
����������
�������

Citation: Hussain, A.; Alam, S.;

Ghauri, S.A.; Ali, M.; Sherazi, H.R.;

Akhunzada, A.; Bibi, I.; Gani, A.

Automatic Modulation Recognition

Based on the Optimized Linear

Combination of Higher-Order

Cumulants. Sensors 2022, 22, 7488.

https://doi.org/10.3390/s22197488

Academic Editors: Khaled Rabie,

Wali Ullah Khan and Belal

Alsinglawi

Received: 28 July 2022

Accepted: 25 August 2022

Published: 2 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Automatic Modulation Recognition Based on the Optimized
Linear Combination of Higher-Order Cumulants

Asad Hussain 1,2 , Sheraz Alam 1 , Sajjad A. Ghauri 3 , Mubashir Ali 4 , Husnain Raza Sherazi 5 ,
Adnan Akhunzada 6, Iram Bibi 7 and Abdullah Gani 8,*

1 Faculty of Engineering & Computer Sciences, National University of Modern Languages,
Islamabad 44000, Pakistan

2 Department of Engineering and Applied Sciences, University of Bergamo, 24129 Bergamo, Italy
3 School of Engineering & Applied Sciences, ISRA University, Islamabad Campus, Islamabad 44000, Pakistan
4 Department of Management, Information and Production Engineering, University of Bergamo,

24129 Bergamo, Italy
5 School of Computing and Engineering, University of West London, London W5 5RF, UK
6 College of Computing and Information Technology, University of Doha for Science and Technology,

Doha 24449, Qatar
7 Department of Computer Science, Comsats University, Islamabad 45550, Pakistan
8 Faculty of Computing and Informatics, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
* Correspondence: abdullahgani@ums.edu.my

Abstract: Automatic modulation recognition (AMR) is used in various domains—from general-
purpose communication to many military applications—thanks to the growing popularity of the
Internet of Things (IoT) and related communication technologies. In this research article, we pro-
pose an innovative idea of combining the classical mathematical technique of computing linear
combinations (LCs) of cumulants with a genetic algorithm (GA) to create super-cumulants. These
super-cumulants are further used to classify five digital modulation schemes on fading channels
using the K-nearest neighbor (KNN). Our proposed classifier significantly improves the percentage
recognition accuracy at lower SNRs when using smaller sample sizes. A comparison with existing
techniques manifests the supremacy of our proposed classifier.

Keywords: modulation recognition; K-nearest neighbor; genetic algorithm; higher-order cumulants

1. Introduction

The Internet of Things (IoT) has offered us many new sensor applications that are
aimed at making our lives easier [1,2]. The idea of the IoT necessitates the deployment of a
large number of low-cost, low-power-consumption, and low- to moderate-range sensors [3].
The IoT can gather data from the surrounding environment and transmit them through a
wireless link to a user application for optimum mobility and cost effectiveness [4,5]. Conse-
quently, we have a heterogeneous network with a variety of communication technologies
that each serve a variety of applications with varying communication needs, such as their
data rate, range, delay tolerance, connection, etc. [6,7].

A typical heterogeneous network consists of different systems and technologies [8,9].
Some of the potential systems and technologies are device-to-device communication [10],
cognitive radio communication [11], intelligent transportation [12], unmanned aerial vehi-
cles [13], intelligent reflecting surfaces [14], artificial intelligence [15], and satellite commu-
nications [16,17]. In a heterogeneous network environment, IoT devices face some common
security concerns, such as privacy, authentication, administration, information storage,
and so on, which may lead to quality-of-service (QoS) degradation [18,19]. Automatic
modulation recognition (AMR) can be instrumental in decoding unknown signals that may
cause interference or privacy invasion [20]. The knowledge about the signal modulation
can then be used for various purposes, such as tracking or jamming the communication
of malicious users and tracking the signals of desired users, which are very important in
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spectrum regulations. This is the main reason that AMR has recently been used by many
researchers for the IoT [21] and cognitive radio networks [22].

The process of AMR is broadly classified into two approaches, i.e., the likelihood-based
decision-theoretic (DT) approach and the feature-based (FB) pattern recognition approach.
Both the DT and FB approaches have their fair share of merits and demerits. The DT
approach is based on the probability density function (PDF) prediction of the received
signal. It is comparatively better in terms of accuracy, but computationally complex and
poorly robust to model mismatches [23,24].

On the other hand, the FB approach is a sub-optimal method that relies on statistical
features, i.e., higher-order statistical cumulants of the received signal instead of a PDF,
thus making it easier to implement and robust to model mismatches, but at the cost of
accuracy. Another important advantage of the FB approach is it can differentiate between
the different orders of modulation in the same class, such as 16-QAM and 32-QAM, by
using appropriate-order cumulants [25,26]. Higher-order cumulant (HOC) behavior in
different transformations is essential in evaluating how useful these statistics may be in
characterizing the signal. Only the average of the received signal is modified by translations,
keeping the variance and all of the HOC intact [27]. Although there is much research
available in the field of FB-based AMR, common issues regarding cumulant-based feature
extraction are affected by noise at lower SNRs and the number of samples. In fact, to
increase classification accuracy, not only better SNR levels, but also a higher-order number
of samples are required.

1.1. Motivation of the Research

The primary goal of this research project is to make use of the FB technique by
examining the synergy between the legacy of meta-heuristic techniques for optimizing the
HOCs and the classical mathematical technique of using a linear combination of optimized
HOCs to design an efficient classifier.

1.2. Contribution of the Research

The contribution of the research work presented in this article is manifold. In this
research work, we introduce a unique approach for modulation recognition of five modula-
tion schemes, i.e., BPSK, QPSK, QAM, 16-QAM, and 64-QAM. Instead of using the HOCs
directly, a linear combination (LC) of HOCs to create super-cumulants using arbitrary
coefficients is used as the feature set. For every two super-cumulants, the coefficients are
heuristically computed so that the distance between two modulation schemes is optimized.
After that, these optimized coefficients are fed back into the classifier structure, where
the distance is calculated using the KNN. From the extensive simulations, significantly
higher recognition accuracy was achieved for all of the modulation schemes at lower SNRs.
Moreover, for fading channels, there was a considerable improvement in the percentage
recognition accuracy at a lower number of samples.

1.3. Structure of the Article

The research article is structured as follows: A summary of the existing literature is
presented in Section 2. The system model is described in Section 3. A detailed description
of our proposed solution based on the genetic algorithm (GA)-assisted linear combination
(LC) of higher-order cumulants (HOCs) is discussed in Section 4. Section 5 presents a
performance analysis in the form of a discussion on exhaustive simulation results and a
comparison with the state of the art. The research article is then concluded in Section 6, and
some research directions for extending this work are pointed out.

2. Related Work

In the current era, different DL-based solutions have been presented for the security
of IoT devices [28–33], as well as for modulation classification. A deep-learning-based
architecture was used in [34] to propose a modulation classifier using quasi-recurrent
neural network (SQRNN) layers for CR-IoT applications. The authors claimed to achieve
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better classification accuracy, as well as low computational complexity, in comparison
with the results with different CNN- and RNN-based classifiers. A realistic generalized
CNN-based modulation classifier was presented in [35], which achieved higher robustness
compared to traditional automatic modulation classifiers (AMRs). The suggested technique
was distinguished by the fact that it was trained on a mixed dataset for extracting common
features under various noise conditions.

The authors of [36] proposed a classification system for the recognition of different
variants of modulations, i.e., PSK, QAM, DVB-S2, and APSK, by first optimally selecting up
to sixth-order features and a radial basis function (RBF) for classification. An approach was
proposed in [37] to classify the modulated signals by combining the Wiener filtering method
and backpropagation neural networks to mitigate the poor performance of HOCs under
noise. In [38], the authors presented a multi-dimensional feature extraction of instantaneous
information and HOCs in order to realize modulation recognition. Furthermore, a new
characteristic parameter was presented to increase the modulation recognition ability. A
tree-shaped multi-layer smooth support vector machine (SVM) classifier based on the
feature selection technique was described in detail [39], as was a mixed classification
algorithm based on the two new features.

A comprehensive study that combined random erasing and attention methods using
a single-layer deep learning LSTM for an AMR framework was presented in [40]. Two
random erasing-based data augmentation strategies were also included to improve the
model’s generalization capability and robustness. The problem of enhancing the M-FSK
signal modulation classification performance in the context of an AWGN was investigated
in [41]. In [42], an optimal modulation classification technique was presented, which
combined Gabor feature extraction and cuckoo search optimization (CSO). The authors
of [43] presented a robust deep-learning-based AMR model for adapting noise variation in
a channel. For modulation classification, a modulation recognition cluster network (MRCN)
was developed after an SNR estimator (SEN) determined the SNR values of samples. To
help with the integration of the SEN and MRCN, a label-smoothing technique was also
suggested.

The authors presented a k-sparse auto-encoder-based classifier to reduce the compu-
tational complexity of the AMR system. In comparison with a linear SVM, approximate
maximum likelihood classification (AMLC) and a Bayesian confidence propagation neural
network (BCPNN) were investigated. Varying SNR conditions were explored, and noise-
insensitive features based on set theory were used to improve the accuracy [44]. The authors
of [45] used deep-learning-based sparse auto-encoders with non-negativity constraints and
fourth-order cumulants for modulation classification. In [20], an FB-AMR framework was
proposed, which utilized blind channel estimation and maximum likelihood (ML)-based
multi-cumulant classification. FB-AMR for an MIMO system was proposed in [46], which
used HOCs with a quasi-Newtonian method.

In [47], digital and analog modulation schemes under different SNRs were classified
using a random forest. The authors of [48] considered M-PSK and M-QAM for AMR.
The effectiveness of features consisted of a generalized autoregressive conditional het-
eroscedasticity (GARCH) model with a discrete wavelet transform (DWT). In [49], the
authors adopted a GP-based approach to produce super-features from the dataset and then
improved the performance of the KNN classifier. Two low-complexity classifiers based
on order statistics were presented in [50], and LSVM algorithms were investigated for
classification. In [51], deep neural networks for AMR were presented, and a stock well
transform for underwater acoustic channels was presented in [52]. The SVM classifier
was used with the energy entropy of s-transform time–frequency spectrum signals. A
high-efficiency classification system using a genetic algorithm with a backpropagation
neural network for four statistical features was developed in [53].

In [54], a comparative analysis of different distance methods using KNN classification
of five different modulation schemes was presented. The authors showed that the Maha-
lanobis distance was better in terms of classification accuracy compared to the Minkowski,
Euclidean, and correlation methods. The KNN was utilized for feature selection and then
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detection in [55]. In [56], fourth-conjugate cumulants of the estimated symbols were used
to classify the modulation types. In [57], AMR was performed using step-wise regression
and hierarchical polynomial classifiers, and HOCs were used to achieve higher accuracy.
The authors of [58] used variational mode decomposition (VMD) for AMR when AWGN
and non-Gaussian impulsive noise were present. A three-step methodology was adopted
for the recognition of QPSK, 16-PSK, 64-PSK, QAM, 16-QAM, and 64-QAM in [59].

In [60], instantaneous features, such as instantaneous amplitude, phase, and frequency
parameters, were utilized for AMR. Analog and digital signal classification was reported
in [61] by using statistical characterization and an artificial neural network (ANN). In [62],
modulation classification based on a constellation diagram with fuzzy logic was presented
for QAM signals. A comprehensive review of AMR was presented in [63] that not only
compared different types of AMR methods, but also provided the different types of software
packages for AMR methods, as well as practical challenges in the implementation process.

3. Proposed System Model

The system model of the proposed modulation recognition framework is presented in
Figure 1. The expression of the received signal is in Equation (1):

v(t) = h(t) ∗ x(t) + η(t) (1)

where x(t) and v(t) are the transmitted and received signals, respectively. η(t) is the addi-
tive white Gaussian noise (AWGN), and h(t) represents the Rayleigh fading coefficients.

Figure 1. Proposed system model.

The input signal is modulated, i.e., BPSK, QPSK, QAM, 16-QAM, and 64-QAM, and
transmitted over the Rayleigh fading channel in addition to AWGN. The main reason
for choosing these modulation formats for the problem under consideration was their
application in commonly used wireless technologies. The recognition of modulation
formats consisted of three phases:

• Parameter extraction (HOCs);
• Super features (optimal weight finder);
• Recognizer (K-nearest neighbor).

The proposed AMR module is presented in Figure 2. The HOCs were selected as
features and represented by ζ. The genetic algorithm (GA) was used to find the optimized
weights γ. Super feature cumulants L were formed by the linear combination of ζ and γ
and are represented as:

Li = γT
m∗1. ζm∗1 (2)

where L is be computed for all five modulation scenarios: (BPSK, QPSK, QAM, 16-QAM,
64-QAM). The KNN recognizer computes the Euclidean distance (ED) to decide the modu-
lation format of the received signal.
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Figure 2. Proposed AMR module.

4. Proposed AMR Algorithm

The proposed AMR algorithm mainly consists of three phases:

(i) Feature extraction;
(ii) Super cumulant feature;
(iii) Recognizer.

4.1. Feature Extraction

For each of the five modulation techniques, HOCs were derived from the received
signal. The cumulants were made up of moments, which can be presented by the general
expression shown in Equation (3), whereas the extracted HOCs were formulated from
Equations (4)–(13). The features extracted from the received signal are tabulated in Table 1.

mpq = E[v(t)p−qv∗(t)q] (3)

ζ1 = C{v(t), v(t)} = E[v2(t)] (4)

ζ2 = C{v(t), v∗(t)} = E[|v(t)|2] (5)

ζ3 = C{v(t), v(t), v(t), v∗(t)} = m40 − 3m20m21 (6)

ζ4 = C{v(t), v(t), v∗(t), v∗(t)} = m42 − |m20|2 − 2m21 (7)

ζ5 = C{v(t), v(t), v(t), v(t), v(t), v(t)} = m60 − 15m20m40 + 30m3
20 (8)

ζ6 = C{v(t), v(t), v(t), v(t), v(t), v∗(t)} = m61 − 5m21m40 − 10m20m41 + 30m2
20m21 (9)

ζ7 = C{v(t), v(t), v(t), v(t), v∗(t), v∗(t)} = m62 − 6m20m42 − 8m21m41 − 30m2
22m40 + 6m2

20m22 + 24m2
21m22 (10)

ζ8 = C{v(t), v(t), v(t), v∗(t), v∗(t), v∗(t)} = m63 − 9m21m42 + 12m3
21 − 3m2

20m43 − 36m22m41 + 18m20m21m22 (11)

ζ9 = C{v(t), v(t), v(t), v(t), v(t), v(t), v(t), v(t)} = m80 − 35m2
40 − 28m60m20 + 420m40m2

20 − 630m4
20 (12)

ζ10 = C{v(t), v(t), v(t), v(t), v∗(t), v∗(t), v∗(t), v∗(t)} = m84 − 16ζ8ζ2 + |ζ3|2 − 18ζ4
2 − 72ζ4ζ2

2 − 24ζ2
4 (13)

Table 1. HOC values.

ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10

BPSK 0.78 2.45 0.29 0.27 0.46 31.41 19.65 77.40 123.07 2284.53

QPSK 0.05 2.41 0.09 0.03 0.58 32.95 0.40 77.87 12.49 2210.43

QAM 0.16 3.35 0.03 0.28 0.40 0.83 42.92 210.23 1.27 8477.33

16-QAM 0.79 11.64 0.10 0.51 0.56 13.34 384.43 956.81 331.22 13,052.11

64-QAM 1.10 42.16 0.04 0.54 0.58 31.43 1004.16 4053.52 1186.00 228,652.61
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4.2. Super Cumulant Features

In this module, super cumulant features were computed using optimized weights
γ from the genetic algorithm (GA). The objective was to maximize the distance between
two classes. The linear combination of these constants with the HOCs resulted in super
cumulant features. The super cumulant features were computed for each modulation
scheme, i.e., BPSK, QPSK, QAM,16QAM, and 64QAM. The linear combination of the super
cumulant features was calculated using Equation (14), as shown below:

Li =
M

∑
k=1

γk. ζk (14)

where Li denotes the linear combination for the ith modulation type and M is the number
of cumulants for each modulation format. In vector form, γ and ζ are:

γ = [γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ9, γ10]

ζ = [ζ1, ζ2, ζ3, ζ4, ζ5, ζ6, ζ7, ζ8, ζ9, ζ10]

The fitness function for the optimal weight finder using the GA is given in Equation (15):

FF = argmax‖Li − Lj‖2i 6= j (15)

The super features for each modulation are presented in Table 2. The algorithm for
finding the optimal weights and then the super cumulant features are in Algorithm 1.
Algorithm 1 presents a stepwise summary of the computation of the optimized weights
using the GA.

Table 2. LC of HOC’s.

Linear
Combinations

BPSK QPSK QAM 16-QAM 64-QAM

2372.2 2211.3 8307.9 12854.9 218736.5

Algorithm 1: GA-Based Optimal Weight Finder

1 Initialization; (Set GA parameters, number of chromosomes, number of genes, percentage
of offspring and parents for making a new generation)

2 Generate γk randomly, whereas γk ε [0, 1].
while Fitness < Threshold do

3 evaluate fitness→ argmax‖Li − Lj‖2, i 6= j
4 apply→ Sorting (Descending Order);
5 generate→ New Population (Multi-Point Crossover);
6 for j = 1:K do
7 for k = 1:K−1 do
8 Best-Fitted Population (Parents and OffSprings) ;

9 if FF is achieved, or the number of iterations is reached then
10 terminate;
11 else
12 Repeat the whole process;

4.3. KNN Recognizer

In the literature, the K-nearest neighbor (KNN) recognizer is frequently used to com-
pare the effectiveness of various classifiers. The KNN recognizer kernel is predicated on the
calculation of the distance or resemblance between the tested and training samples. Investi-
gation with the KNN recognizer requires no prior information on the data distribution. The
data points (nearest neighbors) i.e., K = 5, are chosen. All points in each neighborhood are



Sensors 2022, 22, 7488 7 of 16

weighted equally, i.e., uniform weights, and from each data point, the Euclidean distance is
calculated as shown in Equation (16); this is the performance metric. The KNN recognizer
has the following steps:

1. Load training and test data;
super feature cumulants are the dataset.

2. Choose K, i.e., the data points that are closest to it; the chosen value of K is 5 in this
research.

3. Perform the following for each data point:

• Measure the distance between each row of training data and the test data; the
distance is calculated using the Euclidean distance formula, as in Equation (16):

D =
√
(Li − L∗i )(Li − L∗i )

∗ (16)

where Li, the input, is the feature value, and L∗i is the test feature value.
• Distance values are sorted in increasing order.
• Select the first K rows of the sorted array.
• The most prevalent class among these rows will now be used to determine the

class for each test point.

4. Stoppage criterion.

The proposed AMR algorithm is shown in Algorithm 2.

Algorithm 2: Proposed AMR Algorithm

1 Initialization (set number of modulation schemes K, set number of selected features N);
2 Extract features from Equations (2)–(13), [ζi]∑N

i=1
while Fitness < Threshold do

3 for k = 1:K do
4 for i = 1:N do
5 Calculate optimal weights [γk] ∑k=1

K using the GA-based optimal weight
finder, as elaborated in Algorithm 1

6 end
7 end
8 Evaluate linear combination of cumulants

for k = 1:K do
9 Evaluate the super feature cumulant as per Equation (2).

10 end
11 KNN recognizer

for k = 1:K do
12 Evaluate the Euclidean distance of each [Lk]∑K

k=1 using Equation (16).
Compare each [Lk]∑K

k=1 with a reference value of the test feature.

13 end
14 end

5. Simulation Results and Analysis

In this section, detailed simulations are carried out to validate the performance of the
proposed super-cumulant-feature-based AMR recognizer. The simulations were performed
in MATLAB R2020, on a Windows 10 professional platform with an i5 core processor (sixth
generation) and 16 GB of RAM. The merit of the problem is the percentage recognition
accuracy (PRA). A comprehensive analysis of our proposed AMR approach and its com-
parison with existing state-of-the-art techniques are also presented in this section. The
modulation of interest for recognition is BPSK, QPSK, QAM, 16-QAM, and 64-QAM. The
performance is also compared on a fading channel, i.e., a Rayleigh fading channel with
different numbers of samples and different SNRs. The simulation parameters are shown in
Table 3.
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Table 3. Simulation parameters.

Parameter Standard Value

No. of Samples [512, 1024, 2048, 4096]
SNR [0–5] dB

Training of Recognizer 70%
Testing of Recognizer 20%

No. of Genes 120
No. of Chromosomes 1024

Crossover Fraction 0.25
Crossover Heuristic
Selection Stochastic Uniform
Mutation Adaptive Feasible

Elite Count 2

5.1. Performance Analysis on the AWGN Channel

Table 4, shows the percentage recognition accuracy (PRA) on the AWGN channel with
different SNRs and numbers of samples for the considered modulation formats. From
Table 4, it can be observed that, for all modulation formats, the PRA was increased by
increasing the number of samples and the SNR. The proposed recognizer was able to
recognize all of the modulation formats with higher accuracy at lower SNRs and even with
smaller numbers of samples. At an SNR of 0 dB, the proposed AMR provided 100% PRA
with 2048 and 4096 samples, while it provided around 90% with 512 and 1024 samples. The
average PRA for the BPSK, QPSK, QAM, 16-QAM, and 64-QAM was 97.5%, 99.3%, 95%,
99.8%, and 99.5%, respectively, with an SNR of 0 dB.

Table 4. Percentage recognition accuracy on the AWGN channel.

PRA for BPSK

No. of Samples 0 dB 5 dB 10 dB

512 90 99.01 100
1024 100 100 100
2048 100 100 100
4096 100 100 100

PRA for QPSK

No. of Samples 0 dB 5 dB 10 dB

512 97 100 100
1024 99.90 100 100
2048 100 100 100
4096 100 100 100

PRA for QAM

No. of Samples 0 dB 5 dB 10 dB

512 86 99 100
1024 94 99.99 100
2048 100 100 100
4096 100 100 100

PRA of 16-QAM

No. of Samples 0 dB 5 dB 10 dB

512 98 99.98 100
1024 99.99 100 100
2048 100 100 100
4096 100 100 100
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Table 4. Cont.

PRA of 64-QAM

No. of Samples 0 dB 5 dB 10 dB

512 98 99 100
1024 99.95 100 100
2048 100 100 100
4096 100 100 100

5.2. Performance Analysis on the Rayleigh Fading Channel

To further analyze the performance of our proposed AMR approach for the worst-case
scenario, i.e., a Rayleigh fading channel, the same set of simulations were repeated, and
the results are presented in Table 5. A behavior of the AMR algorithm similar to that in
the case of the AWGN channel was observed, showing an increase in PRA at higher SNRs
and with larger numbers of samples. The PRA, however, was greatly reduced owing to
the absence of the dominant path (non-line-of-sight scenario). Nevertheless, our proposed
AMR approach showed good accuracy for all of the combinations of different SNRs and
the sample size. The lowest PRA of 80% at an SNR of 0 dB was observed for the QAM
signal, and it increased to 99.5% by increasing the number of samples to 4096. The average
PRA for BPSK, QPSK, QAM, 16-QAM, and 64-QAM was 95.9%, 97%, 91%, 94.25%, and
96%, respectively, at an SNR of 0 dB.

Table 5. Percentage recognition accuracy on the Rayleigh channel.

PRA for BPSK

No. of Samples 0 dB 5 dB 10 dB
512 92.5 94.7 96.1
1024 95 97.2 98
2048 97.5 98.2 99
4096 98.5 99.5 100

PRA for QPSK

No. of Samples 0 dB 5 dB 10 dB
512 94.2 96.5 97
1024 96.7 98 99.5
2048 98 99 100
4096 99 100 100

PRA for QAM

No. of Samples 0 dB 5 dB 10 dB
512 80 88 96
1024 87 93 97
2048 98 99 100
4096 99.5 100 100

PRA for 16-QAM

No. of Samples 0 dB 5 dB 10 dB
512 88 95 97
1024 92 97 99
2048 98 98.5 100
4096 99 99.7 100

PRA for 64-QAM

No. of Samples 0 dB 5 dB 10 dB
512 92 96 99
1024 95 96 99
2048 98 98.5 100
4096 99 100 100
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5.3. Performance Comparison on the AWGN and Rayleigh Fading Channels

Figures 3–7 show a comparison of the the performance of the proposed AMR approach
on the AWGN and Rayleigh fading channels for the BPSK, QPSK, QAM, 16-QAM, and
64-QAM modulated signals at lower SNR values and with varying numbers of samples.
Figure 3 illustrates the comparison of the PRA for the BPSK modulated signals at an SNR
of 0 dB with different numbers of samples. The bar graph shows that, for every number of
samples considered, the PRA for the AWGN was much better than that for the Rayleigh
fading channel model. The lowest accuracy was 92%, which was for the Rayleigh fading
case when the number of samples was 512 at an SNR of 0 dB.

Figure 3. PRA for BPSK signals.

Figure 4 shows the percentage recognition accuracy for the QPSK modulated signals.
With 512 samples, the lowest accuracy of 94% was achieved for the QPSK signals, which
was better than the BPSK signal recognition. The super cumulant feature for QPSK was
optimized at lower SNRs and with fewer samples.

Figure 4. PRA for QPSK signals.
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The comparison of the percentage recognition accuracy for the QAM modulated
signals is shown in Figure 5. As shown in Figure 5, the PRA for the Rayleigh fading
channel scenario was less than 90% and approximately 100% with 512 and 4096 samples,
as compared to the AWGN channel, in which the PRA was approximately 100% with
2048 samples. Similar results are shown in Figures 6 and 7 for the 16-QAM and 64-QAM
modulated signals. The PRA was 100% with 4096 samples for the case of the Rayleigh
fading channel and for the AWGN scenario.

As can be seen from the results shown in Tables 3 and 4 and Figures 3–7, the proposed
AMR approach gave better results for smaller sample sizes at lower SNRs, which was
the main motivation behind this research. The utilization of a novel concept of the linear
combination of the HOCs, rather than the use of the GA-optimized cumulants, actually
caused the samples to be far apart in the decision regions, thus making it much easier to
recognize the different modulation samples more accurately.

Figure 5. PRA for QAM signals.

Figure 6. PRA for 16-QAM signals.
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Figure 7. PRA for 64-QAM signals.

5.4. Comparison with Existing State-of-the-Art Techniques

A comparison of the PRA of the proposed AMR approach with that of existing state-
of-art techniques is quantitatively evaluated in Table 6. As seen from Table 6, for [60],
the recognition accuracy for BPSK and QPSK was very low at an SNR of 5 dB, while in
comparison, our proposed AMR approach achieved 100% at an SNR of 0 dB. Similarly,
for [64], the Gabor filter network was used to classify QAM, 16-QAM, and 64-QAM at an
SNR of 5 dB with a PRA of 72.35%, 71.94%, and 69.96%. For the same set of modulation
schemes, SNR, and number of samples, our proposed AMR approach gave almost 100%
accuracy. In our previous work [54], although we achieved higher accuracy for QAM,
16-QAM, and 64-QAM at an SNR of 5 dB, almost 100% accuracy was achieved for all of
the considered modulation schemes at an SNR of 0 dB. For the AWGN comparison, as
shown in Table 6, the proposed AMR outperformed the others for the all of the modulation
formats, even at lower SNRs and numbers of samples.

Table 6. PRA comparison on the AWGN channel model.

Modulation
Schemes

Keshk et al.
[60] Ali et al. [36] Chen et al.

[39]
Ghauri et al.

[64]
Hussain et al.

[54]
Proposed
Classifier

No. of
Samples – – – 2048 Samples 1024 Samples 1024 Samples

SNR 0 dB 5 dB 0 dB 5 dB 0 dB 8 dB 0 dB 5 dB 0 dB 5 dB 0 dB 5 dB
BPSK 50 65 - 98 - 99 - - 98 99.9 100 100
QPSK 73 86 - 98 - 98 - - 99.9 100 99.9 100
QAM - - 96 - - - 72 98 91 99 94 99.9

16-QAM - - 97 - - 97 72 97 99.8 99.9 99.9 100
64-QAM - - 98 - - 97 70 98 99 99.9 99.9 100

The PRA of the proposed AMR approach was compared with that of [54] in the
presence of a Rayleigh fading channel, as shown in Table 7. The remarkable improvement
in the performance of the proposed AMR approach can be seen in Table 7. The PRA was
compared for 512 and 1024 samples at SNRs of 0 and 5 dB. In [54], the authors only used the
cumulants as a feature set and the KNN as a classifier, but in the proposed AMR approach,
the super cumulant features were optimized by using the GA, which showed supremacy in
terms of PRA.
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Table 7. PRA comparison on the Rayleigh channel model.

Modulation Schemes

No. of Samples (512) No. of Samples (1024)
SNR

0 dB 0 dB 5 dB 5 dB 0 dB 0 dB 5 dB 5 dB
[54] Proposed [54] Proposed [54] Proposed [54] Proposed

BPSK 42 92.5 56 94.7 68 95 70 97.2
QPSK 41 94.2 48 96.5 45 96.7 68 98
QAM 30 80 41 88 45 89 50 93
16-QAM 35 88 53 95 43 92 58 97
64-QAM 47 92 58 96 51 95 60 96

6. Conclusions

This paper presents modulation recognition using a genetic-algorithm-assisted linear
combination of higher-order cumulants. The idea was to reduce the number of features
for all modulation schemes and to distinguish between them with a minimal number
of comparisons. The AMR approach was divided into three phases: feature extraction,
GA-based optimal weight finding for the computation of super cumulant features, and a
KNN recognizer. The proposed AMR method gave a better and comparable PRA at lower
SNRs and even for lower numbers of samples in comparison with existing methods for
the AWGN and Rayleigh channels. In future work, our proposed recognizer can be used
for different modulation schemes while considering different communication scenarios.
The LC approach can be combined with heuristic algorithms other than the GA to explore
further improvements. Similarly, one can explore a deep neural network for recognition
instead of the KNN.
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