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Abstract: This paper concerns the distributed fusion filtering problem for descriptor systems with
time-correlated measurement noises. The original descriptor is transformed into two reduced-order
subsystems (ROSs) based on singular value decomposition. For the first ROS, a new measurement is
obtained using measurement difference technology. Each sensor produces a local filter based on the
fusion predictor from the fusion center and its own new measurement and then sends it to the fusion
center. In the fusion center, based on local filters, a distributed fusion filter with feedback (DFFWF)
in the linear minimum variance (LMV) sense is proposed by applying an innovative approach.
The DFFWF for the second ROS is also obtained based on the DFFWF for the first ROS. Then, the
DFFWF for the original descriptor is obtained. The proposed DFFWF can achieve the same estimation
accuracy as the centralized fusion filter (CFF) under the condition that all local filter gain matrices are
of full column rank. Its optimality is strictly proved. Moreover, it has robustness and reliability due
to the parallel processing of local filters. Two simulation examples demonstrate the effectiveness of
the developed fusion algorithm.
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1. Introduction

In the last few decades, the problem of state estimation for descriptor (singular)
systems has attracted much attention due to more widespread applications than normal
systems, such as in power systems, electrical networks, chemical processes, social–economic
systems, network analysis, constrained mechanical systems, time-series analysis, large-scale
systems with interconnections, aerospace attitude control systems and so on [1–3].

Generally speaking, there are two common methods that deal with the filtering prob-
lem for descriptor systems: the full-order transformation method and the reduced-order
decomposition method. Based on the full-order transformation method, the optimal linear
estimators for single sensor systems [4] and distributed fusion estimators for multi-sensor
systems [5] are proposed, which are directly solved based on the projection theory. How-
ever, the derivation of the estimator is complex since the descriptor system with white
noise is transformed into a normal system with one-step cross-correlation colored noise.
Differently from full-order methods [4,5], the original descriptor system is equivalently de-
composed into two reduced-order subsystems based on the singular value decomposition,
where the first reduced-order system is the normal system with white noise. Hence, the
reduced-order decomposition method is more popular. Based on the reduced-order de-
composition method, many estimators have been reported, including the linear minimum
mean-square filter for a single sensor system with stochastic multiplicative disturbance [6],
the distributed weighted state fusion optimal filter [7] and steady-state estimators [8] for
systems with correlated white noise, distributed weighted state fusion filter for a system
with fading measurements and stochastic nonlinearity [9], weighted measurement fusion
robust estimators [10] and self-tuning estimators [11], and centralized fusion estimators
for systems with different delay rates [12]. However, the above works do not consider the
time-correlated measurement noises.
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In recent years, research on time-correlated noises has gained lots of attention be-
cause of its extensive application background in practical areas such as the modern radar
systems [13], the global navigation satellite systems and the unreliable network commu-
nication systems [14], etc [15,16]. Up to now, there are two common methods to deal
with the time-correlated noises: the state augmented method and the measurement dif-
ference method [17–23]. State augmented method is direct and simple. However, the
potential ill-conditioned problem and expensive computational burden are the main short-
comings [17,18]. In comparison, the measurement difference method has more advantages.
It can avoid the ill-conditioned problem of the estimation error covariance matrix and
reduce the computational cost. The measurement difference methods are also divided into
forward difference and backward difference. The future measurements are required to
update the filter in forward measurement difference, which leads to a delay in the output
of the filter [19]. Hence, the most popular method is the backward measurement difference
method. Based on it, many benefit results have been proposed such as linear least variance
filters [18,20], a modified Tobit Kalman filter [21], the innovation-based and consensus-
based distributed fusion filters by considering neighboring filters [22], distributed and
centralized fusion filter and smoother [23], optimal linear filter for singular system [24].

In recent years, information fusion state estimation problem has become the hot topic
in signal processing, target tracking, navigation and positioning areas [25]. The common
methods are centralized and distributed fusion and sequential fusion. For asynchronous
or delayed data, sequential fusion is more convenient [26]. When all sensors are healthy,
centralized fusion can give the globally optimal estimation results in the LMV sense. Dis-
tributed fusion is easy to detect and isolate the faulty sensors since the local filters are
processed in parallel. So far, many distributed fusion estimators for normal system with
time-uncorrelated white noises have been reported including the weighted state fusion
filter in LMV sense [27], fusion filter based on information filter [28], and suboptimal and
globally optimal distributed fusion filters without/with feedback [29–31]. Under some
conditions, the above distributed optimal fusion filters [28–31] can achieve the globally op-
timal estimation accuracy in LMV sense. In the recent studies [32–34], some new improved
distributed fusion strategies have been proposed. For nonlinear integrated unmanned
aerial vehicle navigation system, a new cubature rule-based distributed fusion strategy
has been proposed in [32]. The developed fusion technique can effectively identify and
predict kinematic model error and achieve globally optimal fusion results. In [33], a novel
low-complexity reduced-order fusion filter is designed by fusing a subset of state compo-
nents rather than all state variables. In [34], based on reduced dimension hypercomplex
technique, the centralized and distributed prediction and smoothing fusion algorithms
for system with uncertain measurements are proposed in the tessarine domain. However,
to the best of the author’s knowledge, the globally optimal distributed fusion filter for
descriptor system with time-correlated measurements has not been reported.

Motivated by the above analysis, the state estimation problem for systems with time-
correlated noises has not been fully solved. Most of the existing works are the linear
filter for normal system measured by single sensor. In the current paper, we focus on the
DFFWF for descriptor systems with time-correlated measurement noise. Based on singular
value decomposition method and backward measurement difference method, a DFFWF
is presented in the LMV sense. The developed DFFWF can achieve the same accuracy as
the centralized fusion one. The optimality of the DFFWF is rigorously proved. Moreover,
the proposed DFFWF avoids the complex computation of the cross-covariance matrices
between any two local estimation errors in the distributed weighted fusion method.

Notation: <n is the n dimensional Euclidean space. diag(•) represents the diagonal
matrix; 0 represents the zero matrix with the suitable dimensions; Imk represents mk ×mk
identity matrix. A+ signifies the Moore-Penrose inverse of a matrix A. δt,k is Kronecker delta
function. Superscript T denotes transpose of a matrix. E[•] is the mathematical expectation
operator. proj{•} denotes the projection operator. x⊥y means random variables x and y
are uncorrelated, i.e., E[xyT] = 0. L(yj(1), · · · , yj(t− 1), yj(t)) stands for the linear space
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spanned by the measurement sequence
{

yj(1), · · · , yj(t− 1), yj(t)
}

. Subscript j denotes
the jth sensors, N denotes the number of the sensors.

2. Problem Formulation and Preliminary Lemmas

Consider the following multi-sensor stochastic descriptor system with time-correlated
measurement noises:

Ax(t + 1) = Bx(t) + Cw(t), (1)

yj(t) = Djx(t) + vj(t), j = 1, . . . , N, (2)

vj(t + 1) = U jvj(t) + µj(t), (3)

where x(t) ∈ <n is the state and yj(t) ∈ <mj is the measurement output. A, B, C, Dj, U j are
known constant parameter matrices with proper dimensions..

We make the following assumptions.

Assumption 1. A is a singular square matrix, i.e., rank
(

A) = n1 < n .

Assumption 2. Systems (1)–(3) are regular, i.e.,det(sA− B) 6= 0, and s is an arbitrary complex.

Assumption 3. rank(B) = n.

Assumption 4. w(t) and µj(t) are uncorrelated white noises with zero means and covari-
ance matrices E[w(t)wT(k)] = Qwδt,k and E[µj(t)µT

j (k)] = Qµ
j δt,k,j = 1, . . . , N.

Assumption 5. The initial state value x(0)and measurement noise initial values vj(0), j = 1, · · · , N
are mutually uncorrelated and are independent of w(t) and µj(t), and satisfy E[x(0)] = x0,
E[(x(0)− x0)(x(0)− x0)

T] = P0, E[vj(0)] = v, E[(vj(0)− vj)(vj(0)− vj)
T] = P

vj
0 .

Our aim is to design the globally optimal DFFWF x̂d f (t|t) in the LMV sense. Besides,
the global optimality of the DFFWF is proved.

Remark 1. Descriptor systems appear in many fields, such as electrical circuit systems, large-
scale systems with interconnections, constrained mechanical systems. Some concrete examples of
descriptor systems are presented in [1], from which readers can indeed see the existence of descriptor
linear systems in our real world. In the simulation research section, an electrical circuit system is
used to show the effectiveness of the proposed DFFWF algorithm.

System Transformation

Under Assumption 3, there exist the non-singular matrices M and N [7,8], which satisfy

MAN =

[
A1 0
A2 0

]
, MBN =

[
B1 0
B2 B3

]
, DjN = [D(1)

j , D(2)
j ], MC =

[
C1
C2

]
, (4)

where A1 ∈ <n1×n1 and B3 ∈ <(n−n1)×(n−n1) are both non-singular lower triangular

matrices, B1 ∈ <n1×n1 is the quasi-lower triangular matrix and A2, B2, C1, C2, D(1)
j ,

D(2)
j , j = 1, . . . , N are matrices with appropriate dimensions. By introducing x(t) =

N
[
(x(1)(t))

T
, (x(2)(t))

T
]T

, the original descriptor system can be transformed into the
following two ROSs: 

x(1)(t + 1) = Φx(1)(t) + Γw(t),

yj(t) = H jx(1)(t) + D(2)
j Cw(t) + vj(t)

vj(t + 1) = U jvj(t) + µj(t),
, (5)

x(2)(t) = Bx(1)(t) + Cw(t), (6)
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where Φ = A−1
1 B1, Γ = A−1

1 C1, H j = Dj
(1) + Dj

(2)B, B = B−1
3 A2 A−1

1 B1 − B−1
3 B2 and

C = B−1
3 A2 A−1

1 C1 − B−1
3 C2.

It is clear that the first ROS (5) is a normal system with time-correlated measurement
noise vj(t), and the second ROS (6) is a linear combination of x(1)(t) and w(t).

First, we adopt the measurement difference method used in ref. [20] to remove the
time-correlated noise vj(t). Using the measurement difference, the new measurement can
be expressed as:

zj(t) = yj(t)−U jyj(t− 1) = (H j −U j H jΦ
−1)x(1)(t) + D(2)

j Cw(t)

+U j(H jΦ
−1Γ− D(2)

j C)w(t− 1) + µj(t− 1).
(7)

In the above derivation, we use the fact that x(1)(t− 1) = Φ−1(x(1)(t)− Γw(t− 1))
according to the state update equation in Equation (5). This is acceptable since the state
transition matrix must be invertible [20,35].

Then, the first ROS can be expressed as:
x(1)(t + 1) = Φx(1)(t) + Γw(t),
zj(t) = Djx(1)(t) + ηj(t),
ηj(t) = Jjw(t) + Fjw(t− 1) + µj(t− 1),

(8)

where Dj = H j −U j H jΦ
−1, Jj = D(2)

j C and Fj = U j(H jΦ
−1Γ− D(2)

j C).

Remark 2. It is clear from Equation (8) that the new measurement noise ηj(t) is a one-step auto-
correlation and cross-correlation with process noise w(t), which brings a challenge to obtaining the
globally optimal linear filter.

For the sake of convenience in discussion, we introduce the augmented vectors:
z(t) = [zT

1 (t), · · · , zT
N(t)]

T, η(t) = [ηT
1 (t), · · · , ηT

N(t)]
T, µ(t) = [µT

1 (t), · · · , µT
N(t)]

T, D =

[DT
1 , · · · , DT

N ]
T, F = [FT

1 , · · · , FT
N ]

T and J = [JT
1 , · · · , JT

N ]
T. Then, the augmented system can

be written as: 
x(1)(t + 1) = Φx(1)(t) + Γw(t),
z(t) = Dx(1)(t) + η(t),
η(t) = Jw(t) + Fw(t− 1) + µ(t− 1).

(9)

Further, we determined the following noise statistic information using Assumptions 4 and 5,
which play an important role in the design of DFFWF.

E[µ(t)µT(t)] = Qµ, E[η(t)ηT(t− k)] = Qη(k), E[w(t)ηT(t− l)] = Qwη(l),
Qµ = diag(Qµ

1 , · · · , Qµ
N), Qη(0) = JQw JT + FQwFT + Qµ, Qη(1) = FQw JT,

Qη(−1) = JQwFT, Qwη(0) = Qw JT, Qwη(−1) = QwFT. k = 0,±1, l = 0,−1,
(10)

Remark 3. According to Equation (9), we determine that x(1)(t) ∈ L(w(t− 1) · · · , w(0), x(1)(0))
and L(z(1), · · · , z(t)) ⊂ L(w(t), w(t − 1) · · · , w(0), x(1)(0), µ(t − 1), · · · , µ(0)), which
implies w(t)⊥x(1)(t), η(t + k)⊥x(1)(t), k > 0 and w(t + 1)⊥L(z(1), · · · , z(t)),
η(t + 2)⊥L(z(1), · · · , z(t)).

Before ending this section, we recall the following CFF for the considered descriptor
system, which serves in the subsequent sections.

Lemma 1. For the first ROS (9) under Assumptions 1–5, the CFF is computed by:

x̂(1)c (t|t) = (In1 − Kc(t)D)x̂(1)c (t|t− 1)− Kc(t)η̂c(t|t− 1) + Kc(t)z(t), (11)

P(1)
c (t|t) = P(1)

c (t|t− 1)− Kc(t)Pz
c (t)K

T
c (t), (12)
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Kc(t) = (P(1)
c (t|t− 1)DT + Pxη

c (t|t− 1))(Pz
c (t))

−1. (13)

The centralized fusion predictor is computed by

x̂(1)c (t + 1|t) = Φx̂(1)c (t|t) + Γŵc(t|t), (14)

P(1)
c (t + 1|t) = ΦP(1)

c (t|t)ΦT + ΓPw
c (t|t)ΓT −ΦPxw

c (t|t)ΓT − Γ(Pxw
c (t|t))TΦT. (15)

The new measurement noise one-step predictor is computed by

η̂c(t + 1|t) = −Kη
c (t + 1|t)η̂c(t|t− 1)− Kη

c (t + 1|t)Dx̂(1)c (t|t− 1) + Kη
c (t + 1|t)z(t), (16)

Kη
c (t + 1|t) = Qη(1)(Pz

c (t))
−1, (17)

Pη
c (t + 1|t) = Qη(0)− Kη

c (t + 1|t)Pz
c (t)(K

η
c (t + 1|t))T

, (18)

Pxη
c (t + 1|t) = ΓQwη(−1)− (ΦKc(t) + ΓKw

c (t|t))Pz
c (t)(Q

η(1))T. (19)

The process noise filter is computed by

ŵc(t|t) = −Kw
c (t|t)η̂c(t|t− 1)− Kw

c (t|t)Dx̂(1)c (t|t− 1) + Kw
c (t|t)z(t), (20)

Kw
c (t|t) = Qwη(0)(Pz

c (t))
−1, (21)

Pw
c (t|t) = Qw − Kw

c (t|t)Pz
c (t)(K

w
c (t|t))

T, (22)

Pxw
c (t|t) = −Kc(t)Pz

c (t)(K
w
c (t|t))

T. (23)

with

Pz
c (t) = DP(1)

c (t|t− 1)DT + Pη
c (t|t− 1) + DPxη

c (t|t− 1) + (DPxη
c (t|t− 1))

T
, (24)

where the initial values are x̂(1)c (0| − 1) = x(1)0 , η̂c(0| − 1) = 0, P(1)
c (0| − 1) = P(1)

0 and

Pη
c (0| − 1) = Qη(0), Pxη

c (0| − 1) = 0, where x(1)0 is the first n1 components of N−1x0, and P(1)
0

is the first n1 × n1 sub-block of N−1P0N−T.

Proof. The proof is similar to the case for normal systems with one-step auto- and cross-
correlated measurement noises under the data receiving rate α = 1 [36]. �

Lemma 2. For the second ROS (6) under Assumptions 1–5, the CFF is provided by:

x̂(2)c (t|t) = Bx̂(1)c (t|t) + Cŵc(t|t), (25)

P(2)
c (t|t) = BP(1)

c (t|t)BT + CPw
c (t|t)CT + BPxw

c (t|t)CT + C(Pxw
c (t|t))TBT. (26)

The cross-covariance matrix between the two subsystems is computed by

P(12)
c (t|t) = P(1)

c (t|t)BT + Pxw
c (t|t)CT. (27)

The fusion state filter and its filtering error covariance matrix of the original descriptor (1)–(3) are
provided by

x̂c(t|t) = N[(x̂(1)c (t|t))
T

(x̂(2)c (t|t))
T
]
T

, P(2)
c (t|t) = N

[
P(1)

c (t|t) P(12)
c (t|t)

(P(12)
c (t|t))

T
P(2)

c (t|t)

]
NT.

Proof. The proof is straightforward from ref. [24]. �
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3. Main Results

In this section, we design the DFFWF x̂d f (t|t) in Figure 1 based on local filter inputs

x̂(1)j (t|t) and j = 1, · · · , N. We first design the globally optimal DFFWF x̂(1)d f (t|t) for the first

ROS (8) using an innovation analysis approach. Then, the DFFWF x̂(2)d f (t|t) for the second

ROS can be obtained based on x̂(1)d f (t|t) and the process noise filter ŵ(t|t).
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Figure 1. Globally optimal DFFWF.

3.1. Local Filter with Feedback

In this subsection, we will derive the local filter x̂(1)j (t|t) based on the feedback in-

formation x̂(1)d f (t|t − 1), P(1)
d f (t|t − 1), η̂j f (t|t − 1) = [0, Imj , 0]η̂ f (t|t − 1), Pη

j f (t|t − 1) =

[0, Imj , 0]Pη
f (t|t− 1)[0, Imj , 0]T and Pxη

j f (t|t− 1) = [0, Imj , 0]TPxη
f (t|t− 1) from the fusion cen-

ter to the individual sensor. x̂(1)d f (t|t− 1) and P(1)
d f (t|t− 1) are computed by Theorem 2, and

η̂ f (t|t− 1), Pη
f (t|t− 1) and Pxη

f (t|t− 1) are computed by Theorem 3. In view of the defini-

tions above, we know that η̂j f (t|t− 1) is the jth row block of η̂ f (t|t− 1), and Pη
j f (t|t− 1) is

the jth diagonal block of Pη
f (t|t− 1); Pxη

j f (t|t− 1) is the jth column block of Pxη
f (t|t− 1).

Theorem 1. For ROS (8) under Assumptions 1–5, the local state filter with feedback is given by:

x̂(1)j (t|t) = x̂(1)d f (t|t− 1) + Kj(t)z̃j(t), (28)

P(1)
j (t|t) = P(1)

d f (t|t− 1)− Kj(t)Pz
j (t)K

T
j (t). (29)

The gain matrix iscomputed by

Kj(t) = (P(1)
d f (t|t− 1)DT

j + Pxη
j f (t|t− 1))(Pz

j (t))
−1, (30)

and innovation and its variance matrix are computedby

z̃j(t) = zj(t)− Dj x̂
(1)
d f (t|t− 1)− η̂j f (t|t− 1), (31)

Pz
j (t) = DjP

(1)
d f (t|t− 1)DT

j + Pη
j f (t|t− 1) + DjP

xη
j f (t|t− 1) + (Pxη

j f (t|t− 1))
T

DT
j , (32)
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where fusion predictors x̂(1)d f (t|t − 1) and η̂j f (t|t − 1), covariance matrices P(1)
d f (t|t − 1) and

Pη
j f (t|t− 1) and the cross-covariance matrix Pxη

j f (t|t− 1) are the feedback information from the

fusion center to the local filter. The initial values are x̂(1)d f (0| − 1) = x(1)0 , η̂j f (0| − 1) = 0,

P(1)
d f (0| − 1) = P(1)

0 , Pη
j f (0| − 1) = Qη

j (0) and Pxη
j f (0| − 1) = 0.

Proof. Along the same line as the proof of CFF, the local filter can be obtained. The
difference is that x̂(1)d f (t|t− 1), η̂j f (t|t− 1), P(1)

d f (t|t− 1), Pη
j f (t|t− 1) and Pxη

j f (t|t− 1) are the
feedback information, not the local information. �

3.2. Fusion Filter with Feedback

In the preceding subsection, we obtained the local filter based on the fusion state and
measurement noise predictors. In this subsection, we will propose the fusion filter x̂(1)d f (t|t)

based on the local filter x̂(1)j (t|t) and its gain Kj(t), j = 1, · · · , N from individual sensors.

In the fusion center, we regard local filters x̂(1)j (t|t) and j = 1, · · · , N as measurement

inputs. Let x̂(t|t) = [(x̂(1)1 (t|t))
T
· · · (x̂(1)N (t|t))

T
]
T

, K(t) = diag(K1(t), · · · , KN(t)). In

the following text, we will derive the fusion filter x̂(1)d f (t|t) based on the linear space

L(x̂(0|0), · · · , x̂(t|t)) spanned by the measurement inputs x̂(1)j (t|t).

Theorem 2. For the first ROS (8) under Assumptions 1–5, in the fusion center, the DFFWF and
its covariance matrix are provided by:

x̂(1)d f (t|t) = (In − L(t)G)x̂(1)d f (t|t− 1) + L(t)x̂(t|t), (33)

P(1)
d f (t|t) = P(1)

d f (t|t− 1)− L(t)Px̃(t)LT(t), (34)

and the gain matrix is computed by

L(t) = (P(1)
d f (t|t− 1)DT + Pxη

f (t|t− 1))KT(t)(Px̃(t))
+

, (35)

where

Px̃(t) = K(t)(DP(1)
d f (t|t− 1)DT + Pη

f (t|t− 1) + DPxη
f (t|t− 1) + (DPxη

f (t|t− 1))
T
)KT(t). (36)

The fusion predictor and its covariance matrix are computed by:

x̂(1)d f (t + 1|t) = Φx̂(1)d f (t|t) + Γŵ(t|t), (37)

P(1)
d f (t + 1|t) = ΦP(1)

d f (t|t)Φ
T + ΓPw(t|t)ΓT + ΦPxw(t|t)ΓT + (ΦPxw(t|t)ΓT)

T
, (38)

where G = [In, · · · , In]
T. ŵ(t|t),Pw(t|t), Pxw(t|t), Pη

f (t|t− 1) and Pxη
f (t|t− 1) are addressed in

Theorem 3. The initial values are x̂(1)d f (0| − 1) = x(1)0 , P(1)
d f (0| − 1) = P(1)

0 , Pη
f (0| − 1) = Qη(0)

and Pxη
f (0| − 1) = 0.

Proof. From the recursive projection formula [37], we obtain

x̂(1)d f (t|t) = x̂(1)d f (t|t− 1) + L(t)x̃(t), (39)

where the innovation x̃(t) and filtering gain matrix L(t) are defined as

x̃(t) = x̂(t|t)− proj{x̂(t|t)|x̂(0|0), · · · , x̂(t− 1|t− 1)}, (40)
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L(t) = E[x(1)(t)x̃T(t)](Px̃(t))
+

. (41)

From the local filter (28), the input to the fusion center x̂(t|t) can be expressed as

x̂(t|t) = [(x̂(1)1 (t|t))
T
· · · (x̂(1)N (t|t))

T
]
T
= Gx̂(1)d f (t|t− 1) + K(t)[(z̃1(t))

T · · · (z̃N(t))
T]

T
. (42)

Substituting the second equation of (8) and (31) into (42) and noting η̃ f (t|t− 1) =

[(η̃1 f (t|t− 1))T · · · (η̃N f (t|t− 1))T]
T

, x̂(t|t) can be further rewritten as

x̂(t|t) = Gx̂(1)d f (t|t− 1) + K(t)(Dx̃(1)d f (t|t− 1) + η̃ f (t|t− 1)). (43)

Applying x̃(1)d f (t|t − 1)⊥L(x̂(0|0), · · · , x̂(t − 1|t − 1)) and η̃ f (t|t − 1)⊥L(x̂(0|0), · · · ,
x̂(t− 1|t− 1)), it follows that

proj{x̂(t|t)|x̂(0|0), · · · , x̂(t− 1|t− 1)} = Gx̂(1)d f (t|t− 1), (44)

which together with (39) and (40) yield (33). Using (43), the innovation associated with
x̂(t|t) can be rewritten as

x̃(t) = K(t)(Dx̃(1)d f (t|t− 1) + η̃ f (t|t− 1)). (45)

Taking projection on both sides of the state update equation of (8) onto L(x̂(0|0), · · · ,
x̂(t|t)), (37) follows directly.

Subtracting (39) from x(1)(t) and (37) from x(1)(t + 1), we obtain the filtering and
prediction error equation for the state, respectively.

x̃(1)d f (t|t) + L(t)x̃(t) = x̃(1)d f (t|t− 1), (46)

x̃(1)d f (t + 1|t) = Φx̃(1)d f (t|t) + Γw̃(t|t). (47)

Noting that x̃(1)d f (t|t− 1)⊥x̃(t) and substituting (46) and (47) into P(1)
d f (t|t) = E[x̃(1)d f (t|t)

(x̃(1)d f (t|t))
T
] and P(1)

d f (t + 1|t) = E[x̃(1)d f (t + 1|t)(x̃(1)d f (t + 1|t))
T
], (34) and (38) are obtained

directly, where Pw(t|t) = E[w̃(t|t)w̃T(t|t)] and Pxw(t|t) = E[x̃(1)d f (t|t)w̃
T(t|t)]. The proof is

completed. �

Theorem 3. For the first ROS (8) under Assumptions 1–5, in the fusion center, the measurement
noise predictor η̂ f (t|t− 1)is computed by

η̂ f (t + 1|t) = Kη(t + 1|t)(x̂(t|t)− Gx̂(1)d f (t|t− 1)), (48)

Kη(t + 1|t) = Qη(1)KT(t)(Px̃(t))
+

, (49)

Pη
f (t + 1|t) = Qη(0)− Kη(t + 1|t)Px̃(t)(Kη(t + 1|t))T, (50)

Pxη
f (t + 1|t) = ΓQwη(−1)− (ΦL(t) + ΓKw(t|t))Px̃(t)(Kη(t + 1|t))T. (51)

The process noise filter is computed by

ŵ(t|t) = Kw(t|t)(x̂(t|t)− Gx̂(1)d (t|t− 1)), (52)

Kw(t|t) = Qwη(0)KT(t)(Px̃(t))
+

, (53)

Pw(t|t) = Qw − Kw(t|t)Px̃(t)(Kw(t|t))T, (54)
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Pxw(t|t) = −L(t)Px̃(t)(Kw(t|t))T, (55)

where Px̃(t) and L(t) are computed by Theorem 2. The initial value is x̂(1)d f (0| − 1) = x(1)0 .

Proof. From the recursive projection formula [37], it follows that

η̂ f (t + 1|t) = η̂ f (t + 1|t− 1) + Kη(t + 1|t)x̃(t). (56)

From the definition x̂(t|t) = [(x̂(1)1 (t|t))
T
· · · (x̂(1)N (t|t))

T
]
T

, we obtain L(z(1), · · · ,
z(t − 1)) = L(x̂(0|0), · · · , x̂(t − 1|t − 1)). According to Remark 3, we conclude that
η̂ f (t+ 1|t− 1) = 0. Substituting (40) and (44) into (56), we obtain measurement noise predictor

(48), where the prediction gain matrix is defined by Kη(t + 1|t) = E[η(t + 1)x̃T(t)](Px̃(t))
+

.
In view of (45), η(t + 1)⊥x̃(1)d f (t|t − 1) and η(t + 1)⊥L(x̂(0|0), · · · , x̂(t − 1|t − 1)), it is
known that

E[η(t + 1)x̃T(t)] = E[η(t + 1)(Dx̃(1)d f (t|t− 1) + η̃ f (t|t− 1))]KT(t) = E[η(t + 1)ηT(t)]KT(t), (57)

which together with (10) yield the gain matrix (49). Subtracting (56) from η(t + 1) and
rearrangement, the error equation becomes η̃ f (t + 1|t) + Kη(t + 1|t)x̃(t) = η(t + 1), which
together with η̃ f (t + 1|t)⊥x̃(t) yield (50). Similarly, the process noise filter (52) and
filtering error variance (54) are obtained, where the gain matrix is defined by
Kw(t|t) = E[w(t)x̃T(t)](Px̃(t))

+
.

Next, we derive Pxη
f (t + 1|t) = E[x̃(1)d f (t + 1|t)η̃T

f (t + 1|t)]. In view of x̃(1)d f (t + 1|t) =

x(1)(t+ 1)−x̂(1)d f (t+ 1|t) and x̂(1)d f (t+ 1|t)⊥η̃T
f (t+ 1|t), the state update equation of (8) follows

Pxη
f (t + 1|t) = E[x(1)(t + 1)η̃T

f (t + 1|t)] = E[x(1)(t + 1)ηT(t + 1)]− E[x(1)(t + 1)x̃T(t)](Kη(t + 1|t))T

= ΓE[w(t)ηT(t + 1)]−
{

ΦE[x(1)(t)x̃T(t)] + ΓE[w(t)x̃T(t)]
}
(Kη(t + 1|t))T.

(58)

According to (10) and the definition of L(t) and Kw(t|t), we obtain E[w(t)ηT(t + 1)] =
Qwη(−1), E[x(1)(t)x̃T(t)] = L(t)Px̃(t) and E[w(t)x̃T(t)] = Kw(t|t)Px̃(t), which together
with (58) yield (51). Similarly, we obtain (55). The proof is completed. �

Remark 4. It is worth noting that ŵ(t|t), Kw(t|t), Pw(t|t)andPxw(t|t)computed in the fusion
center are used to produce the fusion one-step predictor (37) and do not need to be sent to the
local filter.

Corollary 1. For the second ROS (6) under Assumptions 1–5, the DFFWF and its covariance
matrix are computed by:

x̂(2)d f (t|t) = Bx̂(1)d f (t|t) + Cŵ(t|t), (59)

P(2)
d f (t|t) = BP(1)

d f (t|t)BT + Cŵ(t|t)CT + BPxw(t|t) + (BPxw(t|t))T. (60)

The cross-covariance matrix between the two subsystems is computed by

P(12)
d f (t|t) = P(1)

d f (t|t)BT + Pxw(t|t)CT. (61)

The fusion state filter and its filtering error covariance matrix of the original descriptor (1)–(3)
are provided by

x̂d f (t|t) = N[(x̂(1)d f (t|t))
T

(x̂(2)d f (t|t))
T
]
T

, Pd f (t|t) = N

 P(1)
d f (t|t) P(12)

d f (t|t)

(P(12)
d f (t|t))

T
P(2)

d f (t|t)

NT. (62)

Proof. The proof is straightforward from ref. [24]. �
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To describe the implementation of the proposed DFFWF algorithm clearly and intu-
itively, the following Algorithm 1 environment is used:

Algorithm 1. The DFFWF Algorithm

Initialization:

Set the initial values x̂(1)d f (0| − 1) = x(1)0 , P(1)
d f (0| − 1) = P(1)

0 , Pη
j f (0| − 1) = Qη

j (0)

and Pxη
j f (0| − 1) = 0 in each individual sensor and the initial values x̂(1)d f (0| − 1) = x(1)0 ,

P(1)
d f (0| − 1) = P(1)

0 , Pη
f (0| − 1) = Qη(0) and Pxη

f (0| − 1) = 0 in the fusion center.

for t:=1 to N do (if there are N samples)

Step 1: Compute local filter x̂(1)j (t|t) and gains Kj(t) based on Theorem 1 in each individual sensor.

Step 2: Send x̂(1)j (t|t) and Kj(t) to the fusion center.

Step 3: Read all local filters x̂(1)j (t|t) and filter gains Kj(t) to produce the augmented

measurement input x̂(t|t) = [(x̂(1)1 (t|t))
T
· · · (x̂(1)N (t|t))

T
]
T

in the fusion center.

Step 4: Compute DFFWF x̂(1)d f (t|t) for the first ROS by (33)–(36) in Theorem 2.

Step 5: Compute the measurement noise filter η̂ f (t + 1|t) by (48)–(51) in Theorem 3.
Step 6: Compute the process noise filter ŵ(t|t) by (52)–(55) in Theorem 3.

Step 7: Compute the fusion one-step predictor x̂(1)d f (t + 1|t) by (37) and its variance matrix

P(1)
d f (t + 1|t) using (38).

Step 8: Send x̂(1)d f (t + 1|t), P(1)
d f (t + 1|t), η̂j f (t + 1|t) = [0, Imj , 0]η̂ f (t + 1|t),

Pη
j f (t|t− 1) = [0, Imj , 0]Pη

f (t|t− 1)[0, Imj , 0]T and Pxη
j f (t|t− 1) = [0, Imj , 0]TPxη

f (t|t− 1) to
each individual sensor.

Step 9: Compute DFFWF x̂(2)d f (t|t) for the second ROS by (59) in Corollary 1.

Step 10: Compute DFFWF x̂d f (t|t) and its covariance matrix Pd f (t|t) for the original descriptor
by (61)–(62) in Corollary 1.

Output the DFFWF x̂d f (t|t) and Pd f (t|t).
Step 11: if t==N break
else set t = t + 1, return to step 1.
end

3.3. Estimation Performance of the DFFWF

In the proceeding subsection, we obtained the DFFWF x̂d f (t|t) that has better reliability,
flexibility and robustness since the used measurements in the fusion center are not raw
measurements but the local filters x̂(1)j (t|t), j = 1, · · · , N, that have been received from
individual sensors. Subsequently, let us analyze the global optimality of the proposed
DFFWF. According to Lemma 2 and Corollary 1, it is clear that the global optimality of
x̂(1)d f (t|t) implies the global optimality of x̂d f (t|t). Without loss of generality, here we just

analyze the global optimality of x̂(1)d f (t|t).

Lemma 3. Let A(t) be a full column rank matrix and R(t) be a non-singular matrix. Then, we have

AT(t)[A(t)R(t)AT(t)]
+

A(t) = R−1(t).

Theorem 4. For the first ROS (8) under Assumptions 1–5, if Kj(t), j = 1, · · · , N are of full
column rank, the DFFWF is equivalent to the CFF, i.e., under the same initial values

x̂(1)d f (0| − 1) = x̂(1)c (0| − 1) = x(1)0 , η̂c(0| − 1) = η̂ f (0| − 1) = 0, P(1)
d f (0| − 1) = P(1)

c (0| − 1) = P(1)
0 ,

Pη
c (0| − 1) = Pη

f (0| − 1) = Qη(0), Pxη
c (0| − 1) = Pxη

f (0| − 1) = 0.



Sensors 2022, 22, 7469 11 of 17

The following results hold:

x̂(1)d f (t|t) = x̂(1)c (t|t), P(1)
d f (t|t) = P(1)

c (t|t), ∀ t ≥ 0.

Proof. Substituting (43) into (33), the fusion filter becomes

x̂(1)d f (t|t) = x̂(1)d f (t|t− 1) + L(t)K(t)(Dx̃(1)d f (t|t− 1) + η̃ f (t|t− 1)). (63)

Substituting (36) into (34), the fusion filtering error equation becomes

P(1)
d f (t|t) = P(1)

d f (t|t− 1)− L(t)K(t)[DP(1)
d f (t|t− 1)DT + Pη

f (t|t− 1)

+DPxη
f (t|t− 1) + (DPxη

f (t|t− 1))
T
]KT(t)LT(t).

(64)

It follows from (35), (49) and (53) that

L(t)K(t) = (P(1)
d f (t|t− 1)DT + Pxη

f (t|t− 1))KT(t)(Px̃(t))
+

K(t), (65)

Kη(t + 1|t)K(t) = Qη(1)KT(t)(Px̃(t))
+

K(t), (66)

Kw(t|t)K(t) = Qwη(0)KT(t)(Px̃(t))
+

K(t). (67)

If Kj(t), j = 1, · · · , N are of full column rank, K(t) can be guaranteed to be of full
column rank. By applying Lemma 3 and (24), we obtain

K(t)(Px̃(t))
+

KT(t) = (Pz
c (t))

−1. (68)

Substituting (68) into (65)–(67) and comparing with (13), (17) and (53), we obtain

L(t)K(t) = Kc(t), Kη(t + 1|t)K(t) = Kη
c (t + 1|t), Kw(t|t)K(t) = Kw

c (t|t), (69)

which shows that L(t)K(t) and Kη(t + 1|t)K(t) are the centralized optimal estimation gain
matrices Kc(t) for state and Kη

c (t + 1|t) for measurement noise, respectively. Further we
obtain Kc(t)Pz

c (t)KT
c (t) = L(t)Px̃(t)LT(t), which shows that P(1)

d f (t|t) = P(1)
c (t|t) for the

same initial values P(1)
d f (0| − 1) = P(1)

c (0| − 1) = P(1)
0 , Pη

c (0| − 1) = Pη
f (0| − 1) = Qη(0)

and Pxη
c (0| − 1) = Pxη

f (0| − 1) = 0. Similarly, we obtain P(1)
d f (t + 1|t) = P(1)

c (t + 1|t),
Pη

c (t + 1|t) = Pη
f (t + 1|t) and Pxη

c (t + 1|t) = Pxη
f (t + 1|t).

Substituting (31) into (28) and noting the definition x̂(t|t) = [(x̂(1)1 (t|t))
T
· · · (x̂(1)N (t|t))

T
]
T

,

z(t) = [zT
1 (t), · · · , zT

N(t)]
T and η̂c(t|t− 1) = [(η̂1(t|t− 1))T · · · (η̂N(t|t− 1))T]

T
, x̂(t|t) can

be expressed as

x̂(t|t) = (G− K(t)D)x̂(1)d f (t|t− 1) + K(t)z(t)− K(t)η̂c(t|t− 1). (70)

Substituting (70) into (33) and comparing with (11), we obtain x̂(1)d f (t|t) = x̂(1)c (t|t) under

the same initial values x̂(1)d f (0| − 1) = x̂(1)c (0| − 1) = x(1)0 and η̂c(0| − 1) = η̂ f (0| − 1) = 0.

Similarly, we obtain x̂(1)c (t + 1|t) = x̂(1)d f (t + 1|t) and η̂c(t + 1|t) = η̂ f (t + 1|t). The proof is
completed. �

Remark 5. In Theorem 4, the global optimality of DFFWF algorithm is analyzed. Now, we compare
the computational cost with distributed fusion filter weighted by matrices (DFFWM). Here, we
give the computational cost by calculating the times of multiplication and division. For ease of
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comparisons, without loss of generality, we only give the computational cost of the first ROS. In the
fusion center, DFFWF and DFFWM have the same computational cost, the computational order of
magnitude is O

(
(Nn1)

3
)

. Hence, the proposed DFFWF algorithm is superior to the DFFWM in
accuracy, which will be shown in the simulation research.

4. Simulation Research

In this section, we use a numerical example and a circuit system to illustrate the
estimation performance of the proposed fusion filtering algorithm.

Example 1. Consider a numerical example described in ref. [7]:
−2.13 0 0 0

1 0.5 0 0
1 0.5 0 0
0 −1 0 0

x(t + 1) =


−1 0.2 0 0
−0.5 0 0 0

1 −0.5 −0.5 0
0 −1 −1 2

x(t) +


0.5 0
0 0.8

0.8 0
0 −0.6

w(t), (71)

yj(t) = Djx(t) + vj(t), (72)

vj(t + 1) = U jvj(t) + µj(t), j = 1, 2, 3, (73)

where w(t) and µj(t),j = 1, 2, 3 are mutually uncorrelated zero mean white noises with variances
Qw and Qµ

j . We know from (71) that M = N = I4 since the original descriptor is already

the canonical form. In the simulation, we set D1 =

[
1 0.5 1 0
0 1 0 1

]
, D2 =

[
1 0 0 1
0 0.8 1 0

]
,

D3 =

[
0.1 0.6 1 1
1 0.1 0 1

]
, U1 = 0.2, U2 = 0.5, U3 = 0.3, Qw = I2, Qµ

1 = 2I2, Qµ
2 = 3I2,

Qµ
3 = I2 and x(0) = [0, 0, 0, 0]T, vj(0) = [0, 0]T, j = 1, 2, 3. To analyze the global optimality,

we take the initial values x̂(1)d f (0| − 1) = x̂(1)c (0| − 1) = [0, 0]T, P(1)
0 = 0.1I2, P

vj
0 = 0.1I2 and

j = 1, 2, 3.

Figure 2 shows the expected tracking performances of the proposed DFFWF and the
CFF. Figure 3 shows the filtering error variances of DFFWF, CFF, DFFWF and all local filters
with feedback (LFWF). In Figures 2 and 3, each curve is drawn at each 2-step. The true
values and filters are given in Table 1 at time 0 and 50. From Figures 2 and 3 and Table 1, it
is conclude that the designed DFFWF is numerically equivalent to the CFF for the same
initial values. That is to say the designed DFFWF also has global optimality. To show the
superiority of the proposed DFFWF, DFFWM is also computed and shown in Figure 3. It
shows that estimation accuracy of the proposed DFFWF is higher than that of any LFWF
and DFFWM. Moreover, for the first and second components, the estimation accuracy of
DFFWM is lower than that of LFWF measured by sensor 1. But for the third and fourth
components, the result is just the opposite. The reason is that DFFWM is obtained by
weighting all the local filters without feedback. On the other hand, DFFWF requires the
feedback communication from the fusion center to individual sensors.

Figure 4 shows the filtering error variances of LFWF with and without feedback for
sensor 1. It is clear that the estimation accuracy of the proposed local filter with feedback
is higher than that of the local filter without feedback, which demonstrates that feedback
does improve the local estimation accuracy.
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state component. (c) The third state component. (d) The fourth state component.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 18 
 

 

 
(c) 

 
(d) 

Figure 2. Tracking performance of DFFWF and CFF. (a) The first state component. (b) The second 
state component. (c) The third state component. (d) The fourth state component. 

 
(a) (b) 

  
(c) (d) 

Figure 3. Filtering error variances of DFFWF, CFF and all local filters. (a) The first state component. 
(b) The second state component. (c) The third state component. (d) The fourth state component. 

  
(a) (b) 

Tr
ue

 v
al

ue
 a

nd
 fi

lte
rs

 

0 10 20 30 40 50
−10 

−5 

0 

5 

10

t/step 
Tr

ue
 v

al
ue

 a
nd

 fi
lte

rs
 

0 10 20 30 40 50
−4 

−2 

0 

2 

4 

t/step 

V
ar

ia
nc

es
 

0 10 20 30 40 50
0.05 

0.055 

0.06 

0.065 

0.07 

0.075 

0.08 

t/step 
0 10 20 30 40 50 

0.7

0.8

0.9

1 
1.1

1.2

1.3
1.4

t/step 

V
ar

ia
nc

es
 

LF 1 
LF 2 
LF 3 

DFFWF 
CFF 
DWFF 

0 10 20 30 40 50
0.5

1 

1.5

2 

2.5

3 

V
ar

ia
nc

es
 

t/step 
0 10 20 30 40 50

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

V
ar

ia
nc

es
 

t/step 

0 10 20 30 40 50 0.05 

0.06 

0.07 

0.08 

0.09 

0.1

LF 1 without feedback  
LF 1 with feedback 

t/step 

V
ar

ia
nc

es
 

V
ar

ia
nc

es
 

0 10 20 30 40 50 
0.7

0.8

0.9

1 

1.1

t/step 

Figure 3. Filtering error variances of DFFWF, CFF and all local filters. (a) The first state component.
(b) The second state component. (c) The third state component. (d) The fourth state component.



Sensors 2022, 22, 7469 14 of 17

Table 1. True values and filters of SFF and CFF.

Sample State True Value DFFWF CFF

0 x(1)1 (t) 0 −0.2175 −0.2175

x(1)2 (t) 0 0.2240 0.2240

x(2)1 (t) 0 −2.8612 −2.8612

x(2)2 (t) 0 −1.6882 −1.6882
50 x(1)1 (t) 0.1383 0.0710 0.0710

x(1)2 (t) 2.5727 2.1459 2.1459

x(2)1 (t) −3.5400 −2.8476 −2.8476

x(2)2 (t) −1.0143 −0.6017 −0.6017
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Example 2. Consider the circuit system measured by three sensors shown in Figure 5, where the
voltage sourceue is the control input. It is effected by white noise w(t) due to the equipment installa-
tion, circuitry interference and voltage fluctuation. For R, L0 and Ci, i = 1, 2 denote the resistor,
inductor and the ith capacity, respectively. Selecting the state x(t) = [ue1(t), ue2(t), i1(t), i2(t)]

T,
ue1(t) and i1(t) are the voltage and currents of C1, and ue2(t) and i2(t) are the voltage and current
of C2. According to Kirchoff’s second law, we can establish the following state equation [1,11]:

C1 0 0 0
0 C2 0 0
0 0 −L0 0
0 0 0 0

 .
x(t) =


0 0 0 1
0 0 1 0
−1 1 0 0
1 0 R R

x(t) +


0
0
0
−1

ue(t) +


0
0
0
−1

w(t). (74)

The measurement equation is the same as in example 1. Taking the sample period T0 = 0.05� 1
from Euler’s approximation, the corresponding discrete-time model can be obtained as:
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C1 0 0 0
0 C2 0 0
0 0 −L0 0
0 0 0 0

x(t + 1) =


C1 0 0 T0
0 C2 T0 0
−T0 T0 −L0 0
T0 0 T0R T0R

x(t) +


0
0
0
−T0

ue(t) +


0
0
0
−T0

w(t). (75)

In the simulation, we set C1 = 1, C2 = 1, L0 = 1, R = 2, ue = 5, H1 = [1, 0, 0, 1],
H2 = [0, 0, 1, 0], H3 = [0, 1, 0, 0.5], Qw = 1, Qµ

1 = 0.5, Qµ
2 = 2, Qµ

3 = 1, U1 = 0.2, U2 = 0.5,

U3 = 0.3. Select M = B−1, N = I4, then the parameters in (4) can be obtained as A1 = 1.0230 0.0026 0.0510
0.0026 0.9975 −0.0497
−0.0510 0.0497 0.9950

, A2 = [−0.4605,−0.0510,−1.0205], B1 = I3, B2 = [0, 0, 0]

and B3 = 1. The filtering performance is provided in Figure 6. It shows the expected
tracking results.
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Figure 6. Tracking performance of DFFWF. (a) The voltage of C1. (b) The voltage of C2. (c) The
current of C1. (d) The current of C2.
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5. Conclusions

This paper investigated the problem of distributed fusion filters was investigated for
multi-sensor descriptor systems with time-correlated measurement noise. Using singular
value decomposition, the original descriptor system was transformed into two reduced-
order non-descriptor subsystems. First, an equivalent new system with a new measurement
noise was established using a different approach to remove the time-correlated measure-
ment noises. The new measurement noise was one-step auto- and cross-correlated. Based
on the local measurement and fusion predictor from the fusion center, the local filters
were obtained in the LMV sense. Then, the local filters and filtering gains were sent to the
fusion center and used as the measurement inputs to produce the fusion filters. Under the
condition that all local filtering gains were of full column rank, the presented DFFWF has
global optimality. Furthermore, the obtained feedback can also improve the estimation
of each local filter. In the future, we will try to deal with the state estimation problem for
descriptor systems with time-correlated noises and some network-induced phenomena
such as random transmission delays [12,38], losses [36,39] and deception attacks [40].

Author Contributions: J.M. proposed the idea of the algorithm and wrote the paper. L.X. derived
the algorithm and performed the simulation experiments. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant NSFC-61873087, in part by the Key Project of the Natural Science Foundation of Hei-
longjiang Province, China, under Grant ZD2021F003, and in part by the University Basic Research
Foundation of Heilongjiang Province under Grant 2021-KYYWF-0027.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Duan, G. Analysis and Design of Descriptor Linear Systems; Springer Science & Business Media: Berlin, Germany, 2010.
2. Stevens, B.; Lewis, F. Aircraft Modeling, Dynamics and Control; Wiley: New York, NY, USA, 1991.
3. Wang, M.; Liang, T. Adaptive Kalman filtering for sensor fault estimation and isolation of satellite attitude control based on

descriptor systems. Trans. Inst. Meas. Control 2019, 41, 1686–1698. [CrossRef]
4. Sun, S.; Ma, J. Optimal filtering and smoothing for discrete-time stochastic singular systems. Signal Process. 2007, 87, 189–201.

[CrossRef]
5. Sun, J.; Zhang, C.; Guo, B. Distributed full-order optimal fusion filters and smoothers for discrete-time stochastic singular systems.

Int. J. Syst. Sci. 2011, 42, 507–516. [CrossRef]
6. Yu, X.; Pu, S.; Li, J. An optimal filter for singular systems with stochastic multiplicative disturbance. IEEE Trans. Circuits Syst. II

Express Briefs 2020, 67, 3607–6311. [CrossRef]
7. Sun, S.; Ma, J. Distributed reduced-order optimal fusion Kalman filters for stochastic singular system. Acta Autom. Sin. 2006, 32,

286–290.
8. Deng, Z.; Gao, Y.; Tao, G. Reduced-order steady-state descriptor Kalman fuser weighted by block-diagonal matrices. Inf. Fusion

2008, 9, 300–309. [CrossRef]
9. Wang, C.; Hu, J.; Yu, H.; Chen, D. Optimized distributed fusion filtering for singular systems with fading measurements and

stochastic nonlinearity. AIMS Math. 2021, 7, 2543–2567. [CrossRef]
10. Ran, C.; Sun, S.; Dou, Y. WMF reduced-order robust estimators for multisensor descriptor systems. IET Control Theory Appl. 2018,

12, 2232–2244. [CrossRef]
11. Dou, Y.; Ran, C. WMF self-tuning Kalman estimators for multisensor singular system. Int. J. Syst. Sci. 2019, 50, 1873–1888.

[CrossRef]
12. Feng, J.; Zeng, M. Descriptor recursive estimation for multiple sensors with different delay rates. Int. J. Control 2011, 84, 584–596.

[CrossRef]
13. Rogers, S. Alpha-beta filter with correlated measurement noise. IEEE Trans. Aerosp. Electron. Syst. 1987, 23, 592–594. [CrossRef]
14. Petovello, M.; O’Keefe, K.; Lachapelle, G.; Cannon, M.E. Consideration of time-correlated errors in a Kalman filter applicable to

GNSS. J. Geod. 2009, 83, 51–56. [CrossRef]

http://doi.org/10.1177/0142331218787605
http://doi.org/10.1016/j.sigpro.2006.05.007
http://doi.org/10.1080/00207721003611649
http://doi.org/10.1109/TCSII.2020.3001596
http://doi.org/10.1016/j.inffus.2006.10.010
http://doi.org/10.3934/math.2022143
http://doi.org/10.1049/iet-cta.2018.5498
http://doi.org/10.1080/00207721.2019.1645234
http://doi.org/10.1080/00207179.2011.563321
http://doi.org/10.1109/TAES.1987.310893
http://doi.org/10.1007/s00190-008-0231-z


Sensors 2022, 22, 7469 17 of 17

15. Li, Q.; Wang, Z.; Shen, B.; Liu, H.; Sheng, W. A resilient approach to recursive distributed filtering for multirate systems over
sensor networks with time-correlated fading channels. IEEE Trans. Signal Inf. Process. Netw. 2021, 7, 636–647. [CrossRef]

16. Tan, H.; Shen, B.; Shu, H. Robust recursive filtering for stochastic systems with time-correlated fading channels. IEEE Trans. Syst.
Man Cybern. Syst. 2022, 52, 3102–3112. [CrossRef]

17. Wang, K.; Li, Y.; Rizos, C. Practical approaches to Kalman filtering with time-correlated measurement errors. IEEE Trans. Aerosp.
Electron. Syst. 2012, 48, 1669–1681. [CrossRef]

18. Liu, W. Optimal estimation for discrete-time linear systems in the presence of multiplicative and time-correlated additive
measurement noises. IEEE Trans. Signal Process. 2015, 63, 4583–4593. [CrossRef]

19. Bryson, A.; Henrikson, L. Estimation using sampled data containing sequentially correlated noise. J. Spacecr. Rocket. 1968, 5,
662–665. [CrossRef]

20. Liu, W. Optimal filtering for discrete-time linear systems with multiplicative and time-correlated additive measurement noises.
IET Control Theory Appl. 2015, 9, 831–842. [CrossRef]

21. Geng, H.; Wang, Z.; Cheng, Y.; Alsaadi, F.; Dobaie, A. State estimation under non-Gaussian Lévy and time-correlated additive
sensor noises: A modified Tobit Kalman filtering approach. Signal Process. 2019, 154, 120–128. [CrossRef]

22. Li, W.; Jia, Y.; Du, J. Distributed filtering for discrete-time linear systems with fading measurements and time-correlated noise.
Digit. Signal Process. 2017, 60, 211–219. [CrossRef]

23. Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J. Networked fusion estimation with multiple uncertainties and
time-correlated channel noise. Inf. Fusion 2020, 54, 161–171. [CrossRef]

24. Xu, L.; Liu, S.; Ma, J. Linear optimal filter for descriptor systems with time-correlated measurement noise. In Proceedings of the
40th Chinese Control Conference, Shanghai, China, 26–28 July 2021; pp. 3048–3053.

25. Han, C.; Zhu, H.; Duan, Z. Multi-Source Information Fusion; Tsinghua University Press: Beijing, China, 2006.
26. Lin, H.; Sun, S. Optimal sequential estimation for asynchronous sampling discrete-time systems. IEEE Trans. Signal Process. 2020,

68, 6117–6127. [CrossRef]
27. Sun, S.; Deng, Z. Multi-sensor optimal information fusion Kalman filter. Automatica 2004, 40, 1017–1023. [CrossRef]
28. Song, E.; Zhu, Y.; Zhou, J.; You, Z. Optimal Kalman filtering fusion with cross-correlated sensor noises. Automatica 2007, 43,

1450–1456. [CrossRef]
29. Sun, S. Distributed optimal linear fusion estimators. Inf. Fusion 2020, 63, 56–73. [CrossRef]
30. Sun, S. Distributed optimal linear fusion predictors and filters for systems with random parameter matrices and correlated noise.

IEEE Trans. Signal Process. 2020, 68, 1064–1074. [CrossRef]
31. Lin, H.; Sun, S. Globally optimal sequential and distributed fusion state estimation for multi-sensor systems with cross-correlated

noises. Automatica 2019, 101, 128–137. [CrossRef]
32. Gao, B.; Hu, G.; Zhong, Y.; Zhu, X. Cubature rule-based distributed optimal fusion with identification and prediction of kinematic

model error for integrated UAV navigation. Aerosp. Sci. Technol. 2021, 109, 106447. [CrossRef]
33. Shin, V.; Vahid, H.; Kim, Y. Reduced-order multisensory fusion estimation with application to object tracking. IET Signal Process.

2022, 16, 463–478. [CrossRef]
34. Fernández-Alcalá, R.; Jiménez-López, J.; Navarro-Moreno, J.; Ruiz-Molina, J. Multisensor fusion estimation for systems with

uncertain measurements, based on reduced dimension hypercomplex techniques. Mathematics 2022, 10, 2495. [CrossRef]
35. Gelb, A. Applied Optimal Estimation; MIT Press: London, UK, 1974.
36. Sun, S.; Tian, T.; Lin, H. Optimal linear estimators for systems with finite-step correlated noises and packet dropout compensations.

IEEE Trans. Signal Process. 2016, 64, 5672–5681. [CrossRef]
37. Anderson, B.D.O.; Moore, J.B. Optimal Filtering; Prentice-Hall: Englewood Cliffs, NJ, USA, 1979.
38. Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J. Networked fusion filtering from outputs with stochastic uncertainties

and correlated random transmission delays. Sensors 2016, 16, 847. [CrossRef] [PubMed]
39. Wang, M.; Sun, S. Self-tuning distributed fusion filter for multi-sensor networked systems with unknown packet receiving rates,

noise variances, and model parameters. Sensors 2019, 19, 4436. [CrossRef] [PubMed]
40. Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J. A two-phase distributed filtering algorithm for networked uncertain

systems with fading measurements under deception attacks. Sensors 2020, 20, 6445. [CrossRef] [PubMed]

http://doi.org/10.1109/TSIPN.2021.3117366
http://doi.org/10.1109/TSMC.2021.3062848
http://doi.org/10.1109/TAES.2012.6178086
http://doi.org/10.1109/TSP.2015.2447491
http://doi.org/10.2514/3.29327
http://doi.org/10.1049/iet-cta.2014.0545
http://doi.org/10.1016/j.sigpro.2018.08.005
http://doi.org/10.1016/j.dsp.2016.10.003
http://doi.org/10.1016/j.inffus.2019.07.008
http://doi.org/10.1109/TSP.2020.3031388
http://doi.org/10.1016/j.automatica.2004.01.014
http://doi.org/10.1016/j.automatica.2007.01.010
http://doi.org/10.1016/j.inffus.2020.05.006
http://doi.org/10.1109/TSP.2020.2967180
http://doi.org/10.1016/j.automatica.2018.11.043
http://doi.org/10.1016/j.ast.2020.106447
http://doi.org/10.1049/sil2.12120
http://doi.org/10.3390/math10142495
http://doi.org/10.1109/TSP.2016.2576420
http://doi.org/10.3390/s16060847
http://www.ncbi.nlm.nih.gov/pubmed/27338387
http://doi.org/10.3390/s19204436
http://www.ncbi.nlm.nih.gov/pubmed/31614955
http://doi.org/10.3390/s20226445
http://www.ncbi.nlm.nih.gov/pubmed/33187344

	Introduction 
	Problem Formulation and Preliminary Lemmas 
	Main Results 
	Local Filter with Feedback 
	Fusion Filter with Feedback 
	Estimation Performance of the DFFWF 

	Simulation Research 
	Conclusions 
	References

