better the selected
feature subset, and the higher the fitness function when HHO converges than EHHO,
which shows that the elevated EHHO outperforms HHO in terms of both convergence
speed and convergence accuracy.

Figure 3. The fitness of HHO.
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Figure 4. The fitness of EHHO.

To better test the generality of the performance of the EHHO algorithm, we choose
four test functions to evaluate the optimized performance of the EHHO algorithm. The four
test functions are shown in Table 6.

Table 6. Test the function variable scale.

Function Equation Variable Domain The Optimal Value

Ackley

f (x) = −20 ∗

e
−0.2∗

√
1
n ∑n

j=1 x2
j −

e
1
n ∑n

j=1 cos(2πxj) +
22.71282

[−5, 5] 0

Booth
f (x) =

(x1 + 2x2 − 7)2 +

(2x1 + x2 − 5)2
[−10, 10] 0

Easom
fEaso (x1, x2) =

− cos(x1) · cos(x2) ·
e−((x1−π)2+(x2−π)2)

[−100, 100] −1

Rastrigin
Ras(x) =

20 + x2
1 + x2

2 −
10(cos 2πx1 + cos 2πx2)

[−5.12, 5.12] 0

As shown in Figures 5–8. EHHO is almost able to converge faster than HHO in the
tests of all four functions. This can fully demonstrate that EHHO is better than HHO in
both convergence accuracy and speed.

Figure 5. Rastrigin function.
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Figure 6. Ackley function.

Figure 7. Booth function.

Figure 8. Easom function.

6.2. Analysis of the EHHO-GRU Model Results for the NSL-KDD Dataset

In the NSL-KDD dataset, it is important to note that 24 attack types appear in the
training set and 38 attack types appear in the test set, meaning that 14 new attack types
appear in the test set (and none in the training set). In order to address this situation
which would lead to the neural network not being able to correctly classify the test set after
training, this paper will first perform a binary classification test on the NSL-KDD dataset
by setting the new label to 0 except for the one with the classification label of normal,
and setting the abnormal traffic of the rest of the labels to 1. After this treatment, the test
set contains labeled data that did not appear in the training set, which can better detect the
detection model’s Generalisability. The number of iterations of the feature subset solving
algorithm was 1500 and the number of iterations of the GRU neural network was 3000,
and the detailed experimental results of the binary classification are shown in Table 7 below.
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Table 7. Experimental results of NSL-KDD binary classification.

Method GRU PSO WOA GA HHO EHHO

Feature
dimension 41 11 5 5 5 6

accuracy 78.34% 77.94% 79.77% 81.42% 79.97% 82.47%

precision 96.84% 96.79% 95.02% 94.58% 96.07% 96.23%

recall 64.03% 63.34% 68.03% 71.46% 67.58% 72.02%

f1-score 77.09% 76.57% 79.29% 81.41% 79.34% 82.38%

Fpr 2.76% 2.78% 4.72% 5.41% 3.66% 3.73%

The histogram is shown in Figure 9.

Figure 9. Binary classification histogram of NSL-KDD.

According to the table above, it can be seen that after the neural network has completed
training on the training set, the test set contains 14 labeled data that are not available in the
training set, resulting in a GRU neural network without feature selection The accuracy of
the detection model with the subset of features solved by the optimization algorithm and
then fed into the neural network for training was higher than that of the neural network
without feature selection, except for the Particle Swarm Optimisation (PSO) + GRU model,
which was less accurate than the original version. The accuracy of the neural network
classification was still higher than that of the model without feature selection, even though
the feature dimensionality was sharply reduced to one-eighth of the original version.
The EHHO+GRU model with the highest accuracy was 2.5% more accurate than the
HHO+GRU model, and 4.13% more accurate than the model without feature selection,
while sharply reducing 35 redundant features and having a higher recall and f1-score than
the GRU model. And the multi-classification tests for the NSL-KDD dataset are shown in
Table 8 below.
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Table 8. Multi-classification experimental results of NSL-KDD.

Method GRU PSO WOA GA HHO EHHO

Feature
dimension 42 9 8 10 9 8

accuracy 86.27% 85.14% 84.14% 86.13% 84.13% 86.85%

normal tpr 96.72% 98.89% 97.11% 97.29% 98.23% 97.52%

normal fpr 24.89% 29.56% 29.71% 25.81% 30.95% 24.55%

DoS tpr 98.92% 83.23% 93.12% 95.21% 77.83% 97.46%

DoS fpr 0.43% 1.06% 0.48% 0.38% 0.54% 0.36%

r2l tpr 0.23% 0.00% 0.00% 0.00% 7.05% 0.00%

r2l fpr 0.04% 0.00% 0.07% 0.03% 0.28% 0.02%

probe tpr 99.37% 52.08% 91.32% 99.28% 69.62% 99.46%

probe fpr 1.67% 5.73% 1.32% 2.17% 5.27% 1.97%

u2r tpr 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

u2r fpr 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

As can be seen in Table 8 and Figure 10, the EHHO+GRU model is the most accurate
of all, with only about one-eighth of the original dimensionality of the features selected.

Figure 10. Multi-classification histogram of NSL-KDD.

6.3. Analysis of the EHHO-GRU Model Results for the UNSW-NB15 Dataset

After eliminating some redundant data columns such as dates, the UNSW-NB15
dataset is described in this paper using 42 features, which are labeled as 0 and nine different
1 types. Therefore both binary and multiclassification performance tests are conducted
on this dataset in this paper, where the results of the binary classification experiments are
shown in Table 9 and Figure 11 below.
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Table 9. The results of the UNSW-NB15 binary classification experiment.

Method GRU PSO WOA GA HHO EHHO

Feature
dimension 42 19 23 18 11 20

accuracy 74.08% 87.04% 75.56% 88.37% 89.33% 90.26%

precision 99.59% 98.31% 98.7% 98.57% 98.62% 96.96%

recall 62.18% 82.38% 64.94% 84.13% 85.51% 88.46%

f1-score 76.56% 89.64% 78.34% 90.78% 91.6% 92.52%

Fpr 0.55% 3.02% 1.82% 2.59% 2.54% 5.92%

Figure 11. Binary classification histogram of UNSW-NB15.

This is because the training data in the UNSW-NB15 dataset is less than one-half
of the test data, which reduces the classification performance of the normal GRU neural
network on the test set. The remaining five detection models using the optimization
algorithm for feature selection showed substantial improvements in all four evaluation
metrics, with the HHO+GRU model achieving 89.33% classification accuracy using a
subset of 11-dimensional features, an improvement of 15.25%, and 15.04% improvement
in f1-score, while the elevated EHHO+GRU model achieved the highest accuracy despite
using 20-dimensional features, but achieved the highest accuracy, recall and f1-score.

The paper next conducts a multi-category experiment on this dataset, the results of
which are shown in the table below, where the data imbalance problem is particularly
severe due to the under-representation of Analysis, Backdoor, Shellcode, and Worms.
The statistical tables are shown in Table 10 and Figure 12.

As can be seen from the above table, the overall accuracy of the model using all
42-dimensional features is only the lowest at 74.01%, with a false positive rate of 37.86% for
normal tags, which is particularly serious as an abnormal traffic detection model, meaning
that a large amount of abnormal traffic is labeled as normal traffic. The overall accuracy
of the detection models with optimized algorithm feature selection exceeds 85%, with the
elevated EHHO+GRU model using a 22-dimensional feature subset having the highest
overall accuracy, as well as the lowest false alarm rate for the normal tag and the highest tpr
for the Fuzzers, DoS, and Reconnaissance tags, this shows that the proposed EHHO+GRU
anomaly traffic monitoring model has the best overall performance in the UNSW-NB15
dataset for both binary and multi-classification performance evaluation.
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Table 10. The results of the UNSW-NB15 multi-classification experiment.

Method GRU PSO WOA GA HHO EHHO

Feature
dimension 42 19 11 16 16 22

accuracy 74.01% 85.97% 86.45% 88.17% 86.14% 88.67%

Normal TPR 99.3% 98.41% 98.79% 98.62% 98.45% 97.76%

Normal FPR 37.86% 17.77% 19.35% 16.74% 19.64% 15.6%

Generic TPR 97.87% 97.9% 98% 97.78% 97.85% 97.78%

Generic FPR 0.1% 0.21% 0.33% 0.15% 0.14% 0.04%

Exploits TPR 7.06% 54.3% 54.76% 54.95% 51.18% 53.66%

Exploits FPR 2.09% 3.74% 3.46% 3.62% 3.52% 3.89%

Fuzzers TPR 4.09% 8.66% 6.42% 7.8% 9.07% 12.4%

Fuzzers FPR 0.37% 0.59% 0.51% 0.66% 1.41% 0.99%

DoS TPR 64.2% 70.14% 71.71% 72.97% 70.21% 73.88%

DoS FPR 9.85% 10.6% 10.73% 10.96% 10.69% 11.02%

Reconnaissance
TPR 33.92% 42.64% 43.35% 69.96% 41.46% 71.9%

Reconnaissance
FPR 0.09% 0.44% 0.67% 0.41% 0.66% 0.6%

Analysis TPR 0% 0% 0% 0% 0% 0%

Analysis FPR 0% 0% 0% 0% 0% 0%

Backdoor TPR 0% 0% 0% 1.83% 0% 0%

Backdoor FPR 0% 0% 0% 0% 0% 0%

Shellcode TPR 33.54% 6.62% 8.21% 0% 0% 0%

Shellcode FPR 0.35% 0.09% 0.04% 0% 0% 0.01%

Worms TPR 0% 0% 0% 0% 0% 0%

Worms FPR 0% 0% 0% 0% 0% 0%

Figure 12. Multi-classification histogram of UNSW-NB15.
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6.4. EHHO-GRU Model Analysis of CICIDS2018 Dataset Results

This experimental dataset was experimented with batch processing due to the large
amount of data, Batch size = 64, the number of iterations of the optimization algorithm
To = 200, and the number of iterations of the neural network was 200. The results of the
binary classification experiment are shown in Table 11 and Figure 13.The confusion matrix
of the classification results of the GRU method and the EHHO method in this dataset is
shown in Figures 14 and 15.

Table 11. The results of the CICIDS2018 binary classification experiment.

Method GRU PSO WOA GA HHO EHHO

Feature
dimension 80 18 6 5 11 11

accuracy 94.57% 93.94% 94.06% 93.66% 94.15% 94.20%

precision 99.87% 98.93% 98.33% 98.3% 99.38% 99.51%

recall 92.64% 92.65% 93.41% 92.87% 93.41% 92.48%

f1-score 96.12% 95.69% 95.81% 95.51% 95.83% 95.86%

Fpr 0.31% 2.65% 4.22% 4.26% 1.53% 1.22%

Figure 13. Binary classification histogram of CICIDS2018.
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Figure 14. Confusion Matrix of GRU.
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Figure 15. Confusion Matrix of EHHO.

As can be seen from the table, the GRU model using all 80-dimensional features has
the highest accuracy, but also has the highest false alarm rate. The training of data with
80-dimensional features is very slow and requires a lot of computational resources, while
the detection model after feature selection can reduce the feature dimensionality to as low
as one in sixteen, with a slight decrease in accuracy. In contrast, the EHHO+GRU model
in this paper reduces the feature dimensionality to one-eighth, with a 0.37% decrease in
accuracy, and fpr also only increased by 0.9%.

7. Conclusions

The Harris Hawks optimization algorithm has been a relatively new meta-heuristic
optimization algorithm in recent years. The experimental results of binary and multi-
classification of NSL-KDD and UNSW-NB15 datasets show that the model has better
performance, which not only greatly reduces the feature dimension of the dataset, but also
reduces the learning time of the neural network, and can also improve the accuracy,
precision, recall, and f1-score of the anomalous network traffic detection system. The EHHO-
GRU method is used to select features and dimensionality reduction even reaches 90%
in the CICIDS2018 data set. However, the method is not tested on the full CICIDS2018
dataset owing to its size and can’t address the data imbalance problem that occurred
in the UNSW-NB15 dataset, causing a very low accuracy in classifying a relatively small
proportion of labels. Since the study focuses on metrics such as the accuracy of the detection
method on the test set, EHHO’s testing is relatively simple. From there, in the future
work I will focus on improving the generality of the proposal and testing it in a real
experimental environment.
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