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Abstract: In this paper, a field study is carried out to monitor the natural frequencies of Malahide
viaduct bridge which is located in the north of Dublin. The bridge includes a series of simply
supported spans, two of which collapsed in 2009 and were replaced. The replaced spans are stiffer
than most of the others and these differences resulted in higher natural frequencies. An indirect
bridge monitoring approach is employed in which acceleration responses from an instrumented train
are used to estimate the natural frequencies of each span of the viaduct showing the locations of the
two replaced spans with higher stiffness. For the indirect approach, an Ensemble Empirical Mode
Decomposition (EEMD)-based Hilbert Huang Transform (HHT) technique is employed to identify
the natural frequency of each span. This is carried out by analysing the Instantaneous Frequencies
(IFs) from the calculated intrinsic mode functions. The average of the IFs calculated using 41 runs
of the instrumented train (with varying carriage mass and speed for each run) are used to estimate
the natural frequencies. To assess the feasibility of the indirect approach, a bespoke set of direct
measurements was taken using accelerometers attached successively on each span of the viaduct.
The free and forced vibrations from each span are used to estimate the first natural frequencies. The
frequencies obtained from drive-by measurements are compared to those from direct measurements
which confirms the effectiveness of indirect approaches. In addition, the instantaneous amplitudes of
the drive-by signals are used to indicate the location of the stiffer spans. Finally, the accuracy and
robustness of the indirect approaches for monitoring of multi span bridges are discussed.

Keywords: multi span bridge; drive-by; natural frequency; indirect; bridge monitoring

1. Introduction

Bridges are arguably the most critical structures in transportation infrastructure. They
require monitoring to detect local and global damage caused by several reasons such
as bridge strike, fatigue, loading and scour [1–5]. Historically, bridge collapses result in
traffic disruptions and hindrance to the public services that, e.g., resulted in a case of the
Caprigliola bridge collapse (2020) [6], and the Malahide estuary viaduct failure (2009) [7].
Given their central function in transport infrastructure, researchers have been seeking
efficient and reliable ways to identify bridge damage before it becomes catastrophic [1,2,8].
Traditionally, a bridge is monitored directly by installing sensors to obtain responses to load.
This approach uses direct on-bridge responses to infer mechanical and dynamic properties
of the structure and compare them with healthy baseline values to identify any damage
present [9,10]. While this type of monitoring has been seen to be effective, it requires a
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distribution of sensors along the length of the bridge, that consumes a lot of cost and
labour. For longer multiple span bridges in particular, traditional methods of monitoring
can become difficult and costly, since they require more sensors [4,11,12].

Bridge dynamic responses to ambient, forced, or free vibrations, are often used for
bridge damage detection [3,5,13,14]. Accelerations contain damage-sensitive features, such
as natural frequencies, which make them a potential parameter for developing damage
detection methods using signal processing techniques. Many studies have estimated
natural frequencies from acceleration responses obtained using numerical models [15] as
well as bridge field measurements in a form of free vibration [16], forced vibration [14,17],
or ambient vibration [18]. The natural frequencies are considered as some of the key
damage detection features for these studies and have provided reasonable results for the
detection of both local [19,20] and global damage [11,21–23]. Although, natural frequencies
are not considered to be ideal, because of their low-sensitivity to damage [3,24], changes in
the natural frequencies and modal properties have been used to detect scour damage in
multiple span structures [5,11,25,26] and longer span bridges [27]. The significant impact of
a scour-hole at the foundation has been shown to affect the entire bridge response [11,28]. In
numerical [11], and laboratory setups [26] for multiple span bridges, the impact of damage
on each span’s natural frequency is found to be reasonable, that can be understood using
advanced frequency-domain-based [29] or mode-shape-based methods [4,5]. Although
these studies provide a good understanding of damages and structures, validation of these
techniques in the field requires distributed sensors in a large quantity to cover the entire
structure. For that reason, the field measurement of multiple span bridges poses a challenge
for researchers to develop practical approaches for inspection.

Indirect or drive-by techniques have recently gained interest among Structure Health
Monitoring (SHM) researchers because of the ease with which dynamic responses can be
measured [2,30–32]. This technique extracts features of the structure from the dynamic
responses measured in a moving body interacting with it, such as a truck or train. Many
existing drive-by approaches focus on extracting bridge dynamic features such as natu-
ral frequencies and modal parameters and study the changes in them due to, e.g., crack
damage on the deck [33], scour damage [26] or bearing seizures [14]. A key challenge
in indirect monitoring techniques is the separation of bridge-related frequencies from
vehicle frequencies in the measured response. This becomes difficult if the vehicle and
the bridge frequencies are in a close proximity [34] when mode mixing can occur [35].
Vehicle frequencies tend to dominate the measurement, making it more difficult to extract
bridge frequencies from the response. To address this problem, researchers use signal
optimization and advanced processing techniques [20,24,36], that improve the resolution
of bridge-related frequencies in the measured vehicle response. Gul et al. (2021) use an
inverse filtration approach on smartphone accelerations, measured inside a vehicle, to ad-
dress the mixing of vehicle and bridge frequencies. They test the approach in a laboratory
setup [37], and using two real life bridges [38]. Dhakal and Malla [39] employ indirect
measurements to estimate railway bridge natural frequencies in an experimental setup and
compare their results with a finite element (FE) model of the bridge. Studies on extracting
bridge frequencies from drive-by measurements have used many numerical techniques:
Hilbert Transform (HT) [40], moving average filtration [23,33], wavelet analysis [11], signal
decomposition techniques [41], and frequency-independent underdamped pinning stochas-
tic resonance [36]. Although these techniques have shown effective results in the numerical
studies, and some single span real bridges, their implementation on multiple span bridges
still requires more testing and research.

For signals in the time or frequency domain, several signal processing techniques
have been proposed for the extraction of features from the acceleration responses. These
include short-term Fourier transform [42], wavelet transform [11], singular value decom-
position [43], kernel time-frequency representation [44] and more. Each one has its own
merits and demerits. Signal decomposition is one of the commonly used approaches for
separating vehicle or bridge frequencies from a drive-by signal. One of the methods of
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signal decomposition is the Hilbert Huang Transformation (HHT) [45] that analyses non-
linear and non-stationary signals by applying the HT. The original signal is decomposed
into Intrinsic Mode Functions (IMFs) that are extracted/separated using a sifting process
called Empirical Mode Decomposition (EMD) [46]. The HHT of an acceleration response
identifies a number of Instantaneous Frequencies (IFs) that can be presented as IMFs in
time and frequency domains [45,47]. For the case where vehicle and bridge frequencies
are close together, the phenomenon of mode mixing occurs that makes it difficult to sep-
arate these frequencies into individual IMFs using EMD [48]. For that problem, Wu and
Huang (2009) propose a noise-assisted analysis approach called Ensemble Empirical Mode
Decomposition (EEMD) [35] that can address the mode mixing problem of the EMD [35,49].
Zhu and Malekjafarian [50] have recently proposed an EEMD based drive-by approach for
estimating bridge natural frequencies from vehicle responses. They suggest that EEMD is
less sensitive to measurement noise and provides higher accuracy of bridge first natural
frequency from the vehicle responses. Although the method has shown promising results
in numerical and laboratory setups, a field verification would help to confirm its efficacy.

In this paper, an improved HHT (using EEMD) is applied to the acceleration mea-
surements from an instrumented train to estimate the natural frequencies of the Malahide
Railway Viaduct in Ireland, which consists of 12 simply supported spans. To the best knowl-
edge of the authors, this is the first time that a drive-by technique is employed to estimate
the fundamental frequency of each span of a multi span viaduct bridge in field. To validate
the drive-by technique, a direct test is also carried out to find the true natural frequency of
each span. This bridge experienced a collapse of two spans and one pier foundation in 2009
due to scour. These spans were replaced with stiffer elements [7,51] which has resulted
in a change of their natural frequencies. In this paper, an instrumented railway carriage
of an in-service passenger train collected accelerations as it traversed repeatedly over the
viaduct on the Dublin–Belfast railway track. The train drive-by data is decomposed using
EEMD to measure the IMFs, and HHT is applied to measure the IFs from each measured
IMF. The IFs corresponding to the bridge natural frequencies are estimated and compared
with the natural frequencies measured directly from the free and forced vibrations of each
span. The drive-by measurements of the instantaneous frequencies are compared with the
direct measurements taken on the bridge.

2. Theoretical Background
2.1. Ensemble Empirical Mode Decomposition (EEMD) Method

In the EMD process, the acceleration signal is decomposed into multiple IMFs, which
are oscillatory functions with varying energy amplitude and frequency [46]. The EEMD
approach is introduced by Huang and Wu [52] that addresses the issues relating to mode
mixing and high signal noise. The EEMD is an iterative process, where an adaptive white
noise n(t) signal is introduced in the original acceleration signal x(t). Each iteration (i)
is given by Equation (1). The added noise provides a uniformly distributed reference
frequency and IMFs associated with a series of random and uncorrelated noise signals.

xi(t) = x(t) + ni(t) (1)

Using the noisy version of the signal, xi(t), decomposition is carried out repeatedly
and the ensemble means of the IMFs are the final results. The level of added noise and the
number of iterations can affect the final IMFs from EEMD. Hence, finding their optimum
values for each case is important for the accuracy of the results [35,52]. With low added
noise in the EEMD process, the decomposition will not be effective because of insufficient
changes in the extremes. On the other hand, excessively high added noise results in the
calculation of a higher number of redundant IMFs. For example, Aied et al. [49] use the
EEMD process for the measurement of bridge stiffness using accelerations and test the
results with different levels of added noise to the process. They state that in order to
separate mixed modes in a signal where low frequencies dominate, a higher amplitude of
noise should be used and vice versa.
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2.2. Hilbert Huang Transformation (HHT)

The HHT is a two-step process consisting of: (1) decomposition of a signal into
multiple IMFs (Cr(t)) with varying frequency and amplitude using EMD or EEMD, and
(2) application of the HT (given in Equation (2)) to the measured IMFs to calculate the
instantaneous frequencies (IFs) [47]. H(Cr(t)) represents the HT of the rth IMF and can be
defined as:

H(Cr(t)) =
1
π

P
∫ ∞

−∞

Cr(τ)

t − τ
dτ (2)

where t represents time and P represents the Cauchy principal value of the singular in-
tegral. The HT results can be grouped for each IMF to form an analytic signal a(t) as a
complex function:

ar(t) = Cr(t) + jH(Cr(t)) = br(t)ejθr(t) (3)

where j is imaginary unit, br(t) and θr(t) represent instantaneous amplitude and phase
functions of the rth IMF, respectively. By differentiating the phase functions with respect to
time, the IFs can be calculated [47]. A Hilbert Spectrum can then be plotted using the real
part of the IFs in the time and frequency domains.

2.3. EEMD Based HHT for Multiple Span Bridge Frequency

In this paper, EEMD based HHT is used to estimate the natural frequencies of a
multiple span bridge using train accelerations. In the drive-by signal, mode mixing creates
a challenge for researchers to estimate the natural bridge frequencies [38]. For that reason,
researchers use filtration or other mathematical approaches to intensify the bridge natural
frequencies relative to other signal frequencies. For the case of a multiple span bridge,
the drive-by signals are more complicated since the bridge frequencies change from span
to span and mode mixing becomes more significant, especially when the spans are of
equal length (and therefore frequency). For this scenario, an EEMD based HHT of the
drive-by acceleration data seems more practical and feasible. With EEMD, the HHT of
the IMFs provides instantaneous frequencies (relating to natural frequencies) in the time
domain. This is significant, as any change in the bridge IFs can represent a change in
the stiffness or mass at that location (span) where the instrumented carriage is currently
traversing. This method is useful for detecting changes in the frequencies where the bridge
may have experienced scour (caused by a flooding event) or any global change in the
stiffness or mass conditions. In this paper, the IFs are estimated using the EEMD based
HHT of acceleration signals from the instrumented train. Then, an average of these IFs is
calculated for each span. The accuracy of the inferred bridge natural frequencies is assessed
by comparing the average of the IFs with the actual bridge frequencies measured directly
from free vibration data.

3. Field Measurements
3.1. Malahide Viaduct UBB30 Ireland

The Malahide Viaduct is a 12-span bridge, constructed in 1844 over the Broadmeadow
Estuary, Dublin, Ireland (Figure 1). It contains a double railway track that serves the
Dublin–Belfast railway line and freight trains. In 2009, two of its spans (Spans 4 and 5, as
shown in Figure 2) and Pier 4 collapsed due to scour caused by a flash flooding event [51].
After the event, the viaduct has been rehabilitated and monitored to avoid the risk of soil
erosion and damages caused by increased loading conditions from the passing trains [7].
The collapsed spans and pier were replaced with stiffer spans and new pier foundations
were installed with micropiles [53,54] (see Figure 1b with box showing the replaced spans
and pier). The total length of the viaduct is almost 175 m, and the width is approximately
9.0 m. The first two spans at both ends (Spans 1, 2, 11 and 12) are 12.2 m long, and are
shorter than the remaining, inner spans (Spans 3–10), which are 15.85 m long. The spans
are made from precast concrete beams with an in situ deck, and the original piers from cut
stone masonry. Pier 4 (replaced after the collapse in 2009) is made from in situ reinforced
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concrete with a precast bearing shelf [7]. The entire viaduct bridge when a train is passing
over it, is shown in Figure 2.
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3.2. Direct Measurements

To provide a baseline to compare with the drive-by measurements, the natural fre-
quencies of each span of the viaduct are measured directly by installing accelerometers on
the bridge. Five triaxial wireless MEMS accelerometers (LORD MicroStrain G-Link 200,
MicroStrain, Inc., Williston, VT, USA, see Figure 3c) were used to record the deck free
vibrations of each span. The free vibrations were measured following excitation caused
by the passing trains. Typically, the recordings were continued for three seconds after the
passage of each train.



Sensors 2022, 22, 7468 6 of 18Sensors 2022, 22, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 2. The full view of the bridge with a passing train. 

3.2. Direct Measurements 
To provide a baseline to compare with the drive-by measurements, the natural fre-

quencies of each span of the viaduct are measured directly by installing accelerometers 
on the bridge. Five triaxial wireless MEMS accelerometers (LORD MicroStrain G-Link 200, 
MicroStrain, Inc., Williston, VT, USA, see Figure 3c) were used to record the deck free 
vibrations of each span. The free vibrations were measured following excitation caused 
by the passing trains. Typically, the recordings were continued for three seconds after the 
passage of each train. 

The direct measurements were carried out in twelve stages. In each stage, a different 
span was instrumented and monitored using five accelerometers placed at the points 
where the West side handrail uprights are connected to the concrete beam (Figure 3b). 
The sensors were installed near the piers at each end, midspan, the first and the third 
quarters (Figure 3a). After each measurement stage, the five accelerometers were moved 
to the next span, eventually covering all twelve spans of the viaduct. Magnetic mounting 
bases were used to attach the wireless accelerometers which were Lithium battery pow-
ered. Vertical accelerations were recorded at a scan rate of 256 Hz.  
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Figure 2. The full view of the bridge with a passing train.

The direct measurements were carried out in twelve stages. In each stage, a different
span was instrumented and monitored using five accelerometers placed at the points
where the West side handrail uprights are connected to the concrete beam (Figure 3b). The
sensors were installed near the piers at each end, midspan, the first and the third quarters
(Figure 3a). After each measurement stage, the five accelerometers were moved to the next
span, eventually covering all twelve spans of the viaduct. Magnetic mounting bases were
used to attach the wireless accelerometers which were Lithium battery powered. Vertical
accelerations were recorded at a scan rate of 256 Hz.

The first natural frequency of each span of the Viaduct was calculated using a Fast
Fourier Transformation (FFT) of the free and forced vibration data. For each span, the
forced and free vibrations after three passing trains were used to estimate the first natural
frequency. An example of the vibration signals measured at five locations of span 8 (one of
the existing/old spans with longer length) and their FFTs following a train crossing, are
shown in Figures 4 and 5 for free and forced vibrations, respectively. In this example, the
bridge is excited by a passing freight train (consisting of 11 carriages) on a Dublin to Belfast
route. From comparing the forced and free vibration signals, it can be seen that the later
shows more frequencies (containing both the vehicle and the bridge frequencies) in a range
higher than the bridge fundamental frequency. The first peak in the frequency domain, as
shown in Figure 4b, corresponds to the first natural frequency of the bridge, which was
evident in the data from all five sensors at Span 8. Similarly, the bridge frequencies are
also estimated from the forced measurements. The first natural frequency of each span
(averaged from free and forced vibrations caused by three passing trains) is summarized in
Table 1. From this table, it can be seen that (1) the shorter spans have higher first natural
frequency, as expected, (2) the first natural frequencies of the replaced spans (Span 4 and 5)
are higher than the other spans of equal length (Span 3 and Spans 6–10), (3) the frequencies
estimated from the forced vibrations are lower than the frequencies from the free vibrations,
which may be a result of an added mass of the passing train. This confirms that the replaced
spans are different than the other ones, due to their higher stiffness to mass ratio.
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3.3. Instrumented Train and Its Properties

A five-carriage train is instrumented using multiple accelerometers and a Global
Positioning System installed at the first bogie of the leading carriage [54]. The layout of
the sensors is shown in Figure 6 [7]. Vertical bogie accelerations were recorded over a
5-week period in 2016 as the train traversed the viaduct 41 times. More details of the
instrumentation and the test are presented in [7,53,54].

The train speed varied significantly between runs in the range, 85–120 km/h [7]. A
sample of bogie vertical accelerations is presented in Figure 7. It can be seen in Figure 7b,
which is the FFT of the on-bridge acceleration data, that the signal contains many frequen-
cies, which may be associated with the train properties, the bridge/track properties or
both. The train frequencies tend to have higher amplitude in the signal, which can make it
difficult to estimate bridge frequencies. In this paper, a time-frequency domain analysis
using EEMD based HHT is applied to estimate the natural frequencies of each span of
the viaduct.
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Table 1. The 1st Natural Frequencies of each span.

The Fundamental Frequency (Hz)

Span No. 1 2 3 4 5 6 7 8 9 10 11 12

Span length (m) 12.2 12.2 15.85 15.85 15.85 15.85 15.85 15.85 15.85 15.85 12.2 12.2

Free vibration 8.6 8.5 6.2 8.3 8.2 6.4 6.4 6.5 6.5 6.5 8.6 8.8

Forced vibration 8.2 8.1 5.8 8.0 8.0 5.9 6.0 6.1 6.5 6.1 8.5 8.5
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4. Analysis of Indirect Measurements
4.1. EEMD-Based HHT Analysis

An EEMD-based HHT is applied to the drive-by acceleration signals (recorded from
the instrumented train). To test the approach, a raw acceleration signal is decomposed into
IMFs using the EEMD technique. The amplitude of the added noise and the number of
iterations are determined using recommendations from the literature [49,50,52], and ten
IMFs are calculated. In total, 25 iterations with an amplitude of 30% added noise are used
in this analysis. These IMFs are converted into the time-frequency domain using the HT,
resulting in the plots of IF. These IFs represent the changes in each IMF frequency as the
train traverses the bridge. Figure 8 illustrates a result from the EEMD-based HHT for a
single run of the train. It can be seen that IFs 1–4 contain higher frequencies (more than
25 Hz) as compared to the first natural frequencies. IFs 5–6 contain frequencies in the range
between 5 and 15 Hz, which is closer to the natural frequencies of all the spans. IF 6, in
particular, has frequencies in the range, 5 to 10Hz, which includes all bridge first natural
frequencies (which lie between 6 Hz and 9 Hz). IFs 7–10 represent lower frequencies in the
signal, that are not related to the bridge frequencies.
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IMFs 5, 6 and 7 along with their FFTs and IFs are illustrated in Figures 9–11, respectively.
For checking the repeatability of the analysis, results from three runs are plotted in these
figures. The FFTs and IFs of IMF 5 in Figure 9 show frequency components in this signal
that lies in a range of 10–17 Hz, which are higher than the range predicted for the first
natural frequencies of the spans. The FFTs of IMFs 6 (Figure 10) show that there are multiple
frequencies in the range of 5–9 Hz, which are mixed together because of their proximity.
The IF 6, on the other hand, shows that the frequencies change with time, especially in
between 3.8 s and 5 s, where a modest increase in frequency is evident. This is the region
where two spans and a pier have been replaced with stiffer components, which may explain
the increase in the IF frequencies. This result may be used to estimate the bridge natural
frequencies, or at least a pattern of changing bridge frequencies between spans. Although
there may be a contribution from different train masses and velocities [56], the overall
pattern of the frequencies may indicate changes in the span frequencies. The FFTs of the
IMFs 7 (Figure 11) illustrate lower frequencies (lower than 5 Hz), that are not close to the
bridge natural frequencies and therefore are not considered in this study.
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4.2. Results and Discussion

In this paper, EEMD-based HHT is used to identify the IFs from indirect acceleration
measurements. As seen in Section 3, the first natural frequencies of the replaced bridge
spans are higher than the frequencies of the original longer spans. In this section, IMF 6
is chosen to be used for estimating the pattern of changing frequencies in a multiple span
bridge. Since the frequencies must be consistent for each span, an average of IFs for each
individual span is considered. The train bogie accelerations from 41 train runs are used in
this study to verify the efficacy of the proposed approach. The speed of each train changes
as it traverses the bridge (mostly seen to increase in magnitude; see Figure 12) [7]. The
details of the velocity effect on the train bogie accelerations are presented in [7].
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Figure 11. IF-7 and FFT calculated from IMF 7 (showing a range of frequencies closer to the spans
natural frequencies) (red dashed line = replaced pier; blue dashed lines = boundary between the new
and the other spans).
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Figure 13 shows the average of each span’s IFs (calculated using the IMF 6 measure-
ment) estimated from the indirect measurements. The first natural frequencies measured
directly from the free and the forced vibration measurements (Section 3) are also shown
(dotted and dashed lines, respectively) for comparison. For the indirect measurements,
as the results are collected from multiple runs, error bars are plotted using a mean and
(+/−) two standard deviations (representing more than 95% of the total results). It can
be seen in Figure 13 that the average of the IFs for each span approximately follows the
pattern from the direct measurements of the first natural frequencies, especially where
the replaced spans are located (Spans 4 and 5). In addition, the natural frequencies
estimated from the indirect measurements are closer to the frequencies estimated from
the forced vibrations. This is an important finding showing the shift in the estimated
frequencies due to the presence of the train. This change in frequencies is due to the fact
that the added mass effect of the train is present in both cases of drive-by and forced
vibration, which resulted in a frequency shift compared to the free vibration scenario. In
addition, for the spans which are equal in length, the consistency in frequencies around
the unreplaced spans is well detected by the drive-by approach and follows the same
pattern as the direct measurements. However, the results for the shorter spans are not
accurate which may be caused by several reasons, e.g., mode mixing or the edge effects
that exist in the HHT process. In order to evaluate the impact of mode mixing, the
averaged IFs are re-calculated using IMF5 and are compared to the direct frequencies
in Figure 14. This figure shows that the frequencies estimated using IMF5 are highly
spread around the mean value for all the spans (compared to Figure 13), which means
the results are less reliable compared to IMF6. However, the IFs from IMF5 estimate
the fundamental frequencies of spans 11 and 12 with reasonable accuracy, while the
results for spans 1 and 2 are still not acceptable. It can be concluded that a single IMF
calculated from the proposed approach in this study can be used for estimating the
fundamental frequencies of the spans with similar lengths when the spans with different
stiffness values can be clearly detected. However, when the span lengths are different,
the problem becomes more challenging and in some cases, a different IMF can reveal the
fundamental frequencies of those spans. In addition, it can be concluded from Figure 6
that some of the IFs estimated using HHT includes edge effects at the beginning and end
of the signals which could result in inaccuracy in the process of frequency estimation as
observed in Figures 13 and 14.
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Figure 13. Averaged IFs of each Span (from IMF 6) from the indirect measurements (compared to the
direct measurements).
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4.3. Energy Amplitude of the Signal

As reported in [7], the amplitude of the train acceleration signals for the replaced
spans changes for the stiffer spans and the natural frequency, suggesting that the energy of
frequencies for these responses will be lower for the replaced spans relative to the energies
for the original spans. In this section, the amplitudes of the energy are assessed for each
span. The purpose of this section is to determine how the energies of all the frequencies
are affected and can be used for damage detection without having any prior knowledge of
the spans’ natural frequencies. For that purpose, a sum of all the energies is considered.
Each HT spectrum contains IF, energy amplitudes and phase angles for each IMF. An
average of all the energies from each span is calculated for each IMF, which are then
added together to determine the change of energies (in all the IMFs combined). Figure 15
shows the sum of averaged energies from each IMF for each span using the 41 trains runs
with error-bars (mean +/− two standard deviations). As concluded in Section 4.3, for a
multiple span bridge, it is better to employ the EEMD only for the spans of equal length.
Therefore, only Spans 3–10 are used in this section. It can be seen in the figure that the
averaged energy of the frequencies, combined from all the IMFs for each span, is less for
the replaced spans. This indicates that the change in the span stiffness, not only changes
the fundamental frequency of those spans, but also reduces the energy of the frequencies
extracted from drive-by measurements using the signal processing tools (EEMD-based
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HHT). In this particular example, the higher stiffness to mass ratio of the replaced spans
(negative damage) has resulted in a significant decrease in the energy amplitude of the IMFs.
This is an important finding which can be used for developing novel damage indicators
using drive-by approaches which can define global stiffness changes in multi span bridges.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 18 
 

 

 
Figure 15. Sum of averaged energies per span using a mean and standard deviations from 41 train 
runs. 

5. Conclusions 
This paper presents a field investigation of direct and indirect/drive-by bridge health 

monitoring approaches for a multiple span viaduct. Two spans of the viaduct were re-
placed by stiffer beams in 2009 after they collapsed due to foundation scour. Acceleration 
responses, extracted from an instrumented train are used in this paper to (i) estimate the 
first natural frequencies of each span of the viaduct bridge, and (ii) detect the stiffness 
changes present in 2 out of 12 spans of the viaduct. Direct measurements with sensors 
installed on the bridge, are used to validate the results. The frequencies were estimated 
from the indirect measurements using the EEMD-based HHT technique. The HHT is a 
recent technique for indirect health monitoring. The EEMD instead of EMD is used to 
overcome the issue of mode mixing. This technique is used to extract natural frequencies 
of the spans with the help of IFs from the calculated IMFs. The HT energies are seen to be 
strongly affected by replacing (negatively damaging) the two spans.  

A summary of the results is as follows: 
1. The EEMD approach can be employed with drive-by measurements to detect the 

fundamental frequency of each span of a multiple span bridge. However, some pre-
liminary information about the bridge frequencies or their ranges is required for ef-
fective application of the proposed approach.  

2. The natural frequencies estimated from indirect measurements are reasonably close 
to the direct measurements and both measurements follow the same pattern of fre-
quency changes in the internal spans of equal length. 

3. The results from forced vibrations (compared to free vibrations) are closer to the ones 
obtained from drive-by approach which is due to the added-mass effect of the cross-
ing train.  

4. The proposed approach shows reasonable results when is used for comparing the 
frequencies of the spans with same length, while it becomes more challenging for 
shorter spans.  

5. The energy of the frequencies are seen to decrease in the two replaced spans. There-
fore, it can be used as a damage indicator for loss of global stiffness in future studies. 

Author Contributions: Conceptualization, A.M. and M.A.K.; methodology, A.M. and 
M.A.K.; software, M.A.K.; validation, M.A.K; resources, C.B.; data curation, M.A.K, E.A.M 
and R.G.; writing—original draft preparation, M.A.K.; writing—review and editing, A.M., 
M.A.K. and E.J.O; visualization, A.M. and M.A.K.; supervision, A.M. and E.J.O.; funding 
acquisition, A.M. All authors have read and agreed to the published version of the man-
uscript. 

10 9 8 7 6 5 4 3
Span Number

1

2

3

4

5

6
A

ve
ra

ge
d 

en
er

gi
es

 a
m

pl
itu

de
s (

E)
41 Trains

Replaced Spans

Figure 15. Sum of averaged energies per span using a mean and standard deviations from 41 train runs.

5. Conclusions

This paper presents a field investigation of direct and indirect/drive-by bridge health
monitoring approaches for a multiple span viaduct. Two spans of the viaduct were re-
placed by stiffer beams in 2009 after they collapsed due to foundation scour. Acceleration
responses, extracted from an instrumented train are used in this paper to (i) estimate the
first natural frequencies of each span of the viaduct bridge, and (ii) detect the stiffness
changes present in 2 out of 12 spans of the viaduct. Direct measurements with sensors
installed on the bridge, are used to validate the results. The frequencies were estimated
from the indirect measurements using the EEMD-based HHT technique. The HHT is a
recent technique for indirect health monitoring. The EEMD instead of EMD is used to
overcome the issue of mode mixing. This technique is used to extract natural frequencies
of the spans with the help of IFs from the calculated IMFs. The HT energies are seen to be
strongly affected by replacing (negatively damaging) the two spans.

A summary of the results is as follows:

1. The EEMD approach can be employed with drive-by measurements to detect the
fundamental frequency of each span of a multiple span bridge. However, some
preliminary information about the bridge frequencies or their ranges is required for
effective application of the proposed approach.

2. The natural frequencies estimated from indirect measurements are reasonably close to
the direct measurements and both measurements follow the same pattern of frequency
changes in the internal spans of equal length.

3. The results from forced vibrations (compared to free vibrations) are closer to the
ones obtained from drive-by approach which is due to the added-mass effect of the
crossing train.

4. The proposed approach shows reasonable results when is used for comparing the
frequencies of the spans with same length, while it becomes more challenging for
shorter spans.

5. The energy of the frequencies are seen to decrease in the two replaced spans. Therefore,
it can be used as a damage indicator for loss of global stiffness in future studies.
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