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Abstract: Smart cities are, nowadays, an unavoidable and growing reality, supported on software
platforms that support city management, through the processing and presentation of a large number
of data, obtained from sensors used throughout the cities. Low-power wide area networks (LPWAN)
leverage the sensorization process; however, urban landscape, in turn, induces a high probability of
change in the propagation conditions of the LPWAN network, thus requiring active monitoring solu-
tions for assessing the city LPWAN network condition. Currently existing solutions usually consider
the existence of only one type of LPWAN network to be monitored. In this paper, an architecture
for aggregation of metrics from heterogeneous LPWAN networks is presented. The architecture,
named IoTMapper, combines purpose build components with existing components from the FIWARE
and Apache Kafka ecosystems. Implementation details for the LPWAN networks are abstracted
by adapters so that new networks may be easily added. The validation was carried out using real
data collected for long-range wide-area network (LoRaWAN) in Lisbon, and a simulated data set
extrapolated from the collected data. The results indicate that the presented architecture is a viable
solution for metrics aggregation that may be expanded to support multiple networks. However,
some of the considered FIWARE components present performance bottlenecks that may hinder the
scaling of the architecture while processing new message arrivals.

Keywords: smart cities; internet of things; FIWARE; Apache Kafka; LoRaWAN; low-power wide
area network (LPWAN)

1. Introduction

According to the United Nations, more than half of the world’s population resides
in urban areas, with an upward trend [1]. This fact, coupled with the overall growth of
population in the world, results in significant development on the size and complexity
of cities, which presents a significant challenge for the management methods used in
cities [2]. New strategies are required for information gathering and decision making in the
efficient management of available resources, promoting an increase in the number of cities
that implement so-called smart city solutions, which in turn support different verticals of
municipalities’ intervention.

The term smart city is understood as the sensorization, in the context of the internet of
things (IoT), of urban areas in order to, through analysis of the data collected, improve the
living conditions of citizens as well as the quality and sustainability of services provided.

The sensorization of city infrastructure results in the collection of significant volumes
of data, possibly critical in the new management schemes defined for the smart city, that
needs to be transmitted in a timely, reliable, and cost-effective fashion. As such, the sensors
used in data collection require means for periodic and consistent communications. This
communication requirement is addressed by low-power wide-area networks (LPWAN).

An LPWAN is a wireless communication network optimized for long-range com-
munication, low power consumption and low cost of the associated network interface.
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In order to support the smart city verticals, different LPWAN technologies have been
developed. Examples of these communication protocols, in common use to support smart
cities solutions [3–6], are:

• Long range wide-area network (LoRaWAN) [7–9]: The complementary network
layer to the LoRa technology, which, by itself, only specifies the physical layer of the
communications stack.

• Sigfox [6]: An alternative network with the same aim, based on a closed business
model, in which the network is always supported by an operator, also called Sigfox.
This is the key difference from other technologies; there is only one operator.

• Narrowband internet of things (NB-IoT) [10,11]: A technology supported by public
mobile communications operators, resulting from the evolution of the widely deployed
LTE (long-term evolution) technology. NB-IoT is a more recent IoT technology, its
operating model is based on the conventional models of public mobile operators,
and is based on a subscription.

LPWAN technologies, in particular LoRaWAN, will be further described in Section 2.1.
The validation of theLoRaWAN architecture present in Lisbon is particularly consid-

ered. This particular deployment is freely available, and there is a previous body of work
in the study and development of solutions using this deployment, such as in urban waste
management [3]. The authors, however, believe that their approach is applicable to any
urban environment. Additionally, solutions using LoRaWAN have already been noted to
attract particular interest among researchers and in the deployment of new smart cities
solutions [8].

In the context of LPWAN networks in an urban environment, whose goal is to support
smart cities solutions, the authors consider a number of specific challenges that require
regular assessment of network coverage:

1. The urban landscape may change, for example, the construction of new buildings,
which affect the propagation characteristics of existing networks.

2. The continuous expansion of the city, both in terms of population and occupied
geographical area, may increase the pressure such that networks are subjected through
a higher traffic volume and device number, which was an issue identified in previous
research such as in [2].

While not specific to the context of smart cities, the authors also specifically consider
that, in the same area, there may coexist multiple LPWAN networks, each requiring
adequate monitoring. Thus, the need arises for a solution that can assess the quality and
coverage offered by multiple existing networks in a continuous fashion in order to identify
potential gaps in geographic coverage, or, areas with heavy saturation, leading the effort of
maintenance and future investment in the adaptation and expansion of existing networks.

The presented architecture makes specific usage of components included in the FI-
WARE catalog [12]. The FIWARE project was developed under the funding of the European
Commission to create a catalog of reusable open source components that can be assembled
together, and with other third-party components, to build IoT platforms that support
the development of smart solutions in a standardized, faster, easier and cheaper manner.
As part of the stated objective, a number of components for integration of external data
sources and processing components were developed. Their usage was considered on the
design of architecture. Additionally, the usage of data models conforming to the NGSI-v2
application programming interface (API) [13] was considered, enabling the reuse and inte-
gration of metrics data in a standardized fashion. The FIWARE project is further described
in Section 2.2.

Two existing solutions, TTNMapper [14] and HeliumMapper [15], were identified.
However, both solutions only allow for monitoring LoRaWAN deployments, and neither
make use of the FIWARE project. They are further presented in Section 2.3.
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1.1. Contributions

The major contribution in this paper is the proposal, implementation and validation
of the architecture for a new open source based system capable of receiving, aggregating
and presenting metrics on the coverage quality of LPWAN networks. This system is named
IoTMapper. The proposed architecture presents an end-to-end scalable solution, from re-
ception of metrics from specified data sources to their availability to end users and external
system, through a web-based application programming interface (API), while remaining
generic enough such that support for additional LPWAN networks can be added with
minimal development effort by adding new receivers and messages parsers. A reference
implementation and installation scripts that may be used in deployment and further de-
velopment of monitoring solutions based on IoTMapper were developed. Furthermore,
the validation of the implementation as well as the qualitative and quantitative evaluation
of the overall system performance is presented.

Of particular consideration is the evaluation of components from the FIWARE [12]
catalog when put under different load volumes, which have not been previously considered
in previous research. Additional contributions relate to the proposal of new FIWARE data
models to represent the aggregated metrics and associated contextual information in a
standardized and reusable manner.

The objective of this is not to advance the state of the art on coverage models for
LPWAN networks, but to apply and validate existing technological components in the
development of a new integrated solution. Additionally, it is noted that the work does not
include the development of physical IoT devices used in metrics collection, but is focused
on the infrastructure that supports such devices.

1.2. Organization of the Document

The rest of this document is organized as follows: in Section 2, additional background
information and related work are discussed; in Section 3, the proposed architecture and
reference implementation details are presented; and the obtained results are presented
and discussed in Section 4. Concluding remarks and future work directions are given in
Section 5.

2. Background and Related Work
2.1. LPWAN for IoT and Smart Cities

In the construction of smart cities, one of the main objectives is making city services
more flexible and reactive. This objective motivates the integration of numerous vertical
applications into the existing infrastructure of the urban areas. A vertical refers to a
complete IoT solution, from the data collecting devices and actuators to the communication
layer and processing solutions. As already noted in the introduction, the need for this kind
of integration is seeing an upwards trend, being associated with significant population
growth in urban areas [1,2].

The IoT devices used, due to their nature, have limited computational resources and
battery lives that they need to conserve. While individual measures typically are only a
few bytes in size, the total volume of information that is produced by these devices may
be too significant to be processed locally with the limited resources available. It may also
need to be jointly analyzed to produce any meaningful result, or need to produce alerts
in a timely manner. As such, in support of smart cities verticals, a quality communication
layer is need that allows the efficient transmission of produced data.

The term low-power wide-area networks (LPWAN) refers to a set of wireless communi-
cation protocols mainly characterized for offering a combination of high range, low energy
consumption, and low manufacturing costs for the associated devices as seen in [5,16,17].
This set of characteristics make the usage of LPWAN a natural fit for IoT applications,
including integration scenarios for smart cities solutions. In fact, there is a wide body of
work on the applicability of LPWAN technologies in smart cities scenarios. In [8], the au-
thors conducted a survey on the published scientific articles on LoRaWAN-based solutions
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used in smart cities. They identified a large variety of verticals where LoRaWAN is in
use, from energy management to waste management, and predicted a growth of 10% per
year until 2025 in new LoRaWAN solutions. LPWAN deployments follow a star network
topology, where messages sent by devices are received by networking equipment, typically
designated as gateways.

Some LPWANs, such as NB-IoT, depend on a licensed spectrum in its operation,
particularly bands already reserved for mobile communications. As such, its availability
depends on Mobile Communications Operators (MCO) that reuse existing cellular base
stations. For these LPWANs, the metrics that can be collected without the collaboration of
the corresponding MCO are limited to those observable by the equipment responsible for
sending the measurement messages, as seen in [18,19].

LoRaWAN

In LoRaWAN deployments, the underlying physical protocol layers, LoRa, is defined
over an unlicensed radio spectrum and is available for general use, both for public, open
networks, and for private networks on the sale of commercial solutions. LoRa, as standard-
ized by the LoRa Alliance [7], uses frequencies around 868 MHz (for Europe), 915 MHz (for
North America and Brazil) and 433 MHz in multiple countries. In LoRaWAN architectures
the gateways have a connection to a network server that handles reception control and
other network issues before passing them to an application server that handles routing of
messages. In this model (visible in Figure 1), LoRaWAN accepts that the same messages
may be received by multiple gateways. Since all receptions are valid, the network sever
merges them into a single message, with metadata for all deliveries. There are multiple
open source implementations of LoRaWAN available. The things network (TTN) offers
a community developed and operated solution for a LoRaWAN server as a service that
gateways and devices operators may freely use [3,20–22].

Figure 1. High-level view of the LoRaWAN architecture.

The open specification used by LoRaWAN allows for access to meaningful metrics on
network coverage, if reported by the gateway, such as received signal strength indication
(RSSI), signal-to-noise ratio (SNR), frequency/channel used, and possibly the location of
the gateway.

2.2. The FIWARE Framework

FIWARE [12] is a project, under funding from the European Commission for the
development of an IoT framework offering a catalog of reusable open source components that
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can be assembled together and with other third-party components to build IoT platforms
that support the development of smart solutions in a faster, easier and cheaper manner.

For the stated purpose, FIWARE defines a set of generic enablers (GE), software
components with well-defined responsibilities that offer their capabilities as services. These
GEs can be combined to compose functioning solutions. To permit interoperability between
GEs, they all follow a common context management model, under the NGSI-v2 REST
application programming interface (API) [13], or, the NGSI-LD API. These APIs include
the definition of a common and reusable, but expandable, set of data models,

The primary enabling component offered by FIWARE is the Orion Context Broker
(OCB) that offers a publish/subscribe service for persistence of the current context, as a
set of entities. This managed context can be easily shared between GEs and external
components, allowing for simple interoperability. The subscription aspect of OCB is
assured by an asynchronous “notification” system. The notifications are triggered by
changes in the state of entities, resulting in a hypertext transfer protocol (HTTP), or MQ
telemetry transport (MQTT) message to another component. The major limitation of OCB
is that only the most current version is persisted in its backing store. This limitation can be
overcome by using an additional GE with historical data capabilities, such as STH Comet,
or QuantumLeap.

The IoT Agents GEs are a set of related GEs, using a common base library, to offer
support for different IoT communication protocols. The IoT Agents map receives messages
from NGSI entities and inserts them into the OCB. The IoTAgent-LoRaWAN that offers
integration for LoRaWAN, including specific support for TTN application server, was
selected as the implementation for validation.

The FIWARE catalog also offers GEs for integration with external systems. Cygnus
is an example of such a GE that can be used to export data both to external storage
(PostgreSQL, MySQL, MongoDB or AWS DynamoDB), or asynchronous publish/subscribe
(Apache Kafka) that can be integrated with further processing frameworks.

2.3. Related Work

There is an extensive and growing body of work on LPWAN-based solutions for
smart cities and other areas, such as smart agriculture, highlighting their importance in
the literature. Considering just LoRaWAn solutions, there were 30 published articles in
2016, increasing to about 400 in 2018 [8]. While the body of work is extensive, the vast
majority of identified published articles focus either on comparing LPWAN technologies,
on the design of solutions using LPWAN technologies, or on assessments on the quality of
LPWAN that simply make a one-off analysis of the deployment. There is limited research
focusing on solutions to analyze the quality of the LPWAN deployment themselves in a
continuous manner.

Regarding work that analyzes the quality of LPWAN deployments, in [23], the authors
performed a theoretical study of a LoRaWAN network for the simulated model of a typical
urban environment. In [9], the authors reported on a real use case of a LoRaWAN network
installed in the city of Southampton in the United Kingdom, by analyzing collected data at
a later date. For [24], the authors performed a long-term measurement campaign for NB-
IoT, concluding that the reference signal receive power (RSRP) varies even for stationary
targets. They then presented a doubly stochastic Markov chain model, from the time-
dependent statistical characteristics, demonstrating that such an approach may be used
for the optimization of modern LPWAN technologies, given a set of collected data on the
deployments. A coverage assessment method was presented in [25] . This assessment
starts with a large-scale measurement campaign for NB-IoT, Sigfox, and LoRaWAN. Using
the collected data, the authors proposed a procedure for identifying the minimal set of
points for evaluating the coverage offered by an LPWAN network, for which there is no
information on base stations. Ref. [26] presented another measurement campaign, for Nb-
IoT, and made the collected data set available, while identifying the impact of different
deployment decisions.
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None of the referenced research articles proposed a system architecture that actively
supports their data collection process.

Regarding work that offers more active monitoring, in [18], the authors presented
NBPilot, an embedded system for local quality analysis in NB-IoT networks, based on the
extraction and processing of network signaling messages, but without the definition of a
support infrastructure for the collection and aggregation of metrics. Ref. [19] described
NBViewer, a demonstrator for a software tool set that locally collects and analyzes data for
a single NB-IoT device.

None of the presented solutions proposed an architecture for collecting data from
multiple devices at scale.

Considering existing open source solutions already available for use, two can be iden-
tified: TTNMapper [14] and HeliumMapper [15]. Other commercial solutions are also
available, but due to their closed source nature, they could not be appropriately consid-
ered [27].

TTN Mapper is a LoRaWAN mapping solution, originally in versions 1 and 2, specific
to the TTN community application server [20]. In version 3, support for other LoRaWAN
servers was added, namely ChirpStack and Helium. TTN Mapper offers a microservices-
oriented architecture with communication between components guaranteed through the
use of advanced message queuing protocol (AMQP) asynchronous message queues, im-
plemented with RabbitMQ. Reception of the metrics is performed over HTTP through
integration with the TTN server, which forwards data from devices that participate volun-
tarily. The components sequentially perform data processing, aggregation, and persistence
steps in a PostgresSQL database. The performed aggregation joins the measurements into
geographic cells. The implemented dashboard provides visualization of the current state
of the network as a heat map. The HeliumMapper project also presents a platform for
visualizing the quality associated with a specific LoRaWAN application server. Similar to
TTNMapper, metrics are received through HTTP by integrating with Helium applications
that provide reports about their devices voluntarily. The reception of reports is followed
by aggregation of the metrics into H3 geographic cells, originally developed at Uber [28],
persisted in a PostgresSQL database. The H3 cells are a hierarchical index that groups
coordinates into a continuous grid of hexagonal-shaped area blocks with a unique identity.
The system collects, as metrics, information about received signal strength indication (RSSI),
signal-to-noise ratio (SNR), number of gateways and distance from the equipment to the
gateways. The dashboard is implemented as a heatmap, divided by H3 cells.

The solutions already identified (TTNMapper and HeliumMapper) allow to answer
some of the identified challenges, but they fail to answer all of them. In particular, they focus
on supporting a single LPWAN network, in both cases a set of specific application servers
for LoRaWAN. Additionally, neither solution uses any component related to FIWARE.

To the best of the authors’ knowledge, there is no previous work that uses FIWARE
components to gather metrics on the LPWAN deployments themselves, in opposition to
metrics about the IoT devices or the monitored environment. There is, as well, no open
source system available that processes metrics on multiple LPWAN networks in a close
to real time manner. In this context, the authors consider that there exists the need to
design and validate a new open source solution that considers the existence of multiple
LPWAN networks as a starting point, and evaluates the feasibility of using existing FIWARE
components for context management and integration with external data sources.

3. Materials and Methods
3.1. Methodology

Following from the presented background and related work, the developed work
was guided under the following phases: problem identification, listing of requirements,
design of system architecture, implementation considerations, integration of components,
and validation of the designed system.
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3.2. Problem

As presented in Sections 1 and 2, the problem to address revolves around the growing
need to support smart cities solutions in a environment that may change over the life of
the deployment, and include multiple low-power wide area networks (LPWAN). In this
scenario, the main objective is to develop a scalable solution that may actively monitor
the state of LPWAN networks. Additionally, it is a specific objective that the proposed
architecture makes use of FIWARE components.

3.3. Requirements

Considering the objectives presented above, the requirements of the system are
as follows:

1. The system must make use of components from the FIWARE catalog;
2. The system must be scalable, in such a way that it may be scaled to support a wide

geographic area, with high volumes of messages and multiple LPWAN networks:

(a) The system must at least implement support for long-range wide-area network
(LoRaWAN) over the things network (TTN);

(b) The design choices must not limit future support for additional LPWAN net-
works, deployed using distinct protocols.

3. The system must join metrics by some geographic area and aggregate them, obtaining
the average value for each collected metric;

4. The system should not lose more than 1% of messages received from data sources:

(a) It is acceptable that this introduces significant latency in updating aggregated
metrics, in the order of a few seconds.

5. The system must make the aggregated metrics available, both to external systems
through a web application programming interface (API), and to the final user through
a graphical interface.

3.4. Design of the System Architecture

The proposed architecture has as an obligatory requirement that it must use compo-
nents from the FIWARE catalog for system integration and context management. Naturally,
such an architecture is built around the usage of the Orion Context Broker (OCB).

Consider Figure 2 that presents a high-level view of the proposed architecture for
IoTMapper. The functional blocks of the system can be summarized as follows:

• The low-power wide-area networks (LPWAN) sources represent any external system,
or internet-of-things (IoT) device that reports metrics about an LPWAN network.

• The IoTMapperLpwanReceivers are the set of components suitable for one or more
LPWAN networks, mediating the reception and insertion of metrics. It may be any
component capable of using the NGSI-v2 API, but the FIWARE catalog already offers
some adequate components, namely the IoTAgents.

• The Orion Context Broker (OCB) performs the role of manager of the context data, com-
posed of initial metrics events and the obtained aggregations, allowing the integration
of other FIWARE components according to the NGSI-v2 API.

• The IoTMapperDataProcessing obtains the initial metrics from the OCB, processing
them in near real time as a stream of events to be processed, filtered and aggregated
into OCB as the final metrics entities.

• The IoTMapperBackend intermediates access to the managed context, allowing both
external systems and the IoTMapperPresentation to consume the aggregated metrics
entities, while abstracting implementation details, such as the FIWARE services used
for the context separation of entities.

• The IoTMapperPresentation permits an initial and simplified overview of the aggre-
gated metrics as a heatmap presenting the relative quality of the collected metrics.
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Figure 2. High-level view of system architecture.

3.5. Implementation Considerations

Considering the high-level view presented in Section 3.4, a reference implementation
was developed as validation of the proposed architecture.

All components, either newly developed or already existing, were containerized with
the specific intent of orchestrating the deployment of the entire system using Kubernetes [29–31].
The installation and initialization process was unified under a single Ansible [32] playbook,
allowing the deployment of the entire system with a single command.

3.5.1. IoTMapperLpwanReceivers

These receivers are the input point for all received data; as previously stated, they
may be any component capable of using NGSI-v2 to insert metric reports into the OCB.
For validation of the purposed architecture, the set of IoTAgent components offered by
the FIWARE catalog was chosen. In particular, for the development of the reference
implementation and support of LoraWAN networks, the IoTAgent-LoRaWAN component
was chosen. The IoTAgent-LoRaWAN implementation was modified to add a new mapping
mode, allowing for the consumption of the entire LoRaWAN message, including headers
that contain the required metrics, in opposition to existing modes that consume only the
payload sent by the IoT devices serviced by the LoRaWAN network.

At this point, the need was identified for a common format that may be used to
represent the metrics reports inserted into the OCB, irrespective of their source. The choice
was made to keep details regarding the processing of metrics, specific to each LPWAN
network, maximally contained to the IoTMapperDataProcessing component, representing a
single point to be altered and limiting further alterations to FIWARE components. To answer
this question, a new data model, the MetricsReport, was defined as detailed in Appendix A.1.

3.5.2. Orion Context Broker—Layers for Separation

When considering the definition of data flows in the system of the proposed architec-
ture, two flows can be identified:

1. A input flow: from the reception of metrics reports to the creation and update of the
metrics aggregations;

2. A exit flow: that allows the consumption of aggregations through IoTMapperBackend
and IoTMapperPresentation.

Both flows have the Orion Context Broker as the common connecting point. They,
however, represent two significantly distinct use cases. The input flow is a more write-
heavy scenario, with reports arriving and updates to aggregations additionally making use
of NGSI-v2 asynchronous notifications. The exit flow is almost exclusively composed of
reads of the aggregated metrics from the managed context.

Considering the two different usage flows under the same architecture, for imple-
mentation purposes, the separation of the system in two distinct layers, each with its own
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instance of the OCB, was considered, resulting in an input layer that has the IoTMapperLp-
wanReceivers and IoTMapperDataProcessing and an exit layer with IoTMapperBackend
and IoTMapperPresentation.

3.5.3. IoTMapperDataProcessing

Similar to the case for IoTMapperLpwanReceivers, a new data model is required to
represent the results of metrics processing and aggregation, as outputs of IoTMapperDat-
aProcessing to be inserted into OCB. The defined model, a MetricsAggregation, is described
in Appendix A.2.

While a simpler approach may have been the creation of a single service that processes
the metrics and emits the resulting MetricsAggregations backed by a storage solution, this
option was discarded in favor of a more complex approach, using a combination of an
Apache Kafka [33–35] and Kafka Streams [36] applications, with Cygnus from the FIWARE
framework, writing MetricsReports to topics in Apache Kafka.

This choice is motivated by a number of factors. Firstly, the objective of creating
a processing system with low loss of messages, capable of handling a variable volume
of messages and that can be easily extended with additional functionality (new parsers
for new LPWAN networks). Apache Kafka offers exactly once semantics, which can be
advantaged by Kafka Streams applications. Each such application is a Java application,
using the provided library to define streams of processing steps to be applied to messages,
while offering such characteristics as progress check pointing, load balancing and the
grouping of messages according to a key.

Secondly, the usage of an asynchronous publish/subscribe framework naturally ex-
tends the asynchronous publish/subscribe behavior of the notification mechanism offered
by OCB, with Apache Kafka being the only such framework supported by a FIWARE
component (Cygnus).

Lastly is the possibility of using the Apache Kafka brokers as an aggregation point for
data originating from multiple OCB instances in a scaling environment.

This results in the division of the IoTMapperDataProcessing component in a number
of interrelated components:

• A FIWARE Cygnus component that processes notifications received from the OCB,
inserting them into a topic in the Apache Kafka broker.

• The Apache Kafka brokers that handle the distribution of messages between compo-
nents, while ensuring exactly once message delivery guaranties.

• The actual implementation of the IoTMapperDataProcessing logic, a set of Kafka
Streams components, responsible for all processing of messages and the calculation of
aggregated metrics. The processing is divided into steps that are check pointed into
Apache Kafka topics.

• A Kafka Connect [36,37] component, offering a newly implemented connector ca-
pable of using NGSI-v2, notably including the batching of entities updates. As the
MetricsAggregations are added to each output topic, they are inserted into the OCB.

The enumerated components, in the presented order, also serve as a summary of the
previously referred input flow, lacking only a reference to the initial reception of messages
by the IoTMapperLpwanReceivers.

The Kafka Streams applications that implement the logic of the IoTMapperDataPro-
cessing were designed so that, while possessing a common core of reusable logic, a new
specialization of the component, supporting a new LPWAN network, could be added as
required. Additionally, under this architecture, it would be reasonable to developed new
steps to perform additional analysis of the streams and aggregated metrics.

The common logic defined for IoTMapperDataProcessing components is presented in
Figure 3.
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Figure 3. Sequence of steps performed by IoTMapperDataProcessing components.

The sequential logic can be divided into steps such that the following hold:

1. Mapping: Reading and mapping from a generic format, a MetricsReports, to a type
specific to each LPWAN, a IMetricsRecord.

2. Repartition: Initially, the messages do not have an associated key. The correct distri-
bution of messages is assured by extracting from each message a gateway identifier
(GwId) to be used as a key.

3. Gateway update: The collected metrics are directly correlated with the test conditions
(environment, weather, hardware, etc.). Any change on these will probably be re-
flected on the extracted samples, and one would need to redo the network surveys
so that they are only valid while channel characteristics are reasonably unaltered.
IoTMapperDataProcessing checks, for each new IMetricsRecord, a set of mechanisms
to verify their validity. As a default, a gateway may not move more than 100 meters
from the first observed location, and it is also possible to configure a time to live for
IMetricsRecord. Whenever channel characteristics are deemed to have changed, a new
aggregation is started. Another parameter of interest could be the time since the start
of the current aggregation.

4. Filtering: The message flow is filtered in order to exclude out-of-order messages
posterior to the last change.

5. Metrics grouping: The metrics are grouped in geographic areas (designated mapTiles),
obtaining pairs < gwId, mapTile >. The mapTiles are formed as GeoHashes [38], due
to the wide availability of compatible libraries.

6. Metrics aggregation: The obtained set of metrics, already filtered, is aggregated
obtaining the final internal representation, a IMetricsAggregate. The logic to aggregate
metrics is specific to each LPWAN network.

7. Writing the results: The aggregations are persisted in a topic to be consumed by Kafka
Connect, already formed as NGSI-v2 entities (MetricsAggregations).

3.5.4. IoTMapperBackend

All the collected MetricsAggregations are collected with the objective of supporting
decision making in the maintenance of LPWAN networks by presenting coverage maps for
existing networks.

The IoTMapperBackend covers this objective by abstracting all implementation details
that would make consumption more complex, and limiting access to non-essential details.
For example, the implementation separates the context of MetricsReports and MetricsAg-
gregations entities from different LPWAN networks by using distinct FIWARE services,
a HTTP header in NGSI-v2 with mostly internal meaning. In the IoTMapperBackend,
the implemented API offers access to lists of these entities through a common interface for
all LPWANs that may be consumed by external systems.

The implementation was developed using Kotlin for the Spring Framework [39,40].

3.5.5. IoTMapperPresentation

While the IoTMapperBackend offers access to detailed information on coverage,
IoTMapperPresentation offers an initial view of the collected data. As validation of the ar-
chitecture, and considering the need for a common interface for all metrics, the IoTMapperP-
resentation component implements a heatmap displaying the relative qualitative coverage.
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The implementation was developed using Typescript for the React framework [41].
The implemented interface is shown in Section 4.1.

3.6. Integration for Validation

For validation of the developed architecture, the system was integrated in a laboratory
environment, made available by ISEL that used three virtual machines for deployment as
described in Table 1.

Table 1. Machines used for deployment and validation.

Legend Description CPU Memory Operating System

TFM-00 Deploys the Input Layer 4 vCPU 16 Gb Ubuntu 22.04 LTS (5.15.0-40-generic)
TFM-01 Deploys the Exit Layer 4 vCPU 8 Gb Ubuntu 22.04 LTS (5.15.0-40-generic)
TFM-02 Runs test loads 4 vCPU 8 Gb Ubuntu 22.04 LTS (5.15.0-40-generic)

Latency between the machines was measured to be negligible, always inferior to 1 ms,
in a simple experiment of using the ping utility between the machines.

The 1.24 version of Microk8s [42,43] was used to create a Kubernetes cluster between
TFM-00 and TFM-01, while separating deployed components according to their layer.

3.7. Validation and Evaluation

The proposed system was validated by considering, in a first stage, a data set obtained
from a real environment. This first data set is composed of survey messages, sent from a
moving car through the city of Lisbon, Portugal, for a total of 2100 distinct messages, each
being received by 2–3 gateways on average, and resulting in 3185 distinct aggregations.
Each message contained the current location of the survey device in its payload. The data
set was collected through the things network and stored in its raw form. This data set was
collected on 4 November 2021, over a period of 4 h.

In a second stage, a simulated data set was generated, using the messages collected
in the first stage as a base in a semi-randomized fashion. This semi-randomized compo-
nent refers to the location field present in each message, which was altered in such a way
that each message corresponds to a single Geohash identifier (a MapTile, presented in
Section 3.5.3) for the same gateway identifier. This choice allows a direct correspondence
between each message injected in the system, and the entities created in the context man-
agement solution (the OCB). Such a characteristic is important in the approach used for
identifying both latency and error rates. Figure 4 presents the methodology framework
used for this stage.

Figure 4. Graphical representation of the methodology framework, used during evaluation.

In order to simulate the process of collecting the messages from a real source, with con-
trollable rates, a MQ telemetry transport (MQTT) broker was added to TFM-01 only for the
second stage. Eclipse Mosquitto [44] was the chosen implementation. An auxiliary software
component was purpose built to inject the second data set into the MQTT broker, according
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to the required rate, while inserting the current timestamp into each message. As the data
set is injected into the system, the evaluation does not consider, in the current development
phase, any latency that would result from each LPWAN deployment, before the messages
reach IoTMapper.

Individual components were validated as development progressed. The integration of
all components, including user interface, was validated for a real use case and environment
during the first stage. Performance of the integrated system was collected during the
second stage for a laboratory setting.

For the second stage, two simple metrics of system performance were collected: total
error rate (TER) and average latency (AL).

The TER indicates the percentage of messages either dropped or that fail to be fully
processed in a reasonable time period. The definition is given by

TER = Si
n × 100 (1)

where Si is the count messages successfully processed in i seconds, and n is the number of
messages sent to the system.

AL indicates the average delay, in milliseconds, for the group of messages successfully
processed to reach the indicated component. The method used to measure end-to-end
latency is dependent on the comparison of timestamps injected at different points in the
system. The last timestamp, for end-to-end latency, is inserted into each MetricsAggregation
entity by the OCB instance. Two additional timestamps are also obtained for other points.
After completing each test, the timestamps were collected and compared in order to obtain
the latency for each message as it passes through the system. The definition used in the
comparison is given by

AL = ∑n
t=1 |[ ft−it ]|

n (2)

where n is, again, the number of messages sent to the system. it is the first timestamp,
inserted into each message as it is injected into the system. ft is the timestamp inserted for
comparison, as defined in Table 2 and Figure 4.

The measurement points were chosen with the primary objective of testing the perfor-
mance of the IoTAgent-LoRaWAN, used as the IoTMapperLpwanReceiver implementation
when integrating LoRaWAN networks, and as a result of the availability of the required
data in each component. As there are only three possible measurement points, the set of ob-
tained metrics was bolstered by calculating the average differences between measurement
points, allowing the identification of time spent in a subset of components.

Table 2. Mappings for figure legends, defining measuring points for latency.

Legend Name Description

EE End-To-End Latency measured from message creation to being written as an
aggregation in the Orion Context Broker (OCB)

C1 Component 1 Latency measured at the moment the IoTAgent-LoRaWAN finishes
sending each message to the OCB

C2 Component 2 Latency measured at the moment each aggregation is written to
Apache Kafka

D1 Difference 1 Difference in latencies measured in EE and C1. Latency for all
components, but IoTAgent-LoRaWAN

D2 Difference 2 Difference in latencies measured in C1 and C2. Latency spent
processing the message into an aggregation

D3 Difference 3 Difference in latencies measured in EE and C2. Latency spent
inserting each aggregation into the OCB

The results are presented in Section 4.
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4. Results and Discussion

As previously stated in Section 3.7, the system was tested in two stages. Firstly, the sys-
tem was validated under the environment of the city of Lisbon by accessing the coverage
offered by a LoRaWAN network mounted by city authorities [2]. In the second stage, a sim-
ulated data set was used to evaluate system performance when under a controlled load.
For the second stage, the fact that each message in the data set maps to a single MapTile
and, by extension, a single MetricsAggregation entity for consumption, is an important
characteristic that could not easily be guaranteed in a real environment. In particular, it al-
lows for simple verification of message loss during testing, as under regular circumstances,
a LoRaWAN message may be received by multiple gateways, resulting in each message
being split into multiple MetricsAggregation entities.

4.1. First Stage—Validation

Consider Figure 5 which presents the graphical user interface centered on the down-
town area of Lisbon. The graphical interface presents the user with a heatmap showing
relative quality for the MapTiles for which coverage was recorded. The left sidebar allows
the user to select the displayed data set from the drop-down selections. The LPWAN drop-
down loads the monitored low-power wide area networks (LPWAN), while the Metrics
drop-down renders the map for the selected aggregated metric. For Figure 5, the selected
combination is the received signal strength indicator (RSSI) for LoRaWAN.

Figure 5. User interface developed for the IoTMapper system. Displaying relative RSSI levels for
LoRaWAN in Lisbon.

This first stage allowed for the validation of the correct functioning of the developed
system under a real environment.

4.2. Second Stage—Evaluation

Using the second data set and performance metrics as described in Section 3.7, the sys-
tem was strained under different messages rates. The obtained results are as follows.

4.2.1. Latency

Figure 6 shows the variation of the average latency (AL), as defined in Equation (2),
for the three measuring points and average differences between them, as defined in Table 2.

Comparing the recorded values, it is clear that the majority of the latency in the
system is introduced by the interaction between the first component of the overall sys-
tem, the IoTAgent-LoRaWAN, and the OCB, corresponding to the C1 measurement point.
C2 and EE, which correspond to measuring points down the processing pipeline, show
only minor increases in latency. It is also clear that the latency increases significantly as
the number of messages per second increases. This pattern is slightly contradicted for
1000 messages per second.
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While the requirements listed for the project allowed for sacrifices in the delay to make
updated MetricsAggregation entities available for consumption, in favor of limiting loss of
messages, the growing delay introduced by the IoTAgent-LoRaWAN component is not
considered to be falling under the concessions made for this requirement, and presents a
significant bottleneck to the usability and scalability of the system.

As the IoTAgent-LoRaWAN does not offer or use any batching mechanism, each
message received results in a new, individual write into the underlying entity stored in the
OCB. In the first iteration of the test (Figure 6), all the messages received belong to the same
simulated device, being mapped by the IoTAgent-LoRaWAN component to the same entity.
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Figure 6. AL registered for the second stage evaluation. LoRaWAN for 1 simulated device.
(a) Registered latencies for monitored components and end to end. (b) Differences in recorded
latencies between components.

Figure 7 repeats the previous experiment but configuring the IoTAgent-LoRaWAN
component with 100 simulated devices. While writing the messages, they were randomly
assigned to a different device.
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Figure 7. AL registered for the second stage evaluation. LoRaWAN for 100 simulated devices.
(a) Registered latencies for monitored components and end to end. (b) Differences in recorded
latencies between components.

This modification did not result in any significant gain, with previously noted patterns
repeated. The initial interaction (up to the C1 point) accounts for between 9606.834 ms
and 14,765.746 ms of latency. All remaining components, which include most processing
and interactions, account for only between 1955.563 ms and 2714.426 ms of latency until
each aggregation is available for consumption. Of particular note is the fact that, as seen in
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Figure 7b, the differences in measured latencies are stable for all message rates, indicating
that the observed growth of end-to-end latency is primarily the result of the unstable
behavior between the IoTAgent-LoRaWAN and the OCB.

The reduction in average latency for 1000 messages per second is also confirmed,
but reduced from 1356.975 ms to 785.422 ms. This inversion, for both scenarios, is inter-
preted as a result of the size used for batching by default, being 1000 messages for both
Cygnus and Kafka Connect components, decreasing the tail latencies. This observation
is supported by the error rates in the following subsection (Section 4.2.2), for the same
scenario. The percentage of messages with total latency superior to 25 s is cut from 17.30%
to 6.60%, while latency for shorter time periods remains unchanged.

Considering that previous research suggests that the Orion Context Broker should
be capable of handling higher messages rates [45,46], the study of latency reduction was
focused on the IoTAgent-LoRaWAN component. A third scenario was considered, where
three instances of the IoTAgent-LoRaWAN component were used, each instance handling a
third of the message volume, and communicating independently with the Orion Context
Broker. One hundred simulated devices were once again considered. The results are shown
in Figure 8.
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Figure 8. AL registered for the second stage evaluation. LoRaWAN for 100 simulated devices,
and three instances of IoTAgent-LoRaWAN. (a) Registered latencies for monitored components and
end to end. (b) Differences in recorded latencies between components.

This scenario, while similar to the previous results, presents a significant reduction
in latencies for the C1 measurement point, and, therefore, for the total latency in the
system. However, the IoTAgent-LoRaWAN instances continue to be the main performance
bottleneck point.

Latency at the C1 point is now between 1074.035738 ms and 7577.968 ms, a decrease
in the order of 8.945 and 2.756 times, respectively, in comparison to the scenario in Figure 7.
The remaining components account for between 2083.829903 ms and 2235.426207 ms of
latency. The IoTAgent-LoRaWAN instances continue to be the main performance bottle-
neck point.

While the decrease in latency for 1000 messages per second is still present, it is not as
significant, at only 278.664 ms for the 785.422 ms in Figure 7.

4.2.2. Error Rates

Figure 9 shows the error rates (TER) for the same set of experiments as Figures 7 and 8,
but now displaying error rates as defined in Equation (1) for different values of i seconds.
As defined in Equation (1), the TER is considered to be the number of messages the system
fails to deliver in i seconds, and therefore are considered lost. For all tests, there was no full
message loss—a message not being delivered in any time period.
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Figure 9. TER registered for the second stage—evaluation. (a) The 100 simulated devices and
1 IoTAgent-LoRaWAN, as in Figure 7. (b) The 100 simulated devices and 3 IoTAgent-LoRaWAN,
as in Figure 8.

Comparing the results obtained for Figures 9a,b, the reductions in latencies, previously
obtained by increasing the instances of IoTAgent-LoRaWAN from 1 to 3, resulted in predi-
cable reductions in the error rates. In particular, there were no messages delivered after the
time limit, for i = 15, while previously this was only achieved for i = 30. For 1000 messages
per second, in Figure 9a, there is a clear reduction in tail latencies (messages with delivery
latencies above 20 s). The same effect is also noted, in Figure 9b, for 10 s, with a more
significant drop from 55.30% to 11.30%. As stated in the previous subsection, this drop is
understood to be related to internal batching size used in the scenarios.

Considering the listed requirement that the system cannot fail to deliver more than
1% of messages, all scenarios could be considered to have kept the requirement, given a
maximum limit of 30 s of delay, but failed this requirement considering a limit of 5 s. Even
the best obtained case, the 100 messages per second mark for Figure 9b, had a TER of 2.7%.

5. Conclusions

The presented work proposes the architecture, and reference implementation, for a
new system for collecting raw reports on metrics which are made available through a web
application programming interface (API), and a corresponding user interface, displaying
a heatmap. The system is built around components belonging to the FIWARE project,
while considering existing integration with external data sources and processing systems.
To the best knowledge of the authors, there is no previous solution that uses FIWARE
components to gather metrics on the LPWAN deployments themselves that could be used
to monitor network coverage and availability, which by themselves could be used to
establish strategies to improve the network throughout its lifetime.

Validation was successfully carried out using real data collected from the city envi-
ronment in Lisbon, Portugal, to obtain a visualization of the LoRaWAN network available
in the city. The authors, however, believe that their proposed architectural approach is
applicable to any urban environment, as it relates to how IoT devices and the LPWAN
infrastructure perceive the channel characteristics in practice, over time. Further validation
was carried out through the evaluation of processing latencies and error rates, using a
simulated data set fed directly into the architecture. The evaluation process found that,
while the objective of avoiding the loss of messages was successfully achieved, the system
presents significant latency in processing the messages. Most of this delay is introduced by
the IoTAgent-LoRaWAN component, used as reference implementation for the IoTMap-
perLpwanReceivers. Increasing the number of IoTAgent-LoRaWAN instances and splitting
messages reception among them reduced latency between 8.945 and 2.756 times.

The authors found that, overall, the FIWARE components are adequate for building
solutions with the given objectives, considering that most of them handled the messages
efficiently. However, the limitations regarding latency, inserted by IoTAgent-LoRaWAN,
represents a significant challenge to be overcome. Additional work is required, either by
identifying and resolving internal bottlenecks that prevent it from successfully process-
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ing multiple messages concurrently or identifying appropriate alternatives. For example,
as a solution for internal bottlenecks, mechanisms such as adding support for batching
mechanisms already supported by Orion Context Broker may be added. The present
architecture and implementation were also found to be valid as an initial answer to the
listed requirements but may require additional validation and improvement, in particular,
fine tuning batching sizes used in the different components, the performance of process-
ing steps carried out by Kafka Streams, and considering multiple implementations for
the IoTMapperLpwanReceivers.

The authors consider that there are three major drawbacks that affect the presented
architecture for IoTMapper. Firstly, the chosen architecture is centered on the challenges
surrounding active monitoring of LPWAN Networks. As such, this method can only be
used to plan improvements to deployments in cities with existing networks; planning for
completely new deployments must refer to other methods. Secondly, the system requires
either regular survey work to update the aggregations or that devices used in deployed
solutions are voluntarily provided. Lastly, the analysis to be carried out is limited to what
metrics are made available for each network. For LPWAN deployments that depend on
mobile network operators, for example, NB-IoT, such metrics may be severely limited
without integration with each operator.

Throughout the paper, no consideration was made for completely replacing the FI-
WARE components, in particular, the Orion Context Broker that is the fundamental context
management component of FIWARE. This is the result of one of the main design require-
ments: the usage of FIWARE components in order to validate their applicability to the
problem area. To obtain a more comprehensive view of the performance of FIWARE,
the authors suggest, as a future research possibility, comparison with other technologi-
cal components.
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Appendix A

This appendix lists the data models defined for usage with FIWARE components,
confirming NGSI-v2.
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Appendix A.1

Representation for generic and raw message entity.

MetricsReport :
d e s c r i p t i o n : ’Description of a generic and raw message entity,

containing a message coming from a device or other data source.’
p r o p e r t i e s :

dateCreated:
d e s c r i p t i o n : ’Entity creation timestamp. This will usually be

allocated by the storage platform.’
format: date −time
type: s t r i n g
x−ngsi :

type: Property
dateModified:

d e s c r i p t i o n : ’Timestamp of the last modification of the entity.
This will usually be allocated by the storage platform.’

format: date −time
type: s t r i n g
x−ngsi :

type: Property
id:

anyOf:
- d e s c r i p t i o n : ’Property. Identifier format of any NGSI entity’

maxLength: 256
minLength: 1
pat tern : ’^[\w\-\.\{\}\$\+\*\[\]‘|~^@!,:\\]+\$’
type: s t r i n g

- d e s c r i p t i o n : ’Property. Identifier format of any NGSI entity’
format: u r i
type: s t r i n g

d e s c r i p t i o n : ’Unique identifier of the entity’
x−ngsi :

type: Property
name:

d e s c r i p t i o n : ’The name of this item.’
type: s t r i n g
x−ngsi :

type: Property
MetricsReport :

d e s c r i p t i o n : ’The raw value of the report, represented as a
string. Must be URL safe.’

type: s t r i n g
x−ngsi :

model: h t tps ://schema . org/Text
type: Property

type:
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Appendix A.2

Representation for an aggregation of metrics from some LPWAN data source.

MetricsAggregation:
d e s c r i p t i o n : ’Description of a generic aggregation of measures/metrics’
p r o p e r t i e s :

dateCreated:
d e s c r i p t i o n : ’Entity creation timestamp. This will usually be

allocated by the storage platform.’
format: date −time
type: s t r i n g
x−ngsi :

type: Property
dateModified:

d e s c r i p t i o n : ’Timestamp of the last modification of the entity.
This will usually be allocated by the storage platform.’

format: date −time
type: s t r i n g
x−ngsi :

type: Property
id:

d e s c r i p t i o n : ’Property. Identifier format of any NGSI entity’
maxLength: 256
minLength: 1
pat te rn : ’^[\w\-\.\{\}\$\+\*\[\]‘|~^@!,:\\]+$’
type: s t r i n g
x−ngsi :

type: Property
name:

d e s c r i p t i o n : ’The name of this item.’
type: s t r i n g
x−ngsi :

type: Property
type:

d e s c r i p t i o n : ’NGSI Entity type. It has to be MetricsAggregation’
enum:

- MetricsAggregation
type: s t r i n g
x−ngsi :

type: Property
dateLastGwUpdate:

d e s c r i p t i o n : ’Timestamp of the last action that led to the rest of
the this aggregation’

format: date −time
type: s t r i n g
x−ngsi :

type: Property
dateLastUpdate:

d e s c r i p t i o n : ’Timestamp of the last measure aggregated’
format: date −time
type: s t r i n g
x−ngsi :

type: Property
gwId:

d e s c r i p t i o n : ’Unique identifier of the Gateway’
maxLength: 256
minLength: 1
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pat te rn : ’^[\w\-\.\{\}\$\+\*\[\]‘|~^@!,:\\]+$’
type: s t r i n g
x−ngsi :

type: Property
mapTile:

d e s c r i p t i o n : ’Unique identifier of the geographic area’
maxLength: 128
minLength: 1
pat te rn : ’^[\w\-\.\{\}\$\+\*\[\]‘|~^@!,:\\]+$’
type: s t r i n g
x−ngsi :

type: Property
measures:

d e s c r i p t i o n : ’List of aggregated measures’
type: array
items:

p r o p e r t i e s :
name:

type: s t r i n g
value:

type: double
type: o b j e c t

l o c a t i o n :
d e s c r i p t i o n : ’Geojson reference to the location covered by the

item. It can be Polygon or MultiPolygon’
oneOf:

- d e s c r i p t i o n : ’Geoproperty. Geojson reference to the item.
Polygon’

p r o p e r t i e s :
bbox:

i tems:
type: number

minItems: 4
type: array

coordinates :
i tems:

items:
items:

type: number
minItems: 2
type: array

minItems: 4
type: array

type: array
type:

enum:
- Polygon

type: s t r i n g
required:

- type
- coordinates

t i t l e : ’GeoJSON Polygon’
type: o b j e c t

- d e s c r i p t i o n : ’Geoproperty. Geojson reference to the item.
MultiPolygon’

p r o p e r t i e s :
bbox:

i tems:
type: number
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minItems: 4
type: array

coordinates :
i tems:

items:
items:

items:
type: number

minItems: 2
type: array

minItems: 4
type: array

type: array
type: array

type:
enum:

- MultiPolygon
type: s t r i n g

required:
- type
- coordinates

t i t l e : ’GeoJSON MultiPolygon’
type: o b j e c t

x−ngsi :
type: Geoproperty

required:
- id
- type
- gwId
- mapTile
- measures
- l o c a t i o n

type: o b j e c t
vers ion: 1 . 0 . 0
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