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Abstract: The article discusses an approach to the construction and operation of a proactive system
for protecting smart power grids against cyberattacks on service data transfer protocols. It is based
on a combination of computational intelligence methods: identifying anomalies in network traffic
by evaluating its self-similarity, detecting and classifying cyberattacks in anomalies, and taking
effective protection measures using Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) cells. Fractal analysis, mathematical statistics, and neural networks with long short-term
memory are used as tools in the development of this protection system. The issues of software
implementation of the proposed system and the formation of a data set containing network packets
of a smart grid system are considered. The experimental results obtained using the generated data
set demonstrated and confirmed the high efficiency of the proposed proactive smart grid protection
system in detecting cyberattacks in real or near real-time, as well as in predicting the impact of
cyberattacks and developing efficient measures to counter them.
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1. Introduction

World trends in information and telecommunication technologies based on digital
methods of information transmission, processing, storage, presentation, and protection
consist in the mutual penetration and “merging” of information and telecommunication
systems not only at the level of technologies for their development and operation, but
also their structural and functional association. In this case, the term “data transmission
network” (DTN) is widely used [1].

There is an integration and convergence of networks and services. This provides users
with access to any service available in multiple networks, due to the flexible possibilities for
their processing and management. As a result, on the one hand, the efficiency, reliability,
economic benefits, and sustainability of the DTN operation increase. On the other hand, it
gives the malefactors the opportunity to act by implementing cyberattacks (CAs) [2].

There are many reasons why it becomes possible to implement CAs. It can be an
operating system or other software that has not been updated in time. In addition, outdated
security features or vulnerabilities inherent in poorly protected network protocols can lead
to attacks. As a result, an attacker can perform various malicious actions, such as blocking
network communication, making unauthorized access to DTN devices, controlling traffic,
changing network device parameters, and other actions.

The category of dangerous services includes services whose placement on the perime-
ter carries increased risks: file system access services, Remote Procedure Call (RPC), direc-
tory services, printers, virtualization system service interfaces, Virtual Private Network
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(VPN), DTN-specific systems, network device services, Telnet, Secure Shell Protocol (SSH),
Remote Desktop Protocol (RDP), Virtual Network Computing (VNC), and others [3]. In
addition, it should be noted that security flaws in service protocols that lead to traffic
redirection and interception of network configuration information, security flaws in the
NetBIOS Name Service (NBNS) and Link-Local Multicast Name Resolution (LLMNR)
protocols, as well as the use of open (unsecured) data transfer protocols in modern DTNs,
have a high level of risk [4]. As practice shows, the vast majority of successful CAs are
based on the exploitation of vulnerabilities in some resources that should not be available
on the network perimeter [5].

This fully applies to information systems in the energy sector, built according to
the Smart Grid (SG) concept. In accordance with this concept, the priority areas for the
development of DTN in the energy sector for the coming years include [6]:

• widespread introduction at new and upgraded measurement points of intelligent mea-
suring instruments—“smart” meters with the function of remote control of the load
profile of the measured line and measuring transducers with standard communication
interfaces and protocols that comply with information security standards;

• installation at each large facility connected to the power grid, advanced automated
information-measuring systems operating in real-time;

• creation of a wide network of integrated communications based on various communi-
cation lines;

• implementation of automated production management systems in energy companies.

The application of modern information technologies (ITs) makes it possible to signifi-
cantly increase SGs operation efficiency, making them more reliable and economical, which,
in its turn, leads to a reduction in the cost of power reproduced or distributed by them.
However, at the same time, there are opportunities to influence SGs by various CAs. A
consequence of this impact is the appearance of anomalies in the SG network traffic [6].

Detecting CAs in SGs is quite a complex task. It is necessary to constantly monitor
security and control network traffic in order to detect anomalous activity in it. If traffic
anomalies are detected, it is necessary to analyze a large number of routes in the network,
where sharp fluctuations in traffic, delays in its transmission, or large packet losses appear.
At the same time, a high quality of telecommunications service and application service
should be ensured. All of this is the motivation for finding and developing new methods
and approaches for CAs detection in SGs. Such approaches in this article include an
approach that combines several methods of computational intelligence: the use of fractal
analysis, statistical methods, and machine learning.

It should be noted that a fairly large number of classification and prediction meth-
ods mostly related to anomaly detection [7,8] are currently known and widely used. In
particular, regression-based methods have performed well. These include non-parametric
regression and classification tree method (CART) [9], multivariate adaptive regression
splines (MARS) [10,11], support vector regression (SVR) [12] and others. Regression-based
methods demonstrate high classification and prediction performance if their parameters
are well-tuned. In some cases (for example, for MARS and SVR), it is proposed to use
genetic algorithms to adjust the regression parameters.

However, this does not allow one to speak about the possibility of early detection of
CAs. Therefore, it is believed that the most effective method of classification and prediction
is the Long Short-Term Memory (LSTM) neural network algorithm. The LSTM property of
recurrence allows an Artificial Neural Network (ANN) to “refer” to the results of its work
in the past, to analyze predictions. Thus, the content of decisions made to protect SGs from
CAs will depend not only on the results of initial training of the LSTM network, but also
on the results of further operation of this network in the flow [13,14].

The key parameter of fractal analysis is the Hurst exponent. This measure is used in
the analysis of time series. The Hurst exponent shows the amount of delay in the time
series between two identical pairs of values. The bigger it is, the smaller this parameter is.
To find this parameter, it is first necessary to check the process under study for stationarity.
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The presence or absence of stationarity of the process influences the choice of the algorithm
by which the scaling index can be calculated.

Fractal properties are more pronounced in non-stationary network traffic, which is
predominant in SGs on large data scales. On small amounts of data, or in application layer
protocols of the TCP/IP (Transmission Control Protocol/Internet Protocol) model, network
traffic can be stationary and show less fractal properties. In this case, machine learning
methods are used for further analysis.

Thus, in order to detect and classify the CAs, first, it is necessary to determine whether
the traffic is stationary or non-stationary. Next, you should calculate the Hurst exponent
(i.e., determine the presence of the self-similarity property in the traffic). In the final stage,
anomalies are detected and measures are developed to protect the SG using LSTM [6,15].

The main contribution of this work is as follows: (1) the structures of long-term depen-
dencies in the SG traffic were studied, which made it possible to identify its characteristic
features in the interest of the early detection of CAs; (2) a new approach to the detection of
CAs based on the study of the fractal properties of traffic has been proposed; (3) the LSTM
structure was substantiated, which makes it possible to detect SC with a probability of
0.99; (4) a software prototype was developed that implements the proposed system, and a
dataset was generated with SG traffic containing anomalies from the impact of both known
and unknown CAs; (5) a comparison was made with other methods of machine learning in
identifying the fact of the impact of CAs; (6) an experimental evaluation of the proposed
system was carried out, showing its rather high efficiency.

The significance of the new contribution lies in the fact that the detection of CAs is
performed using an autoencoder trained on the basis of the reference data of the SG operation
and the information exchange in it, taking into account all deviations from the SG regular
operation. During operation, the autoencoder is additionally trained by a validated neural
network. The result is a generative adversarial network in which neural networks learn from
each other. This made it possible to reduce the time for detecting anomalies in network traffic
and increase the probability of detecting unknown computer attacks up to 0.8.

The proposed approach has a number of methodological and technical limitations.
Methodologically, the approach is limited to the use of the most well-known methods of
fractal analysis, which include the Dickey–Fuller test, the rescaled range (R/S) analysis,
and the Detrended Fluctuation Analysis (DFA) method, and one of the most promising
ANN models, which is the LSTM model. The technical limitations are determined by the
computing power of the environment, on which the autoencoder and the neural network are
trained, as well as by obtaining a reference sample of the SG operation, taking into account
all deviations from the normal operation mode. The training quality of the generative-
adversarial network and the detection efficiency of known and unknown CAs depend on
the quality of the sample made. Since the autoencoder is additionally trained by the ANN,
an incorrect sample can break the ANN operation logic.

The novelty of the results obtained lies in the fact that, based on experimental studies,
the best method for determining self-similarity for non-stationary and stationary time series
is substantiated, which allows detecting changes in traffic with high accuracy and quickly,
and the structure of the LSTM neural network is determined, which provides high accuracy
and can sufficiently quickly predict the impact of CAs and allows developing proactive
protection measures. This is a significant advantage of the proposed system.

This work is a continuation of the studies published in [6] and is devoted to testing
the possibility of using fractal analysis methods for detecting CAs against smart power
grids. The difference in this work lies in the addition of neural network analysis methods
using LSTM networks to fractal analysis methods. This approach, in contrast to [6], allows
one not only to detect anomalies in the SG traffic, but also to identify the types of CAs that
are the causes of these anomalies.

For this purpose, we propose the structure of an autoencoder trained on the normal
data of the SG network operation, considering possible deviations from the SG normal
operation. The complex use of fractal analysis methods, autoencoder, and LSTM network
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forms the basis of the SG proactive protection system, which is able to detect both known
and unknown CAs.

The article has the following further structure. Section 2 is devoted to the analysis of
known works in the research field. The theoretical foundations of the proposed proactive
CA detection system, which is based on the fractal analysis of the network traffic and
their subsequent processing using LSTM networks, are discussed in Section 3. A general
description of the proposed system is given in Section 4. Section 5 presents the experi-
mental evaluation results. Section 6 is a discussion of the experimental results and their
comparative evaluation. Final conclusions and directions for further research are contained
in Section 7.

2. Related Work

Fractal analysis, which studies the properties of self-similarity, is currently in a phase of
active development. Fractal analysis is widely used for state monitoring problems, in which
time series are investigated. For example, [16] proposes to use the R/S analysis method to
analyze the self-similarity of time series. The self-similarity properties of the Voice Over
Internet Protocol (VoIP) traffic are modeled and studied in [17]. The fractal dimension,
which is an additional measure with respect to the Hurst exponent, is investigated in [18].
The reasons explaining the presence of self-similarity properties in telecommunication
traffic are given in [19]. However, the main area of research in all these papers, as a rule, is
both VoIP-telephony and economic systems.

At the same time, it should be noted that there are few practical experiments aimed at
studying the fractal properties of the network traffic in information and telecommunication
systems. Among such works, we can single out works [20–22]. However, [20] considers
the mobile communication traffic generated by cellular stations. The authors conclude that
the properties of self-similarity are inherent not only in computer and telecommunications
networks, but also in the radio waves on which cellular stations operate. Self-similarity of
motion is considered in [21,22]. To detect it, it is proposed to use visual cues, which allow one to
find similar areas on the motion graph. These areas allow one to identify self-similar processes.

One of the first works, in which the main attention was paid to the self-similarity
property of the network traffic, is the work [11]. It significantly changed the existing ideas
about the processes taking place in information and telecommunication networks. These
issues will be discussed in more detail in the next section. In addition, we should mention
some works in which the mathematical models designed to describe self-similarity in
network traffic have been proposed and investigated [23,24]. However, these works cannot
be considered exhaustive, since they did not consider the issues of CA detection. Conse-
quently, we can assume that our work, on the one hand, further develops the theoretical
positions achieved in the study of the fractal properties of the network traffic. On the other
hand, it develops the well-known solutions further in the direction of creating a method
that makes it possible to detect network traffic anomalies caused by the impact of CAs.

At the same time, it should be noted that when considering threats to SG security,
one should be guided by the following two indicators that characterize these threats.
The first indicator is the probability of the threat realization. The second indicator is the
potential damage that can be incurred by the power company in case of security threat
realization [6,14]. Considering and combining these indicators, it is possible to substantiate
the choice of the most acceptable threat models for SGs and to create protection systems for
them, in which the decisions made would allow one to minimize security risks.

The first group [25–31] summarizes the techniques based on quantitative criteria.
Thus, [25] proposes to use the acceptable level of the possible damage from information and
technical impact on SG resources and the assessment of the profit factor from investments
in protective measures as a measure to rank threat models. Quantitative methods comply
with the requirements of ISO 27,001 and 27,002, NIST, and COBIT IV [26,27]. Although
these methods take into account the predetermined risk appetite, they do not consider
the variability in the construction of the SG protection system [28]. In addition, one of the
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significant disadvantages of the aforementioned methods is the high cost and complexity
of their implementation [29]. At the same time, the complexity of quantitative methods
is due to the need to take into account each potential security threat in the formation of
options for counteracting CAs and developing solutions to eliminate the consequences of
CAs [30]. For these purposes, [31] proposes to perform the ranking of security SG risks.
Although this technique is undoubtedly of interest, it contains a number of negative factors
associated with the problem of cloud resources.

The second group of methods [32–35] received the generally accepted name of qual-
itative methods. These methods apply qualitative indicators and criteria for the char-
acterization of SG security threats. The essence of qualitative methods is the search for
such a solution, in which the necessary balance is observed between the costs spent on
building the protection system and the effect achieved with its help. Such methods form a
direction called Cost/Benefit Analysis. In these methods, basically, different positions of
the game theory, for example, matrix games are used. Speaking about the disadvantages of
qualitative methods, it is necessary to point out their comparatively high computational
complexity. It is due to the need to conduct a security risk analysis in order to make an
economic justification for the introduction of protection mechanisms and means for various
threat models into SG protection systems. Methods using qualitative criteria are similar in
essence to the Facilitated Risk Analysis Process (FRAP) method [36,37].

The third approach [38–41] is an integrated one; it rationally combines the first and
second groups of methods. Most often, the methods of this group find their application in
small and medium-sized energy companies. The disadvantages of these methods include,
as a rule, a very small amount of analytical data characterizing the potential damage under
the given models of CA realization, as well as insufficiently complete risk assessment.

Besides, the works [42,43] present a structured approach to assessing the threat model
for information and telecommunication resources (methods “CRAMM”, “MEHARI”). Here
an integrated representation of the information security threat parameters is performed,
but the specificity of building the SG protection system is practically not considered.

There is a well-known methodology for managing the information security system—
Microsoft Security Assessment Tool (MSAT) [44,45]. This tool uses a mechanism for ranking
threat models. In addition, the tool provides countermeasures for SG security threats and
evaluates their effectiveness. However, the tool is not scalable enough. That is why in SG
it is usually implemented in local computing networks or in companies with fewer than
1000 employees. The Risk Management Guide [34] is the basis for this tool’s design and
operation. Among the main functions performed by the tool, in addition to risk assessment
and decision support, one can include performance monitoring and evaluation [13].

Thus, all the considered approaches to CA early detection and prediction are based
either on an in-depth analysis of possible risks (probable damage), or on a selective ranking
of threats and defenses. In our opinion, these approaches are insufficient to protect SGs from
CAs. For this reason, this article discusses the key points of building an improved system
for CA early detection, which can be called proactive. The proactivity of the system lies
in the fact that it implements anomaly detection in the network traffic, their identification,
and classification based on fractal analysis methods, and a neural network with a long
short-term memory, which allows one to reduce risks in the implementation of CAs. The
consideration of the proposed system is architecture-oriented. On the one hand, it goes
beyond an abstract representation, and on the other hand, it does not pay much attention
to technical details. We conclude this article with a detailed look at the proposed active
security solutions for SGs and their implementation.

3. Theoretical Foundations of the Proposed System
3.1. Stationarity of Temporary Traffic

Consider the autoregressive process in general terms:

xt = C + ∑p
i=1 ϕiXt−i+ ∈t +∑q

i=0 θi ∈t−1 (1)
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where ϕp, θq 6= 0 are the model parameters, C is a constant, ∈t is a white noise, xt−i is a
previous element of the time series.

The model can be interpreted as follows: the current value depends on past values up
to lag p and on current and past external shocks up to lag q. To write the autoregressive
process, it is convenient to use the lag operator L. The lag operator allows one to obtain the
values of the elements of the time series based on several previous values. A lag operator
of order i is an operator that shifts the value of the time series xt by i values back, i.e.,
Li : xt → xt−i . Using lag operators, the autoregressive process can now be written more
visually as follows:

xt = C + ∑p
i=1 ϕiLiXt+ ∈t +∑q

i=0 θiLi ∈t (2)

Let us rewrite as follows, moving the autoregressive part to the left side of the equality:(
1−∑p

i=1 ϕiLi
)

xt = C +
(

1 + ∑q
i=1 θiLi

)
∈t (3)

Now we introduce two polynomials of degree p and q:

ϕ(z) = 1−∑p
j=1 ϕjzj = 1− ϕ1z− ϕ2z2 − . . .− ϕpzp (4)

θ(z) = 1 + ∑q
j=1 θjzj = 1 + θ1z + θ2z2 + . . . + θpzp (5)

where ϕj and θj are polynomial coefficients depending on the monomial z, which is a
complex number.

Then the autoregressive model can be formally written as ϕ(L)xt = C + θ(L) ∈t,
where ϕ(L)x is the autoregressive part of the polynomial, and θ(L) ∈t is the moving
average part.

The time series is stationary if all roots of the autoregressive polynomial
ϕ(z) = 1− ϕ1z− . . .− ϕpzp lie outside the unit circle of the complex plane

∣∣zj
∣∣ > 1 (that is,

they are greater than 1 in absolute value). The inequality
∣∣zj
∣∣ > 1 is satisfied if

∣∣ϕj
∣∣ < 1.

Consequently, the relation
∣∣ϕj
∣∣ < 1 is a condition of stationarity of the autoregressive

process.
In addition, for a stationary process, the average is constant in time Ext ≡ const,

i.e., the time series does not have a trend, and the covariance between different elements
of the time series depends only on how far they are from each other in time. In other
words, the covariance depends only on the lag h cov(xt, xt+h) = γ(h). The value h, which
characterizes the difference in time between the elements of the time series, is called a lag
variable or delay. Since γ(0) = cov(xt, xt) = Var(xt), the variance of the stationary time
series also does not change with time.

Thus, to test the hypothesis of stationarity of the series, the generalized Dickey–Fuller
test is used, and to determine anomalous activity in the network, we are guided by the
principle of self-similarity for non-stationary traffic, which is violated when anomalous
activity occurs. R/S or DFA algorithms are used to calculate the self-similarity property.
The first one is faster, and the second one is more accurate. The process is non-stationary if
these conditions are violated.

3.2. Self-Similarity Analysis in Network Traffic

Many natural processes are characterized by distributions with heavy tails. Such
distributions include the Pareto, Cauchy, Levy, and Weibull distributions, as well as the
lognormal distribution. An important feature of exponential distributions is the realization
of events that deviate strongly from the norm. Such distributions can be applied to model
network traffic intensities and rates that have large, theoretically infinite variances.

The lognormal distribution is the earliest model of self-similar traffic. It is used to model
network packet arrival intervals and file sizes transmitted [46]. The Weibull distribution is
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applied to model the arrival processes of FTP protocol blocks. The Pareto distribution is used to
model the intervals between requests to web resources and VoIP traffic [17,46].

In our work, network traffic is considered as an aggregation of several flows from
different sources. The aggregated flow, jointly transmitted over communication channels
with infinite variance, leads to self-similar network traffic, which is described by the model
of fractal Brownian motion [47]. If one of the partial flows has self-similarity when aggre-
gating flows, then the resulting aggregate flow will also have self-similarity [24]. In this
case, self-similarity is preserved when aggregating flows coming from both homogeneous
and heterogeneous traffic sources.

Fractal Brownian motion is easily applicable to modeling self-similar traffic. The
process X(t) is called a fractal Brownian motion with the parameter H, 0 ≤ H ≤ 1, if the
increments of the random process have a Gaussian distribution:

P(∆X < x) =
1√

2πδ0τH

∫ x

−∞
exp

[
− z2

2δ2
0τ2H

]
dz (6)

where δ0 is a diffusion coefficient.
Wherein:
(1) X(0) = 0;
(2) ∆X = X(t2) − X(t1) has a normal distribution with zero mean and variance—

δ2(t2 − t1)
2H , 0 ≤ H ≤ 1, where H = 0.5 indicates a random row. The events are random

and uncorrelated. The range of accumulated deviations should increase in proportion to
the square root of time.

As noted above, the Hurst exponent H is a measure of the self-similarity of the process. If
the process has strongly pronounced fractal properties, then H approaches unity. In the absence of
self-similarity H = 0.5 [15]. In this case we speak about fractal Brownian motion, which coincides
with the classical Brownian motion and imposes a large noise on the time series [16,26,27].

3.3. Detecting Anomalous Bursts Using Machine Learning Techniques

There are many ways to identify anomalies. Figures 1–3 demonstrate the operation of
the most popular machine learning algorithms tested on time series generated using an
autoregressive integrated moving average model.
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Figure 1 shows different variants of time series with different values of the threshold
and drift parameters, on which anomalies (changes) are detected using the cumulative sum
method. Detected changes are marked with red dots. It can be seen that the number of
detected anomalies in the time series can be different (from two to 62).



Sensors 2022, 22, 7506 9 of 30

Figure 2 outlines the results of anomaly detection using the support vector machine.
Each observation has two normalized coordinates—Feature 1 and Feature 2. Feature 1
plays the role of the “Packet Delay” characteristic, and Feature 2 displays the “Bandwidth”
characteristic. The white dots indicate the observations that were used in the training set.
Their boundaries are marked with red lines. Testing a new dataset using a trained Support
Vector Machine (SVM) classifier results in a division of observations into normal (purple
dots) and anomalous (yellow dots).

Figure 3 depicts the results of anomaly detection in a time series using an isolated forest.
At points where there are anomalies (red dots), the time series changes the parameters of
its distribution. An isolated forest is good at detecting these changes.

As can be seen from the figures, the algorithms do an excellent job of detecting
anomalous outliers. In this case, the anomaly manifests itself in the form of the non-
stationarity of some observed time series. These are not only instantaneous jumps in the
measurement amplitude, but also slow trends that are practically invisible during the
observation period.

However, when testing the above algorithms on real network traffic, it turned out that
outliers are not always anomalous. Therefore, to study the features of anomaly detection in
SG traffic, a cyber polygon was developed, shown in Figure 4.
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About 30 types of CAs were carried out in the cyber polygon and 40 GB of legitimate
traffic was generated. Network traffic was redirected to Security Onion and written to pcap
files. From this traffic, a dataset was formed using Netsniff-ng and Bro. The attacks were
carried out using the Kali Linux distribution against known vulnerable services deployed
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in the central part of the scheme. Next, a search for anomalous bursts was carried out using
the algorithms of cumulative sums, isolated forest, and SVM. Despite the fact that these
algorithms do an excellent job of finding anomalous bursts, it was found that bursts are not
always anomalies.

For data packet transmission, modern standards, protocols, and technologies for
high-speed electrical networking were considered, such as:

• Fast Ethernet and Gigabit Ethernet suite of standards, which define wired connections
and electrical signals at the physical layer, and packet format and medium access
control protocols at the data link layer;

• wireless transmission standards based on GSM/EDGE and UMTS/HSPA, which allow
data rates of 100 Mbps (with mobile subscribers) and 1 Gbps (with fixed subscribers);

• IEEE 802.11 local wireless networks, which use infrared radiation and radio waves as
the physical transmission medium.

The scenario according to which the message packets are transmitted is stationary
in this case. Sensors were installed in homes, shops, and offices. The Leningrad Nuclear
Power Plant (LNPP) and the South-Western Thermal Power Plant (SWTPP) acted as sources
of electricity. The control over the security of the SG network was ensured by the operator
(the incident monitoring system).

The intercepted traffic was a data set containing information processed by the oper-
ators and dispatching systems of the SG power system. This information included the
following parameters:

• equipment state parameters;
• load parameters for transformers;
• parameters of the distributed measurement system;
• power quality parameters;
• information about the locations of damage and denial of service;
• power factor values;
• profiles and forecasts of electricity consumption, as well as some other parameters.

The SG telecommunications network was considered one of the types of computer
networks. Therefore, we assumed that the telecommunications SG network has the self-
similarity property. Our assumption was later confirmed in the course of experiments.

Based on the fact that the greatest amount of information is stored and transmitted by
the operators and dispatchers of the SG power system, the monitoring system, as well as
the LNPP and SWTPP data transmission networks with control system were selected as
the object for the implementation of the CA.

It was assumed that the ports in the edge network equipment have a bandwidth of
1 Gbit/s [6] and operate over the Ethernet protocol. Traffic generation was performed
using the developed simulation model. The GNS3 framework (Galaxy Technologies, LLC.,
https://www.gns3.com/ (accessed on 20 September 2022)) was used to build this model.

Table 1 shows a list of the main attributes that were included in the dataset generated
with GNS3.

The total number of different Flow.ID values in the dataset was 1,522,917. Address
10.200.7.217, corresponding to SWTPP, was used as Source.IP for 7% of all entries. The
value 10.200.7.218 corresponding to LNPP was in the Source.IP parameter for 8% of all
records. The rest 85% of the entries had other Source.IP values. The generated addresses
10.200.7.7 and 10.200.7.8 were used as Destination.ID field values in 9% of all records.
They corresponded to computer networks located in the “Passage” and “Gostiny Dvor”
shopping centers. The remaining 82% of the records had other values of the Destination.IP
field (their number was 2,939,141).

The self-similarity analysis was performed on the time series formed from the values
of the Packet.Length.Mean field. This attribute in the generated dataset had 10,700 unique
values. The most frequent values were 267.5 and 243.5 [6].

https://www.gns3.com/
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Table 1. The main attributes included in the dataset.

# Attribute Name Comments

1 Bwd.Packet. Length.Max The maximum packet length (in bytes) in the
backward direction

2 Bwd.Packet. Length.Mean The mean packet length (in bytes) in the
backward direction

3 Bwd.Packet. Length.Min The minimum packet length (in bytes) in the
backward direction

4 Bwd.Packet. Length.SD The standard packet length deviation (in bytes) in the
backward direction

5 Destination.IP The destination IP address

6 Destination.Port The destination port number

7 Flow.Duration The total flow duration

8 Flow.ID A flow identifier. It has the following format: Source.IP-
Destination.IP-Source.Port-Destination.Port-Protocol

9 Fwd.Packet. Length.Max The maximum packet length (in bytes) in the
forward direction

10 Fwd.Packet. Length.Mean The mean packet length (in bytes) in the
forward direction

11 Fwd.Packet. Length.Min The minimum packet length (in bytes) in the
forward direction

12 Fwd.Packet. Length.SD The standard packet length deviation (in bytes) in the
forward direction

13 Packet.Length.Mean The mean length value of the packets registered in the
flow (both forward and backward directions)

14 Protocol The transport layer protocol number identification (value
is 6 for the TCP protocol and 17 for the UDP protocol)

15 Source.IP The source IP address of the flow

16 Source.Port The source port number

17 Timestamp Packet capture moment. The value is stored in the
following format: Dd/mm/yyyy HH:MM:SS

18 Total.Backward.Packets The total number of the backward packets

19 Total.Fwd.Packets The total number of the forward packets

20 Total.Length.of. Backward
The total number of bytes in the backward direction

obtained from all the flow (all the packets have
been transmitted)

21 Total.Length.of. Fwd
The total number of bytes in the forward direction

received from all the flow (all packets have
been transmitted)

Two CA types impacted the SG’s simulated infrastructure. These attacks were a DDoS
attack and a “Network and Vulnerability Scanning” attack. Traffic impacted by the first
type of attack was simulated using the IXIA’s IP network test equipment. A distributed
network and SYN Flood, Ping Flood, and UDP Flood methods were used to implement the
first CA type. The second CA type was simulated using IP network scanning tools Nmap
and Xspider. The probing method was used to implement this attack. According to this
method, Nmap or Xspider network scanner simulates an attack aimed at active exploitation
of the analyzed vulnerability.

A SYN Flood attack was simulated as follows. The attacker (client) used the standard
way of opening TCP connections. For this purpose, a SYN packet was sent to an open
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server port. After receiving and processing this packet, the server returned the SYN-ACK
packet. The SYN-ACK packet contained client-specific data taken from the Traffic Control
Unit (TCU) store. In normal circumstances, the client sends back an ACK packet, which
serves as confirmation and allows a TCP connection to be opened. However, in the case of
a SYN attack, the attacker generated and sent multiple repeat requests to the server with
spoofed IP addresses. The server, being the target of the attack, treated them as legitimate
requests. It processed them all and tried to open a TCP connection for them. Ping Flood
and UDP Flood attacks were implemented in a similar way.

Thus, under conditions of CAs, the data set included the additional attributes (flags)
shown in Table 2.

Table 2. Additional dataset attributes.

# Attribute Name Comments

1 ACK.Flag.Count The number of times the ACK (Acknowledged) flag for
packets sent in both directions was 1

2 FIN.Flag.Count
The number of times the FIN flag for sent packets was 1.
Normally the operation ends with the transmission of a

packet in which the FIN is 1

3 RST.Flag.Count The number of times the RST (Reset) flag for packets sent in
both directions was 1

4 SIN.Flag.Count The number of times the SIN (Synchronization) flag for
packets sent in both directions was 1

The type of attacks being modeled was considered during dataset generation and
determined the FIN, SIN, RST, and ACK flags values. For example, the number of single
SIN and ACK flag values increased if the “Network and Vulnerability Scanning” attack
was simulated. Thus, in the traffic used for the experiments described in this article, single
SIN flag values accounted for 20% and single ASK flag values for 60% of all values [6].

Figures 5–8 and Table 3 present the data obtained at the cyber polygon on the protocols
and network parameters under study. Table 3 shows the network protocol parameters
that were studied. Figure 5 shows statistics on retransmitted or dropped packets. Figure 6
demonstrates the dynamics of changes in the number of connections to the server. Figure 7
depicts how the state of the TCP header parameters changed over time during the lifetime
of the IP packet. Figure 7 shows how the packet rate has changed over time.
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Table 3. Network protocol parameters.

No. Name Type Description

1 dbytes integer Destination to source transaction bytes

2 dintpkt float Destination interpacket arrival time

3 djit float Destination jitter (mSec)

4 dload float Destination bits per second

5 dloss integer Destination packets retransmitted or dropped

6 dmeansz integer Mean of the packet size sent by destinations

7 dpkts integer Destination to source packet count

8 dsport integer Destination port number

9 dstip nominal Destination IP address

10 dtcpb integer Destination TCP base sequence number

11 dttl integer Destination to source time to live value

12 dur float Record total duration

13 dwin integer Destination TCP window advertisement value

14 ltime timestamp Record last time

15 proto nominal Transaction protocol

16 res_bdy_len integer Actual uncompressed content size of data

17 sbytes integer Source to destination transaction bytes

18 service nominal http, ftp, smtp, ssh, dns, ftp-data, irc and others

19 sintpkt float Source interpacket arrival time

20 sjit float Source jitter (mSec)

21 sload float Source bits per second

22 sloss integer Source packets retransmitted or dropped

23 smeansz integer Mean of the packet size sent by sources

24 spkts integer Source to destination packet count

25 sport integer Source port number

26 srcip nominal Source IP address

27 state nominal Indicates to the state and its dependent protocol

28 stcpb integer Source TCP base sequence number

29 stime timestamp Record start time

30 sttl integer Source to destination time to live value

31 swin integer Source TCP window advertisement value

32 synack float TCP connection setup time

33 tcprtt float TCP connection setup round-trip time

34 trans_depth integer Represents the pipeline depth into connection

In Figures 5–8, anomalous packets are marked with red dots and normal (legitimate)
packets are marked with green dots. As can be seen from these figures, many bursts are
legitimate and, conversely, in many places where there are no bursts, there are anomalies.
Therefore, the issue of timely detection of bursts of traffic in SG, identification of anomalous
ones from them, as well as classification of detected anomalies in order to predict the fact
of the impact of CAs and develop effective countermeasures is an acute issue.
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3.4. Anomaly Detection with Classifiers

To evaluate the effectiveness of popular classifiers, a dataset was formed containing
correlated parameters with anomalous queries. For this purpose, a correlation matrix was
built (Figure 9).
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The label parameter (the last parameter in the correlation matrix) is an indicator
showing the presence of anomalies. From the parameters presented in the correlation
matrix, 20 parameters were selected that are most correlated with anomalies. They are
outlined in Figure 10.
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The sttl parameter, which indicates the lifetime of the packet during its transmission
from source to sender, is most affected. The dynamics of this parameter with indications
of anomalies (shown in red dots) are demonstrated in Figure 11. The figure shows the
dynamics of the value, which tells the local server how long to keep the packet information
in the IP protocol.
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Figure 11. Packet lifetime from source to sender.

Logistic regression, random forest, and decision tree were chosen as classifiers that
were used at the cyber polygon. These classifiers are not chosen by chance. They have been
widely used in the works of many researchers and in many cases provide a sufficiently high
classification efficiency, including in ensembles of classifiers. To evaluate their effectiveness,
a confusion matrix was calculated. It was used to determine not only the accuracy, but also
the number of false positives. The results of the selected classifiers are shown in Figure 12.
It can be seen that despite the high efficiency of the classifiers used at the cyber polygon,
they all had a large number of false positives.
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Figure 12. Comparing the efficiency of classifiers.

For Logistic Regression the First Kind Error is 39%. The Random Forest algorithm has
56% of false positives. The Decision Tree algorithm also shows quite aggressive behavior,
which is caused by the First Kind Error, equal to 43%.

The obtained results confirm that the main problem of known classifiers is the poor
ability to recognize previously unknown anomalies.

4. General Description of the Proposed System
4.1. Stages of System Operation

To detect anomalies in smart power grids from cyber attacks, a proactive protection system
is proposed. The scheme of operation of this system contains the following stages (Figure 13):

• collection of network traffic;
• stationarity check;
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• preparation of initial data;
• fractal analysis;
• machine learning.
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Initially, after traffic is collected, it is checked for stationarity. To calculate the Hurst
exponent in stationary traffic, R/S analysis is used, and in non-stationary noisy traffic with
time-varying characteristics, DFA analysis is used. The procedure for estimating the Hurst
exponent based on R/S and DFA analysis was considered in detail in [6,48].

Next, the detected anomalies are processed in order to predict the fact of the impact
of cyber attacks. To do this, a hybrid neural network consisting of an autoencoder and a
classifier is used as a machine learning method.

An autoencoder is a feed-forward neural network that reconstructs the input signal
at the output. Inside it has a hidden layer, which is the code that specifies the model. The
autoencoder is designed to be able to exactly copy the input to the output.

It is proposed to use cells with LSTM as autoencoder layers in the system. The
architecture of the LSTM and the algorithm of its operation were considered in detail
in [13,49]. Therefore, further, we will consider in more detail the operation of the developed
SG protection system against CAs on service data transfer protocols.

4.2. Software Implementation

For the software implementation of the proposed CA detection system (Figure 14),
the Python language was chosen. Pandas library, written in the programming languages
C, Cython, and Python, was used for data processing and analysis. As a result, Python,



Sensors 2022, 22, 7506 19 of 30

despite its high availability, becomes quite a powerful tool for data analysis. It allows one to
perform groupings, create pivot tables at a high level, and have easy access to tabular data.
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In addition to the Pandas library, we used the NumPy library, which is a lower-level
toolkit that allows one to work with multidimensional arrays (tensors) and high-level
mathematical functions. The Matplotlib module was used to build graphs. Necessary
calculations were carried out in the integrated development environment Jupiter notebook.
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In order to intercept the request, a middleware layer (framework Django) was used. It
is a middleware framework that allows one to process requests from the browser before
they reach the server, as well as to handle responses before they are returned to the browser.

To test the stationarity of traffic, an experiment was carried out, which consisted in
plotting the distribution of lengths between two identical characters and estimating the
stationarity of the resulting series using the Dickey–Fuller test.

Next, preprocessing and normalization of the resulting sample were performed. Vector
representation of characters was used, since the HTTP protocol is a text-based protocol. To
implement this method of representation, all the characters available in the dataset were
replaced by numeric equivalents (tokens), which have no independent application. Then
the words were translated into a sequence of sequences.

An example of the resulting array of sequences is shown in Figure 15.
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It was taken into account that all sequences must have the same length. If the request
length was less than the sequence length, the missing characters were replaced by zeros.

4.3. Subsystem for Determining the Stationarity of Network Traffic

Using the Dickey–Fuller test, the value of the autoregression coefficient α is checked
in the first-order autoregressive equation AR(1):

yt = α · yt−1 + εt , (7)

where yt is a time series and ε is white noise, t = 1, . . . , T.
1. If H1 : α < 1, then the series yt will be stationary, yt ∼ I(0) and the Ordinary least

squares (OLS) estimator α̂ will have a normal distribution with zero mean and variance α̂.
To test the unit root hypothesis, an OLS estimator α̂ is constructed:

α̂ =
∑T

t=1 yt−1yt

∑T
t=1 y2

t−1

(8)

and the corresponding t-statistic:

tα =
α̂− 1

S/
√

∑T
t=1 y2

t−1

(9)

where S2 = T−1 ∑T
t=1 (yt − α̂yt−1)

2 is the estimated variance of the residuals.
If the value of statistic tα lies to the left of the critical value at the 5% significance level,

i.e., tα < t5%
critical, then the time series is stationary.

2. If H0 : α = 1, then the distribution of this estimate will no longer be normal, and the
process yt will be non-stationary with a time-dependent variance yt ∼ I(1). In this case, to
model the dynamics of such a series, it is necessary to use its first difference ∆yt = yy− yt−1.
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Under the null hypothesis, the normalized bias statistic T(α̂− 1) and the t-statistic tα have
non-standard marginal Dickey–Fuller distributions:

T(α̂− 1)⇒
∫ 1

0 W(r)dW(r)∫ 1
0 W2(r)dr

and tα ⇒
∫ 1

0 W(r)dW(r)√∫ 1
0 W2(r)dr

(10)

where W(r) is the standard Wiener process (Brownian motion).
If tα > t5%

critical, then the time series is non-stationary.

4.4. Subsystem of Anomaly Analysis in a Stationary and Non-Stationary Network

To detect anomalies in a stationary network, it is proposed to use a hybrid neural net-
work model (Figure 16) created on the TensorFlow framework using the Python language.
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network model (Figure 16) created on the TensorFlow framework using the Python 

language. 
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The autoencoder model consists of Gated Recurrent Units (GRUs), which are elements of
the LSTM neural network. Data up to 699 symbols are fed to the input of the neural network.
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The neural network has several output layers. The output layer of an autoencoder
has exactly the same dimension as the input layer. The classifier has one output layer. It
determines if the request is anomalous or legitimate.

5. Experimental Evaluation of the System

Non-stationary network traffic received using the created cyber polygon was divided
into legitimate (Figure 17) and anomalous (Figure 18) samples.
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The analysis showed that in order to detect anomalous behavior in traffic, it is enough
to analyze its main parameters. There is no need to study the contents of each packet.
Examples of anomalies detected based on traffic telemetry analysis are a sudden increase
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in traffic from a workstation or a change in its structure compared to normal daily rates for
a given network device.

For each sample, the Hurst exponent was calculated using the R/S algorithm.
Figure 19 depicts an example of calculating H for non-stationary traffic, which showed

the result H = 1.378.
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In turn, the Hurst exponent exceeding the maximum value of 1 confirms the presence
of anomalies in network traffic.

To quickly find anomalies caused by CAs, the network stream is first divided into groups.
The Hurst exponent is then calculated for each of the groups. The result of such processing is
shown in Figure 20. In this example, 10,000 points were divided into 20 groups.
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The threshold corresponding to the white noise boundary (H = 0.5) is indicated by
the blue line. The points on the second graph correspond to the number of packet groups
(30 points in total). On the third graph, the dots correspond to the number of scales (12 dots in
total). The number of scales affects the accuracy and duration of the algorithm. Increasing the
number of scales increases accuracy, and decreasing the number of scales decreases accuracy.

Figure 20 shows the Hurst exponent for all groups of packages, which is above the
0.5 mark. This indicates self-similarity properties for each of the network traffic groups. The
third graph (logarithmic regression graph) shows the Hurst exponent for all data, which
confirms the presence of fractal properties and repetitive processes.

Next, we tested abnormal network traffic received during a DDoS attack and a cyber-
attack “Scanning the network and its vulnerabilities”. The result of calculating H for this
anomalous traffic is shown in Figure 21. It can be seen that in this case the self-similarity
property is violated, since the Hurst exponent at each of the intervals has a value less than
the threshold of 0.5.
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Figure 21. Computing H for abnormal UDP traffic.

The training dataset includes both legitimate and anomalous traffic. Only legitimate
traffic was fed to the input of the autoencoder. The classifier input received legitimate and
anomalous traffic, as well as hidden latent representations received from the autoencoder
after encoding the information. The results of the selection of the neural network parameters
are shown in Figure 22. The selection of parameters was carried out in such a way that
the loss function during training of the autoencoder decreased, while the accuracy of the
classifier grew.
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Figure 23 demonstrates the results of estimating accuracy growth and loss reduction
over 30 training epochs.
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Figure 23. Decoder and classifier training on 30 epochs.

To empirically evaluate the generalizing ability of the neural network, a 10-fold
stratified K-Folds cross-validator was used on unique data with the most uniform use of
available data (Figure 24).
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After training the neural network, an experiment was conducted to assess the accuracy
and completeness of the detection of known anomalies. First, a dataset with CAs of the
same type was used as in the dataset when training the model. The anomaly detection
result showed a value of 96.9%.

Then a new dataset was formed containing CAs previously unknown to the classifier
(“0-day” attacks). The algorithm recognized 80% of previously unknown attacks. At the
same time, it determined that 99% of legitimate requests are not anomalous.

It has been observed that the system allows false positives. In particular, two requests
were dropped by the neural network. Examples of such false positives in the system are
shown in Figure 25.
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Given the fact that the dataset contained 57,000 queries, of which 20,000 were anoma-
lous, the value of 2 is not a significant drawback of the proposed approach.

6. Discussion

Experiments have shown that SG network traffic has fractal properties. In other words,
in large volumes this traffic has the property of self-similarity.

In addition, experiments have shown that the proposed proactive SG protection system
upon detection of CAs based on the assessment of self-similarity of system functioning
parameters using fractal indicators and predicting the fact of the impact of CAs by applying
the proposed structure of the LSTM neural network has fairly high efficiency in detecting
both known and unknown CAs. The probability of detecting known CAs is 0.96, and
“0-day” attacks is 0.8.

A comparative evaluation of the proposed approach was carried out with intrusion
detection systems (IDS) and intrusion prevention systems (IPS), which were based on
signature [50], statistical [51], and machine learning methods [52,53].

The results of this assessment are shown in Table 4. It demonstrates the detection rate
(in seconds) and detection accuracy of known and unknown CAs types. In addition, the
table indicates what type of traffic the method is suitable for.

Table 4. Comparative analysis of methods for detecting cyber attacks.

Method Name
Detection

Rate (s)

Detection Accuracy Traffic Type

Known
Attacks

Unknown
Attacks Stationary Non-Stationary

Signature methods [50] 5 0.99 0.5 + -

Statistical methods [51] 30 0.92 0.6 + -

Machine learning
methods [52,53] 28 0.72–0.97 0.8 + -

Proposed method 5 0.96 0.8 + +

Table 4 shows that signature methods and the proposed method are the fastest in
terms of detection rate. Also, because signature methods use predefined rules, they have
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the highest accuracy in detecting known attacks. However, their accuracy in detecting
unknown attacks is very low. A value of 0.5 indicates that this accuracy corresponds to the
law of equiprobability.

Statistical methods lose out to signature methods in terms of detection rate and
accuracy, since they use accumulated statistics. However, sometimes they are able to detect
unknown attacks.

Machine learning methods are quite diverse and well-developed. Their effectiveness
depends on the classification and clustering models they use. In the works [52,53] con-
sidered in Table 4, the SVM, Gaussian Naive Bayes, and Decision Tree models were used.
In these methods, it is necessary to train models on control samples. Therefore, machine
learning methods lose signature methods in detection rate. However, they have higher
accuracy in detecting unknown attacks.

The proposed method has a detection rate, similar to the signature methods, and the
accuracy corresponds to the values, similar to the machine learning methods. At the same time,
it retains its effectiveness when working with non-stationary traffic, which is most typical for
SG traffic. The remaining methods work well only in the case of stationary traffic.

It should be noted that, at present, for the continuous controlling of the transfer of
technological and other information in SG, the systems built on distributed ledger and
blockchain technologies, based on smart contracts, are actively used [54,55]. The use of
such solutions makes it possible to protect the information transmitted in SG from CAs
aimed at violating its confidentiality and integrity. However, these technologies do not
provide early detection of CAs, their classification, and protection of SG network devices
from CAs, the implementation of which is aimed at learning the SG structure and the
subsequent violation of the performance of the network and its elements.

The proposed approach to proactive protection of SG from CAs can be implemented in
many existing IDS and IPS, whose main task is to analyze internal data streams, searching in
them for bit sequences that may represent malicious actions or events, as well as monitoring
system logs. It increases the probability of detecting unknown CAs by using the autoencoder
and LSTM networks, reducing the probability of false positives and the time and the amount
of RAM involved in analyzing the network traffic. Thus, the disadvantages of existing IDS
and IPS, based on rules, as well as signature and anomaly technologies are leveled.

It should be noted that the conducted studies only demonstrate the effectiveness of
the proposed proactive system for predicting and detecting CAs in the SG network. It
can be considered as an attack detection system that combines the advantages inherent
in signature, statistical, and machine learning methods, and is devoid of their inherent
disadvantages. At the same time, it expands the scope of attack detection methods by
extending them to a non-stationary type of traffic.

7. Conclusions

The article discusses a new approach to the operation of a system for protecting
smart power grids from CAs on service data transfer protocols, based on the detection
of anomalies in network traffic by evaluating its self-similarity property, detecting cyber
attacks in anomalies in real or near real-time, their classification and acceptance effective
protection measures using LSTM and GRU cells. Fractal analysis, mathematical statistics,
and neural networks with long short-term memory were used as tools in the development
of this protection system.

The proposed system is based on the application of the main provisions of the theory
of fractals and the use of self-similarity assessment methods proposed by this theory, such
as the Dickey–Fuller test, R/S analysis, and the DFA method. When testing fractal methods
that make it possible to study long-term dependencies in network traffic, the DFA method
is more efficient than R/S analysis due to its ability to process not only stationary, but also
non-stationary series with high accuracy. Its joint application with LSTM networks can
significantly increase the probability of detecting CAs.
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The experimental evaluation of the proposed approach showed that, compared with
many other approaches, one of the main advantages of fractal analysis is its speed, as well
as the ability to detect anomalies in traffic of any kind. Only an increase in the number of
processed data transfer protocol header parameters (packet length, flags, and others) leads
to an increase in the calculation time. At the same time, the proposed system demonstrated
a fairly high probability of detecting CAs, reaching a value of 0.96 for known attacks and
0.8 for previously unknown attacks.

The specificity of the proposed system is that the detection of CAs is performed using
an autoencoder trained on the basis of the reference data of the SG operation and the
information exchange in it, taking into account all deviations from the regular operation of
the SG. During operation, the autoencoder is additionally trained by a reasonable neural
network, i.e., the result is a generative adversarial network in which neural networks learn
from each other.

Further studies are associated with the integration of the proposed system with other
known protection systems, as well as with the attack detection methods available in the
arsenal of computer security systems.
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