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Abstract: This paper describes a non-invasive inspection technique for the estimation of longitudinal
stress in continuous welded rails (CWR) to infer the rail neutral temperature (RNT), i.e., the tempera-
ture at which the net longitudinal force in the rail is zero. The technique is based on the use of finite
element method (FEM), vibration measurements, and machine learning (ML). FEM is used to model
the relationship between the boundary conditions and the longitudinal stress of any given CWR to
the vibration characteristics (mode shapes and frequencies) of the rail. The results of the numerical
analysis are used to train a ML algorithm that is then tested using field data obtained by an array
of accelerometers polled on the track of interest. In the study presented in this article, the proposed
technique was proven in the field during an experimental campaign conducted in Colorado. A com-
mercial FEM software was used to model the rail track as a short rail segment repeated indefinitely
and under varying boundary conditions and stress. Three datasets were prepared and fed to ML
models developed using hyperparameter search optimization techniques and k-fold cross validation
to infer the stress or the RNT. The frequencies of vibration were extracted from the time waveforms
obtained from two accelerometers temporarily attached to the rail. The results of the experiments
demonstrated that the success of the technique is dependent on the accuracy of the model and the
ability to properly identify the modeshapes. The results also proved that the ML was also able to
predict successfully the neutral temperature of the tested rail by using only a limited number of
experimental data for the training.

Keywords: continuous welded rails; rail neutral temperature; finite element model; machine learning;
nondestructive evaluation; structural health monitoring

1. Introduction

With the advent of continuous welded rails (CWR) the problem of extreme compres-
sion or extreme tension along rails during hot or cold days became evident. To mitigate
such thermal effects, CWR are pretensioned during installation such that the rail neutral
temperature (RNT) is within the range of 32 ◦C to 43 ◦C. The RNT which is often denoted as
TN is the temperature at which the net longitudinal stress in the rail is zeros. The pretension
cannot be higher to avoid fractures during the cold seasons.

Structurally speaking, CWR are often considered as an ideal column, in which buckling
may occur when the rail temperature TR reaches or exceeds the critical temperature Tcr,
calculated as:

σcr

Eα
+ TN = Tcr (1)

In Equation (1), α and E are the coefficient of thermal expansion and the Young’s
modulus of the steel, respectively, and σcr is the Euler stress of the rail steel. Generally, α, E
and σcr are known values by design. Therefore, Tcr can be estimated and buckling events
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can be predicted and prevented once TN is measured. To this end, TN can be determined by
the longitudinal stress σR at any TR using the equation:

TN = TR −
σR
Eα

(2)

In Equation (2), σR is considered positive when the rail is in compression.
Over the years, operational conditions and periodic maintenance decrease the RNT

to unknown values, increasing the risk of extreme compression, and therefore thermal
buckling. As such, there is a need to measure σR and TN. One of the most common
methods consists of instrumenting the rail with strain gage rosette and then cutting the rail
to measure the longitudinal strain difference. The rosette is then left in place to measure the
pre-tension subsequent to the newly welded segment and the transverse strains occurring
hereinafter during normal operation. However, this approach is time-consuming and
destructive leading to a long-time quest for in situ cost-effective nondestructive evaluation
(NDE) methods to measure axial stress or estimate RNT.

Current NDE methods can be clustered according to the physical principles being
exploited, such as electromagnetism [1,2], ultrasounds [3–7], or acoustics [8–11]. An electro-
magnetic approach deploys the magnetic Barkhausen noise. This method is premised on
the fact that the magnetic permeability in steel material of the rail is positively correlated
with the tensile stress. However, the predicted stresses might be adversely affected by the
paint coating, unevenness, and residual stress. An accurate lab calibration is also required
to apply this technique [1,2].

Nonlinear ultrasonic guided waves transmitted and detected along the web of the
rail to of interest were used to calculate a nonlinear parameter that was found to be stress
dependent [4–7]. Another approach based on mechanical waves was developed relying on
the correlation between the propagation characteristics of highly nonlinear solitary waves
at the point of contact with an axially loaded rail beam [8–13]. This technique showed
satisfactory results under laboratory conditions [13] but never got the chance to be tested
in the field, on real railroads.

NDE methods to estimate the axial stress can also be categorized into static and
dynamic approaches [14]. A notable example of former is VERSE®, acronym of Vertical Rail
Stressing Equipment [15]. This method requires unclipping 30 m of rails from the fasteners.
Then, the unanchored rail segment is lifted by a certain amount. The rail deflection under
this vertical load is gaged and used as a proxy measure to estimate the axial load in the
rail. This longitudinal load is converted into stress using the rail cross section and then
plugged in Equation (2) to estimate the neutral temperature [16]. Safety considerations
require that VERSE® is used with the rail under tension, i.e., when the temperature of the
steel is below the unknown neutral temperature. Another static approach to evaluate the
axial stress consists of strain gages that are attached to the web face of the rail, close to the
neutral axes of the section [16]. To be effective, the system must remain in place for months
if not years. Knopf et al. [17] proposed a method to quantify the axial stress using thermal
imaging and a StereoDIC system to obtain different strain components on the web surface
of a rail segment. The strain along the neutral axis was then combined with the vertical
deformations of the rail caused by thermal loading to estimate the axial load in the rail.
This approach was only tested in the lab and verified by some numeric and finite element
modeling but, to the authors’ best knowledge, never validated in the field.

Dynamic approaches have attracted numerous researchers. Weaver [18] and Daml-
janovic and Weaver [19] proposed a method based on the dependency of dynamic vibration
characteristics to axial stress. A shaker excited the rail at a specific frequency and the
induced displacements were recorded with a laser vibrometer. The rail rigidity and the
wavelength of the dynamic response were used to evaluate the stress. The results from
the field tests disagreed with the strain gage system present on the tested rail. A dynamic
approach based on high-frequency vibrations was proposed by Wu et al. [20]. A steel ball
was used as impactor to generate surface waves above 30 kHz, recorded with a polarized
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condenser microphone. A finite element model (FEM) was generated in support of the
experimental efforts. The numerical and the experimental results demonstrated that the
waves propagating at 37 and 76 kHz are sensitive to the stress and were used to train a
neural network to predict the stress.

Besides the work of Wu et al. [20] there are other examples of machine learning
algorithms (MLA) applied in support of rail inspections. Asber [21] proposed an automated
visual inspection method to detect faults in different components of a railway. The track
was scanned with a camera and the images were fed into a deep neural network, trained to
classify different components such as fasteners, ties, etc., and identify missing fasteners. A
similar inspection approach based on Convolutional Neural Networks (CNN) was used by
Marasco et al. [22] to inspect and classify tunnel defects. In this study the Fourier Transform
of the tunnel images were fed into the CNN to identify damages and cracks in the tunnel
lining. The input to the CNN was basically profiles obtain by a Ground Penetration Radar
(GPR). The results showed around 90% accuracy in damage detection. Enshaeian et al. [23]
presented a vibration-based approach to link the axial stress in rail beam with the frequency
of vibration relative of a few modes. The method was proven in the lab using a short
AREMA 132 rail segment subjected to compression. Aloisio et al. [24] also investigated the
vibrations of railway bridges to evaluate the effect of ballast properties on the triggered
vibrations. To model the rail and ballast they used beam and spring-damper elements,
respectively, and the train effect was simulated by a moving load. That study showed the
significant effect of ballast on the load distribution and damping.

In the study presented in this article, the vibration-based approach introduced by
Enshaeian et al. [23] was improved, expanded, and validated in the field. An enhanced FE
modeling along with certain MLAs were created to model and learn the interdependency of
the modal characteristics of CWR to axial stress, rail geometry, and the restraints provided
by crossties, ballast, and fasteners. These MLAs consisted of Linear Regression, Extreme
Gradient Boosting (XGBoost), CatBoost, Ensembling, Artificial Neural Networks (ANN),
Support Vector Machines (SVM), Decision Trees, and Gaussian Process Regression (GPR).
It is noted here that the effect of the boundary conditions governed by the supporting
components is quite challenging to measure and quantify [18,19]. In addition, construction
misalignments such as deviation of tie-to-tie distance compared to the exact design value
make the problem even more complex. The numerical model developed in this study
provided a comprehensive set of data that frames the interdependency among stress,
geometric layout, modal characteristics, and boundary conditions. The synthetic data
generated by the FEM were used to train a MLA capable of learning such interdependency.
Having trained the model, the axial stress was identified using field data provided in
the form of resonant frequency peaks extracted from accelerometer signals. Linking the
axial stress in CWR with the modal characteristics of a given rail is not a new idea and
has challenged the rail industry for decades because the vibrations are affected by several
variables that are not easy to determine empirically. Therefore, the development of an
effective and robust MLA gets challenging when it is not trained by reliable data, which in
the current study are generated numerically. In addition, finding the optimum set of input
features to train the MLA adds to the complexity of the problem.

The supervised learning algorithm developed during a preliminary work [25], was
improved and applied to estimate the longitudinal stress of a rail track on concrete crossties.
Two input features spaces were considered: one containing the frequencies from the first
five lowest modes of vibration; one containing a subset of the former using the two highest
modes of vibration. The training set was created numerically using the commercial finite
element software ANSYS. The field test involved a 5 degree curved 141 RE rail on concrete
ties (Figure 1).
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Figure 1. Photo of the railroad section tested in Colorado.

Two tri-axial accelerometers were bonded to the gage side of the rail head, one above a
cross-tie and one at the mid-span between two ties. The dynamic response of the rail to the
impact of an instrumented hammer along the lateral (sideway) direction was recorded. The
impact triggered vibrations along the weak axis of inertia. The experimental frequencies
were extracted via Power Spectral Density (PSD). To minimize the effect of noise, the Welch
technique [26] was used to calculate the spectral density functions.

The main scientific novelty of this paper is the application of artificial intelligence to a
vibration-based approach, including field test validations, for the estimation of longitudinal
stress and then RNT. This field test demonstrates the feasibility but also the challenges of the
proposed approach to address the long-standing quest for linking the modal characteristics
of CWR to the axial stress.

The paper is structured as follows. Next section describes the implemented ANSYS
finite element model along with the results of a sensitivity analysis in which some geo-
metric and mechanical parameters of the railroad were varied to quantify their effects
on the vibration and dynamic characteristics of the rail. The experimental setup is de-
scribed in Section 3. Section 4 presents the data preprocessing of the learning algorithms.
Sections 5 and 6 present the ML architectures and the numerical results on the numerical
and experimental training data. Lastly, Section 7 ends this article with some concluding
remarks and the path of ongoing and future studies.

2. Finite Element Model
2.1. Implementation

To explain the structural buckling in CWR, some researchers considered any given
railroad “equivalent” to a single beam segment of finite length [27–29]. Other investigators
considered instead two parallel beams of finite length along with linear springs, which
represent the lateral resistance associated with the ballast and crossties [30–33]. In both
approaches, the “equivalent” beam(s) are fixed at the ends a comprehensive review of these
analyses can be found in Enshaeian and Rizzo [14].
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In the present study, the first approach was adopted. A computationally cost-effective
finite element approach, based on an irreducible sub-structure model [34–36] was imple-
mented in ANSYS. The structurally irreducible component is considered as the smallest
track segment that can be replicated to generate miles long rails. This repeating element
is also known as the unit cell. The cell included a tie-to-tie long rail at the ends of which
there were three translational (Kx, Ky, Kz) and three rotational springs (Krx, Kry, Krz), which
mimic the role of fasteners, ties and ballast. The direction of these springs are shown in
Figure 2. For example, Ky represents the lateral resistance whereas the coefficients Krx and
Krz account for the resistance to the torsion along the rail running direction and the lateral
bending along the weak axis of the section, respectively.

Figure 2. Schematics of the FEM unit cell implemented in this study along with the springs used to
model the effects of the fasteners, crossties, and ballast.

The rail was modeled using BEAM188 and COMBIN14 elements. The latter are
combined spring-damper elements and were used to model the springs. The properties
of conventional ductile carbon steel (the same material type used for the tested rail) were
used: Young modulus E = 206 GPa, Poisson’s ratio ν = 0.29, thermal expansion coefficient
α = 11.5 × 10−6/◦C and density ρ = 7850 kg/m3. Considering potential variability in these
material properties with respect to standard values above, some sensitivity analysis was
performed and the results are presented in Section 2.3. The mesh was chosen to capture
accurately the mode shapes associated with all frequencies observed in the field test. The
accuracy of the mesh was determined by running a few convergence analyses. It was found
that 30 beam elements were sufficient to model the unit cell and no further mesh refinement
was necessary.

When the rail steel properties are known, the estimation of the axial stress using
vibration-based methods contains 7 unknowns (the six springs and the stress). The co-
efficients Kx, Kz, and Kry were fixed because the field test included the observation of
lateral-torsional excitations only. They were equal to Kx = 6000 kN/m, Kz = 35,000 kN/m
and Kry = 5000 kN-m/rad, and were taken from Yi et al. [36]. Although they may not be
representative of the conditions encountered in the field tests, these three fixed coefficients
can only affect the vibrations in the longitudinal direction and deformations along the
strong axis of the rail, which are both ignored in this study. The remaining three springs
and the longitudinal stress were considered and listed in Table 1. To show the relevance of
the ties, rail on wooden ties was also considered and the associated values are lower than
those on concrete because timber supports are softer.
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Table 1. Variables considered in the FE modeling of the rail for a rail on concrete ties and a rail on
wood ties.

Track Type Based
on Tie Material Parameter Minimum

Value
Maximum

Value

No. of Equal
Increments for the
Given Parameter

Concrete

Ky (kN/m) 2000 40,000 14
Krx (kN-m/rad) 70 1400 14
Krz (kN-m/rad) 70 10,570 21

Axial Stress (MPa) −33.6 33.6 33

Wood

Ky (kN/m) 1500 48,000 6
Krx (kN-m/rad) 52.5 1680 6
Krz (kN-m/rad) 11.2 2870 9

Axial Stress (MPa) −33.6 33.6 33

For each combination of spring coefficients, thirty-three different longitudinal stresses
were considered ranging from +33.6 MPa tension to −33.6 MPa compression, at 2.1 MPa
decrements, yielding a total of 14 × 14 × 21 × 33 = 135,828 case scenarios for the concrete
track and 6 × 6 × 9 × 33 = 10,692 combinations for the wood track model. Given the
selected values of E and α, the resolution of 2.1 MPa is equivalent to 0.89 ◦C, and the stress
range is comprised between−14.18 ◦C to +14.18 ◦C with respect to the neutral temperature.

2.2. Results
2.2.1. Model Verification

The finite element model was validated first by comparing its performance with a
more conventional approach. Figure 3 illustrates the frequency of the pinned-pinned mode
shape of a RE 136 rail beam (RE 136 is a rail section produced according to the 136 lb/yard
rail standard set by AREMA, American Railway Engineering and Maintenance of way
Association). This figure illustrates the results obtained by both the unit cell approach and
the conventional FEM. The pinned-pinned mode is referred to a mode shape of the rail
beam in which the nodes are located at the cross ties. A typical 0.6 m tie-to-tie distance was
considered. Figure 3a shows the shape relative to mode E (introduced in a later section
of this paper) and the corresponding frequency for a 6-m-long rail, whereas Figure 3b
compares the frequency found with the two approaches for various rail lengths, and
demonstrates that the predicted frequencies converges asymptotically when the real rail is
about 30 m long.

The results imply that the use of the unit cell, which includes only a single tie-to-tie
segment, provides accurate results without the computational effort required to model
30 m of rail. For more details about the implementation of this structurally irreducible
modeling, the interested readers are referred to Urakawa et al. [34] and Yi et al. [36].

2.2.2. Modal Characteristics

The effect of stress on the frequencies of vibration was investigated by implementing
a two-steps static-eigenvalue analysis. The first step consisted of pre-stressing the rail by
exerting a concentrated force along the longitudinal direction and adapting the stiffness
matrix accordingly. Subsequently, the eigen value (modal) analysis was carried out. Some
results are presented with Figure 4.

The left column shows the mode-shape of the first five lowest modes, labeled as B, D,
E, F, and G, of a 0.610 m long rail. This length corresponds to the center-to-center crosstie
measured in the field. The mode-shape notation follows Wang et al. [35] and Yi et al. [36].
Mode B is mainly translational while mode E is flexural-torsional. Bending dominates
mode E and mode F, whereas modes B and D are basically rigid modes of the rail below
400 Hz, and are less affected by the axial force. Mode E and mode I (not shown here) are
the 1st order lateral and vertical pinned-pinned modes, respectively. Mode G is similar to
mode E, while the bending deformation of mode G is significant at the rail bottom, and
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the rail head and bottom are subject to antiphase motion. The mode shapes presented in
Figure 4 were obtained by assuming Ky, Krx, and Krz equal to 7000 kN/m, 116 kN-m/rad
and 5600 kN-m/rad, respectively. The values of Ky, Krx, and Krz were selected because the
corresponding mode frequencies are close to the experimental values found in the field.

Figure 3. Comparative analysis of the performance of the unit-cell formulation to a conventional finite
element approach. The analysis involved a 6-m long rail under pin-pin condition. (a) Mode-shape
and corresponding frequency obtained with a conventional approach. (b) Frequency vs. length of the
simulated rail using the conventional FE model and the unit-cell approach.

Fixing E, α, and the spring coefficients along all directions, the individual effect of
the stress (and therefore temperature) on the frequencies of the five modes was evaluated.
The results are presented in the second column of Figure 4. Negative σ, i.e., positive ∆T,
indicates compression, whereas positive σ, i.e., negative ∆T, indicates tension. For example,
the graph on the first row/second column shows the frequency of vibration as a function of
the stress and of the corresponding temperature increase/decrease with respect to the RNT
at certain values of the six stiffnesses. The regression of the numerical results shows that
mode B is barely dependent on the stress, and its natural frequency of vibration is expected
to change only 0.002 Hz per degree Celsius. The same trend, i.e., stress-independence,
is seen for mode D. On the contrary, modes E and F are the most sensitive modes to the
temperature change. The vibration of mode E is expected to change by 1 Hz every 5 degrees
Celsius, equivalent to 0.084 Hz per MPa change in stress.

Notably, these slopes are nearly identical to those reported by Urakawa et al. [34] and
Yi et al. [36]. However, with respect to those works, this study expands the state-of-the-art
knowledge by investigating the impact of both stress and boundary conditions. Previous
studies were mostly focused on the stress influence whereas here the impact of boundary
conditions on the resonant frequencies is also included.
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Figure 4. Finite element modeling of a RE 141 tangent track on concrete ties. Left column: mode
shape of the lowest five modes. Center column: frequency as a function of stress and temperature
change (with respect to the RNT) at given boundary condition. Right column: frequency as a function
of certain boundary conditions at neutral temperature.

The effect of the boundary conditions, namely Ky, Krx, and Krz, at the neutral temper-
ature is shown in the rightmost column of Figure 4. The charts demonstrate that modes
B, D, and F are affected by coefficients Ky and Krx, whereas modes E and G depend on
Krz only. For example, for high values of stiffness Ky, the natural frequency of mode B is
strongly dependent on Krx, such that the frequency can range from 100 Hz to 180 Hz. On
the contrary for lower values of Ky, the frequency of vibration of mode B remains nearly
constant and equal to 62 Hz or 68 Hz, regardless of Krx.

To provide a broader view about the effect of geometry and boundary conditions,
Figure 5 illustrates the same analysis applied to a 136 RE track on wooden ties. As said
earlier, softer spring coefficients were considered. In addition, the tie-to-tie distance was
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reduced to 0.540 m consistent with typical field test conditions. The results are qualitatively
similar to those relative to the concrete ties. Modes B and D are stress independent, whereas
modes E and F are the most sensitive ones to the change in rail temperature. Mode F is
only slightly affected by Ky variations, as different curves associated with Ky coefficients
almost overlap to each other.

Figure 5. Finite element modeling of a RE 136 tangent track on wood ties. Left column: mode shape
of the lowest five modes. Center column: frequency as a function of stress and temperature change
(with respect to the RNT) at given boundary condition. Right column: frequency as a function of
certain boundary conditions at neutral temperature.

2.3. Sensitivity Analyses

To quantify the effect of geometric or mechanical parameters such as the center-to-
center crosstie distance, the geometry of the rail cross-section, and the steel properties on
the rail vibrations, the following sensitivity analyses were conducted numerically under
the assumption that the rail was stress-free.
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Figure 6 shows the results relative to two center-to-center distances, namely 0.610 m
and 0.540 m, for a 141 RE rail section and ranges of coefficients Kx, Kz and Kry used in
Figure 4. The figure shows that the distance between two consecutive cross-ties has almost
no effect on modes B and some minor influence on mode D, but causes a significant increase
in the frequency of modes E, F, and G. Modes B and D are mainly rigid body motions with
negligible internal deformations. The slight increase in frequencies is attributed to the
higher distributed resistance of the support springs per unit length. Instead, the energy
needed to trigger the flexural modes, such as E, is a function on the flexural energy of
the beam itself rather than the spring coefficients at both ends. The corresponding mode
shapes experience higher curvatures compared to the lower modes. As higher curvature
corresponds to higher flexural strains and stresses, these modes require more energy to be
triggered. Therefore, much higher external energy is required to excite these higher modes
as the length reduces, which in turn leads to a significant increase in frequency.

Figure 6. Sensitivity analysis. Effect of tie-to-tie distance on the resonant frequency of (a) modes B, D
and F for different values of Ky and Krx, and (b) modes E and G for a range of Krz coefficients.

The effect of the rail cross section was investigated by comparing the frequencies of
vibration of a 0.610 mm long 136 RE rail and 141 RE rail at given boundary conditions. The
results are summarized in Table 2. The frequency of mode B and mode D decreases for the
larger rail.

Table 2. Effect of the rail cross-section on the resonant frequencies at a given boundary conditions
and at neutral.

136 RE 141 RE

Mode B (Hz) 138.49 134.50
Mode D (Hz) 350.56 348.34
Mode E (Hz) 496.25 506.80
Mode F (Hz) 501.28 504.09

The opposite trend is seen for the flexural modes E and F. The reason behind this
apparent conflicting result is also associated with the mode-shapes. The stiffness of modes
B and D do not contribute to the overall stiffness relative to the deformed mode shape.
As a result, their frequency can be characterized by the spring coefficients at both ends
and the mass of the rail beam. By increasing the rail section from 136 to 141 RE, the mass
rises by almost 3%. Besides, since the frequency in inversely proportional to the mass
(ω =

√
(k/m)), this higher amount of mass causes the observed reduction in the frequencies

of modes B and D. On the other hand, the mainly flexural modes E and F are subjected to
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both mass increase but also stiffness against flexure increase. The area of the section and
the moments of inertia have length2 and length4 dimensions, respectively. Since the inertia
and consequently, the flexural stiffness, is a higher order function of the section dimensions
compared to the area and mass, the rise in the stiffness overshadows the mass increase,
which results in the ascending frequencies in the third and fourth row of Table 2.

Finally, the combined effect of the Young modulus, Poisson ratio, and density of
the steel was examined by selecting two values for each parameter, namely 206 GPa and
210 GPa, and 0.27 and 0.29, and 7850 and 7650 kg/m3, respectively. The eight cases were
applied to a 141 RE rail under certain fixed spring coefficients, and the results are presented
in Figure 7. To facilitate the interpretation of the results, the vertical range of the plots was
left equal to 16 Hz.

Figure 7. Sensitivity analysis. Effect of the rail material properties on the frequency of vibration of
modes B, D, E, and F shown in subplots (a), (b), (c), and (d) respectively.

Figure 7a,b show that modes B and D are not affected by the modulus and the Poisson’s
ratio, whereas they are slightly affected by the density. These results are consistent with
what shown in Figure 6a,b. The effect of density is also consistent with what seen with
the cross section; lowest density yields to highest frequency. Figure 7c,d show the obvious
dependency of flexural modes E and F on the Young modulus as well as the Poisson’s ratio.
Higher modulus causes higher frequencies, whereas lower Poisson’s ratios have the same
effect. Analogous to subplots (a) and (b), reduction in the density and mass of the rail beam,
results in higher frequencies.

3. Field Test
Setup

The field test was conducted at Transportation Technology Center (TTC), in Pueblo,
Colorado on a 5◦ curved RE 141 rail on concrete ties showed in Figure 1. A close-up view is
presented in Figure 8. Two tri-axial accelerometers were bonded to the railhead above a
tie and at midspan. Both accelerometers were triggered via an instrumental hammer and
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sampled at 10 kHz. Two thermocouples were attached to the rail, one on the head and
one on the web. The rail location was also equipped with strain gauges and temperature
measurement devices operated independently by TTC.

Figure 8. Close-up view of the rail on concrete ties tested in the field.

Figure 9 shows the temperatures recorded by the three independent systems during
the first day of test (day 1). The recordings from TTCI were taken automatically at regular
intervals, whereas the recordings from the Pitt system were taken manually every time the
rail was hit with the hammer. Impacts were applied on the field side of the rail just behind
the midspan and tie location where the sensors were bonded. Only one of the two spots
was hit during a single measurement. The trend is identical for all three systems. The
readings from the thermocouple attached to the rail head are biased by solar irradiation
and scattered by the presence of clouds. The readings from the web are lower than those
on the head, and those recorded by the TTC system were about 1–2 ◦C higher than those
recorded by Pitt thermocouple. All systems recorded an increase of temperature in the
order of 15 ◦C between 10 AM to 12:30 PM after which the increase was milder. The rail
started cooling after 2 PM.

Figure 9. Temperatures of the track taken with three independent units. The lack of data between
11:30 AM and Noon was related to some setting adjustments not related with the content of this paper.
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For illustrative purposes Figure 10a shows a time series associated with the lateral
vibration measured by the accelerometer located at the cross-tie. The corresponding
power spectral density is presented in Figure 10b along with the spectrum of the vertical
acceleration. After zero padding, the resolution of the PSD was 0.3 Hz. Several peaks are
visible around 150 Hz, 220 Hz, 350 Hz, and 550 Hz.

Figure 10. (a) Typical time-series associated with the lateral displacement and recorded by the
accelerometers on the rail above the cross-tie. (b) Corresponding Power Spectral Density overlapped
to the PSD of the vertical direction.

Two additional frequencies, around 490 Hz and 500 Hz, that not observed at the
cross-tie were seen at the midspan. These six frequencies were consistent across both days
of testing and were selected and labelled as F1, . . . , F6 to be the possible features for the
ML models discussed later in this article. For peaks that were not as obvious or clear and
therefore were not able to be extracted, they were locally linearly interpolated using the
surrounding two to three immediate hits at that frequency. These peaks are placed for
reference in Table 3.

Table 3. Frequencies extracted from the two accelerometers on Days 1 and 2.

F1 F2 F3 F4 F5 F6

Frequency ~150 Hz ~220 Hz ~350 Hz ~490 Hz ~500 Hz ~550 Hz

For illustrative purposes, Figure 11 shows the experimental frequencies found on day
1 relative to the peak around 500 Hz for all the impacts before 12:30 PM with respect to the
rail web temperature recorded by the Pitt system.

The plots results confirm the numerical prediction, i.e., the inverse correlation between
the frequencies and rail temperature. The slope of the linear regression was equal to −0.17
and −0.43 Hz/◦C for the peaks around 500 and 530 Hz, respectively. Notably, the number
of data points in Figure 11 is lower than the number of data points in Figure 10a because
some hammer hits did not trigger the 500 Hz mode.
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Figure 11. (a) Frequency peaks associated with (a)-peak around 500 Hz and (b)-peak around 530 Hz
as a function of the web temperature recorded at the moment of the lateral impacts.

4. Machine Learning: Preprocessing
4.1. Datasets

Three datasets, summarized in Table 4, were created in support of the ML.

Table 4. Dataset summary.

Training/Validation
Set Test Set Inputs (Hz) Output Description

RFEA D12 Mode B, D, E, F Stress (Mpa)

Numerical
Finite-Element Dataset
provided via ANSYS

simulation. This is used
to test on Days 1 and 2

(D12).

D1 D2 F5, F6 or F1-F6 β (No Unit)

This experimental
dataset from Day 1

provides six frequencies
of which the two

highest or all six are
used as inputs to

determine a scaling
factor, β, of the rail

temperature to get RNT.
Day 2 (D2) data is used

as the test set.

D12 D12 * F5, F6 or F1-F6 β (No Unit)

This experimental
dataset combines Days 1

and 2 data (same rail
location). Inputs and

output are the same as
the D1 Dataset. Test set
is a random split from

both days.
* Data used in D12 Test set are unseen from training/validation D12 set.
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The first dataset, used strictly for training/validation, included a subset of the ANSYS
database with the same variables, i.e., spring stiffness and longitudinal stress. It included
frequencies associated with modes B, D, E and F as predictors and an output of stress. Mode
G was ignored because it is difficult to trigger with a hammer. The ML was designed to
learn the interdependency between the modal characteristics and the boundary conditions
of the rail, and the effects of the temperature. Concisely, all discussed and presented graphs
relative to the support conditions (Figures 4–7) were deployed implicitly in the ML for the
first dataset. By removing half of the intermediate Ky and Krx conditions, the variability in
the experimental frequencies, discussed in a later section, could be properly compensated
against their respective boundary conditions. The result of this discretization reduced the
dataset from 135,828 data points to 33,957. Hereinafter, this dataset is referred to as RFEA
(reduced finite element analysis) and was used to predict the axial stress and then infer the
RNT with Equation (2).

Six experimental peaks were extracted from the PSD of each time-waveform recorded
by the two accelerometers. These peaks and the corresponding temperature readings
formed the second and third datasets. The main difference between the numerical and the
experimental datasets is that for the latter, the output is a ratio β of the RNT to the rail
temperature, i.e., TN = β TR.

For Day 1, 40 hammer impacts were used for training/validation. The frequencies
from Day 2 were used as the test case. Hereinafter, the experimental dataset is referred to
as D1 whereas its corresponding testing set is referred to as D2 (Day 2).

The third dataset clustered together the experimental data from both days, making a
total of 93 data points to be split for training/validation/test. The same inputs and term β
was used for the output. This dataset is called D12 (Days 1 and 2).

4.2. Mode Shape Classification

Linking any experimental frequency peak to the correct mode-shape was challenged
by the limited number of accelerometers available in the field. Thus, shape labelling
was necessary to assign the empirical peaks to the appropriate input variable for the
numerical model. To address this challenge, the experimental frequencies were sifted
through the numerical prediction to gauge the probable mode shape. Figure 12 shows
the 135,828 numerical values of the frequency of vibration relative to modes B, D, E,
and F overlapped by the six empirical frequencies found in the frequency domain of the
accelerometers data. The figure demonstrates that modes E and F are mostly overlapping
and span over a relatively small range of frequencies. Conversely, modes B and D are
mostly separated with mode D spanning from 100 to over 450 Hz. The figure also shows
that the experimental frequency around ~220 Hz does not belong to almost any specific
mode shape.

To emphasize the challenge, Figure 13 shows the frequencies of modes B, D, E, and F
against themselves. The overlap between mode E and F, as well as with parts of mode D,
is visible.

4.3. ML Regression Model Generation

The prediction of the longitudinal stress and of the ratio β constitute supervised learn-
ing tasks. Several regression machine learning methods were considered using the Python
MLJAR library and Matlab’s machine learning toolbox. The methods were Extreme Gradi-
ent Boosting (XGBoost), CatBoost, Ensemble, Artificial Neural Networks (ANN), Linear
Regression, Support Vector Machines (SVM), Decision Trees, and Gaussian Process Regres-
sion (GPR). Results of each model were compared amongst each other, and the best was
chosen. For the sake of completeness, some of these models are briefly summarized here.
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Figure 12. Day 1 Accelerometer Data vs. FEA. Note that 6 frequencies were extracted which are
represented by the horizontal lines. The step-wise trend is caused by shift in boundary conditions.
This is particularly noticeable on Mode D and parts of Mode B.

Figure 13. RFEA Mode Shape Distributions. Note the overlap between D, E, and F.

Linear Regression is a traditional approach with low flexibility and easy interpretation
when compared to other methods. It also has an advantage of being much easier to train
compared to some higher flexibility models but can come at a cost of being highly biased if
the function to be mapped is nonlinear. Linear regression is expressed as:

Y = β0 + β1X1 + . . . + βnXn + ε (3)

where Y is the response, Xi is the i-th predictor, β is an association variable between the
response and the i-th predictor, and ε is an error term.



Sensors 2022, 22, 7447 17 of 28

GPRs extend upon Equation (3) by taking on a non-parametric probabilistic approach
to regression. With Equation (3) in a simplified form, Y = f (X) + ε, the Gaussian regression
models the function f (X) as a Gaussian process. The function f (X) is jointly distributed with
a mean function, m(X), as well as a covariance function, k (X, X’). Each of these functions is
defined below:

m(X) = E[ f (X)] (4)

k
(
X, X′

)
= E

[
( f (X)−m(X))

(
f
(
X′
)
−m

(
X′
))]

(5)

These make up the Gaussian process described by f (X)~GP(m(X), k (X, X’)) where
m(X) is often zero. A variety of covariance functions or kernels as they are often referenced
as are available to try. This article explores the squared exponential, Matern 5/2, exponential,
and rational quadratic kernels, which are defined in Equations (6)–(9).
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Here, σf is the signal standard deviation, σl is a characteristic length parameter for
how far X’s can be from their target Y to become uncorrelated, and c is a scale-parameter as
well that can only be positive. Although four common basis functions are available to use,
the constant basis is only utilized in this study. Marginal log likelihood is maximized in
order to estimate the parameters of the GPR.

Decision trees can be used for both classification and regression tasks. Trees act like
yes/no questions and are also very easily interpretable compared to other methods such as
neural networks. The basic breakdown of a decision tree for regression can be summarized
by splitting the predictor space into N non-overlapping regions and making the same
prediction for any observation that falls into that region. The prediction is given by the
mean of the training observations provided in the split region. One drawback of this
method is the tendency to easily overfit, which can be alleviated via pruning methods [37].

ANNs take on some of the most complex tasks thanks to their extreme flexibility. Such
tasks include object tracking and recognition, natural language processing, and regres-
sion [38–42]. They are loosely based on the human brain and learn via the backpropagation
algorithm, allowing for each individual neuron’s error to propagate through the structure.
We utilize a neural network architecture for our mode shape classifier.

SVMs are often used for classification tasks but can be applied to regression as well.
They attempt to find the ideal hyperplane in an N-dimensional space of features that
maximizes the distance between observations. This is based on the maximal marginal
classifier which works in cases where the separating plane exists. SVMs have been useful
in areas such as damage assessment on harbor caissons [43] as well as health-related
regression tasks for predicting the severity of Parkinson’s disease dementia [44].

Ensemble learning strives to make better predictions from a diverse set of models.
There are several simple as well as more advanced techniques that exist to accomplish this.
From the less complicated side, averaging and max voting can be used on the outputs of
several trained models to infer an overall prediction. These two techniques do not produce
a new model whereas the more advanced techniques of ensemble learning such as stacking
and boosting do. Stacking utilizes the predictions of multiple models as it’s features to
create a new model used to predict. Boosting on the other hand, is a sequential technique
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that uses every succeeding model to correct the errors from the previous model. Once
satisfied with the number of correcting models, a weighted mean of all models is taken to
develop a strong learner.

4.4. Model Evaluation Metrics

With the aim of predicting the field test data via the finite element model, the RFEA
was trained via 5-fold cross validation and tested on Days 1 and 2. D1 and D12 also
used 5-fold cross validation with D1 testing on D2, and D12 on a 75/25 train/test split.
Five random shuffled splits were generated and the respective results of those splits was
averaged to obtain the best overall model for D12. K-Fold cross validation was applied
because it has the advantage of effectively evaluating predictive models by dividing up the
dataset into k partitions and producing different “folds” of training and validation data
each time. This ensures every observation has a chance of appearing in the training and
validation sets.

Four statistics were calculated to determine the best model: Mean Squared Error (MSE),
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R2. Mean Absolute
Error (MAE), Mean Squared Error (MSE), R2, and Root Mean Square Error (RMSE). They
are defined as:

MSE =
1
n ∑n

i=1

(
Yi − Ŷi

)2 (10)

MAE =
1
n

n

∑
i=1

∣∣Yi − Ŷi
∣∣ (11)

RMSE =
2

√
∑n

i=1
(
Yi − Ŷi

)
n

(12)

R2 = 1− RSS
TSS

(13)

Here, n represents the number of samples, Yi is the target, and Ŷi is the predicted
value of the model. In Equation (13), RSS represents the sum of squared residuals and
TSS the total sum of squares. MAE was considered because it measures the mean absolute
residual error between the predicted value and target. This does not penalize outliers like
MSE does, which calculates the mean square residual error between the predicted value
and target. R2 represents how close the data is to the fitted line acting as a measure of
the variation that is covered by the model. RMSE is another measure of residual error for
evaluating alongside MAE, MSE, and R2 to produce a well-trained model. All of these
metrics are best minimized with the exception of R2 which a score of 1 or −1 is indicative
of a perfect correlation. The mean absolute error in degree Celsius is also provided to give
a clear understanding of the error with respect to temperature.

5. Machine Learning: Training Results

Model performance from training is an essential aspect to gauging the ability of the
model to predict new unseen data. As mentioned earlier, three datasets were used to
estimate the RNT. Two datasets used experimental data collected in the field for training
while the other is synthetically driven by modelling.

5.1. Mode Shape Classifier

The mode shape classifier was built using a custom neural network designed for one
input (frequency) using the existing RFEA dataset. The output is the probability of said fre-
quency being one of four classes: mode B, D, E, and F. This architecture, seen in Figure 14a,
contained three hidden fully connected layers with 150, 100, and 50 nodes, respectively, as
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well as batch normalization for regularization and ReLu activations after each hidden layer.
The last layer contained four nodes for each class and used the softmax function

σ
(→

z
)

i
=

ezi

∑N
j=1 ezj

, (14)

to generate a probability.

Figure 14. Mode Shape Classifier: (a) ANN Architecture; (b) Confusion Matrix.

The ANN was 83.1% accurate with its most misclassifications between modes E and F,
as seen in the confusion matrix of Figure 14b. This is expected given the overlap discussed
in Figures 12 and 13. Nevertheless, this represents an easier methodology to estimating the
frequency mode shapes as opposed to sifting through the ANSYS data given limitations in
the number of sensors available.

5.2. RFEA Model

The python machine learning library Mljar [45] was used to train numerous mod-
els using four modes as input: B, D, E and F. Mljar is an automated machine learning
framework for tabular data capable of algorithm selection, feature engineering, model train-
ing/optimization, explanation, and evaluation. Given the extensive features it provides
in its framework, models were able to be exhaustively trained and analyzed to achieve
a well-fit model with respect to the numerous conditions present in the RFEA dataset.
Algorithms used were Linear Regression, Random Forest, LightGBM, XGBoost, CatBoost,
ANN, and Ensembling. Random search is utilized to optimize their hyperparameters. As
said earlier, modes B and D are stress-independent but contribute information regarding
the boundary conditions which are necessary to narrow down the search region for stress
prediction. As the RFEA dataset contains several boundary conditions, the model accounts
for those conditions in the prediction.

Modes E and F are strongly dependent on the axial force. Forty-three models in total
were trained through the training process using Mljar’s golden features option for feature
generation and five-fold cross validation. The best model is shown in Figure 15 alongside
its metrics in Table 5. The model is an ensemble that contains five gradient boosted tree
models using CatBoost and LightGBM found via the greedy search algorithm. A simple
weighted average is used to aggregate their predictions.
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Figure 15. Testing the machine learning using data generated using finite element analysis. Actual
stress vs. predicted stress.

Table 5. RFEA Validation Results.

MODEL RMSE R2 MSE MAE ERROR (◦C)

RFEA_Ensemble 0.654887 0.998927 0.428877 0.472164 0.19

5.3. D1 Model

The set of data from the first day of testing contained the frequency peaks from 40
hammer impacts. These frequencies varied minimally under constant temperature and
can thus be utilized to train with single points at varying rail temperatures. Two sets of
frequency inputs were created: F1 through F6, and F5 with F6. These were chosen to
investigate the impact of using all available significant features (peaks) as well as using the
peaks that are most linked with stress (higher ones). In all, 48 models were tested through
five-fold cross validation and evaluated using the four metrics discussed in Section 4.4. The
best model for each of these cases is summarized in Table 6. Aside from Matlab’s numerical
optimization for training, hyperparameters were not optimized in these models. Parameter
exploration went as far as the four GPR kernels discussed in Section 4.3 and width/depth
for ANN.

Table 6. D1 Validation Results for F1-F6 and F5, F6 Model Inputs.

MODEL RMSE R2 MSE MAE ERROR (◦C)

D1_GPR_F1_F6 0.016648 0.97 0.00027714 0.009082 0.27246
D1_SVM_F5_F6 0.012384 0.98 0.00015336 0.0070587 0.211761

Both the Gaussian Process Regression and SVM were extremely accurate at predicting
the scaling factor β. To estimate the error, a β of 1 (zero stress conditions) was used at a rail
temperature of 30 ◦C. Both produced errors under 0.3 ◦C for the validation sets. Notably,
the model with only two frequency inputs (F5 and F6) outperforms the results of the model
with six frequency inputs. This is attributed to noise introduced by the other frequencies
as they contain significantly more variance than F5 and F6, and to the fact that F1 and F2
are stress-independent. The predicted validation data can be seen mapped against the true
values for both models in Figure 16.



Sensors 2022, 22, 7447 21 of 28

Figure 16. D1 Model Validation Predicted Vs Actual: (a) D1_SVM_F5_F6; (b) D1_GPR_F1_F6.

5.4. D12 Model

This model focuses on catching any potential data drift from Day 1 to Day 2 to
frequency peaks. Although frequencies were nearly identical from Days 1 to 2, there was a
minor number of points that were unseen on Day 1 compared to Day 2. An example of this
can be seen when comparing frequency 6 (~550Hz) in Day 1 and Day 2 in Figure 17. As
shown, frequencies below 545.5 Hz were not observed in Day 2 data whereas Day 1 has no
data above 550 Hz.

Figure 17. Day 1 vs. Day 2 Frequency 6.

As done for the data from the first day of test, the same two separate combinations of
inputs were trained. Optimization and parameter exploration also remained the same. The
results of the best models are summarized in Table 7.
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Table 7. D12 Validation Results for F1–F6 and F5, F6 Model Inputs.

MODEL RMSE R2 MSE MAE ERROR (◦C)

D12_GPR_F1_F6 0.016101 0.972 0.00026095 0.011646 0.355
D12_GPR_F5_F6 0.016640 0.972 0.00027934 0.009949 0.298

The two-frequency combination of F5 and F6 provided the best results with respect
to error and MAE to predict the scaling factor β. There is a 28.23% and 40.94% increase
in error for each model, respectively, when considering the whole set of data from Days 1
and 2. This is expected as the model maps a larger distribution of data with respect to D1.
Note that the first model using all six frequencies still uses a GPR Model whereas a GPR
achieved the best generalized performance for the F5/F6 combination. Both models achieve
nearly identical performance overall demonstrating a need for only two frequencies. The
Validation Predicted vs. Actual plot for these two models can be seen in Figure 18.

Figure 18. D12 Model Validation Predicted Vs Actual: (a) D12_ GPR_F1_F6; (b) D12_ GPR_F5_F6.

6. Machine Learning: Testing Results

The model with the RFEA dataset relied on the correct mode shape labelling to predict
on empirical frequencies found in D12. In order to realize this, mode shape classification
is done.

Figure 19 shows the probability to associate a given frequency, and therefore a given
label, to a given mode. The plots show that F3, F4, and F6 (350 Hz, 490 Hz, 550 Hz) can
confidently be classified to Modes D and F. Uncertainty, however, does exist with F1, F2,
and F5 (150 Hz, 220 Hz, 500 Hz) with probabilities residing between 40–60%. This is
not surprising given the overlap demonstrated between modes in Figure 13. Due to the
confidence in modes D and F, F3 (350 Hz) is classified as Mode D and F6 (550 Hz) as Mode
F. Given these classifications into consideration, Mode B and E are classified as F2 and F5
(220 Hz and 500 Hz), respectively. Note that the B and E classifications can be made due to
natural frequencies belonging to one unique type of mode in the RFEA dataset.
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Figure 19. Mode-shape probability predictions of the accelerometer frequencies on Day 1 for peaks
around (a)—150 Hz, (b)—220 Hz, (c)—350Hz, (d)—490 Hz, (e)—500 Hz, and (f)—550 Hz.

6.1. Numerical Dataset

The ANSYS data were used to predict the neutral temperature based on the labelling
of the experimental frequencies. The results are presented in Figure 20 where the ML pre-
dicted temperatures are overlapped to the estimation of the neutral temperature provided
independently by TTC. A total of 93 test points are presented. The predictions are based on
the following associations: F2→mode B, F3→mode D, F5→Mode E, F6→mode F.

Figure 20. ML predictions based on the database obtained with the finite element analysis. The value
of the predicted neutral temperature is overlapped to the independent estimation provided by TTC.
(a) Results relative to Day 1; (b) Results relative to Day 2.
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Several considerations can be made from Figure 20. First, the figure shows that the
algorithm performs well when the rail was in compression but is heavily biased by the
temperature of the rail otherwise. The bias originates from a difference in distributions
between the RFEA training dataset and the empirical test set, D12. Therefore, for some data
points, the model predicts nearly zero stress values. As a result, the application of Equation
(2) which is correct only under the assumption of the column-beam theory introduces the
observed bias in Figure 20. Nevertheless, this model achieves a MAE of 2.42 ◦C and 1.91 ◦C
for day 1 and day 2, respectively, demonstrating promise in utilizing an FEA-trained ML
method to predict RNT from vibrational frequencies. Notably, the RNT measured in day
1 is a few degrees Celsius higher than in day 2, consistent with the fact that the rail was
overall warmer during the first day of testing. Finally, Figure 20 confirms that the RNT is a
function of the rail temperature, which has daily fluctuations.

6.2. D1 Results

The numerical database describes a wide range of field scenarios including boundary
conditions. However, there are two main limitations. First, the number of case scenarios
may be too large to allow an accurate estimation of the correct target when there is a limited
number of available input features. The second drawback is that the dataset does not
contain any real data and therefore it may still be an approximate account of the real rail.

Leveraging upon the above considerations, the same MLA presented earlier was
trained and tested with only experimental data. In this section, the use of values from day
1 to predict the neutral temperature on day 2 is presented. The performance metrics of D1
for both of its respective models is summarized in Table 8. D1 shows a significant ability
to generalize to Day 2 and does so at an average error of only 0.89 ◦C and 0.55 ◦C. It also
demonstrated much less variability in its predictions compared to the RFEA when provided
slightly varying frequency inputs. This is evident in Figure 21, where the predicted RNT is
plotted alongside the actual RNT.

Table 8. D1 performance metrics on empirical data.

MODEL RMSE R2 MSE MAE ERROR (◦C)

D1_GPR_F1_F6 0.03641 0.86 0.001326 0.02978 0.893
D1_SVM_F5_F6 0.02303 0.94 0.0005304 0.01826 0.548

Figure 21. Testing the D1 on empirical data D2. RNT vs. Temperature for: (a) F1 through F6 Input;
(b) F5 and F6 Input.
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6.3. D12 Results

Section 6.2 showed that the experimental values to train the ML were effective at
predicting the RNT. However, D1 still suffers from not being completely representative of
the data seen on Day 2. Although most frequencies are accurately covered by the training
data on D1, it can be further improved by training on a more complete sample drawn
partially from Day 2 as well. This is verified in Table 9 where the average error using five
frequencies and two frequencies goes as low as 0.21 ◦C and 0.16 ◦C.

Table 9. D12 mean performance metrics on empirical data across five splits.

MODEL RMSE R2 MSE MAE ERROR (◦C)

D12_GPR_F1_F6 0.0095174 0.986 9.20152 × 10−5 0.00728306 0.218
D12_GPR_F5_F6 0.00741366 0.99 5.50406 × 10−5 0.00548996 0.165

This is a nearly 4.2-fold and 3.4-fold improvement in error compared to D1, and a
~12-fold improvement over RFEA for Day 2. Such a significant improvement over the
RFEA results can be attributed to a better representation of the actual rail conditions by
empirical data compared to finite element simulation. In other words, the distributions
of the experimental data and simulated data do not align perfectly. Figure 22 compares
the predicted neutral temperature to the estimated neutral temperature provided by TTCI.
Because the values of the RNT differ between day 1 and day 2, this plot was preferred over
the graphs like Figure 21.

Figure 22. Testing the D12 on empirical data. Predicted RNT vs. Actual RNT for: (a) F1 through F6
Input; (b) F5 and F6 Input.

7. Conclusions

This article expands upon the work presented at the recent European Workshop on
Structural Health Monitoring [46] and proposes a vibration-based approach supported by
artificial intelligence and finite element modeling to provide non-invasive reliable estimates
of the neutral temperature of continuous welded rails. This approach consists of monitoring
rail vibrations and the extraction of the associated modal characteristics to evaluate the
axial stress using a machine learning algorithm trained with synthetic finite element data.
The feasibility of this technique was proven in the field at a testing facility in Colorado.

An additional strategy was also developed for cases in which numerical data are not
available while benchmark experimental data collected from the field become available.

The results demonstrated that both strategies with numerical data or experimental
benchmark data are quite promising especially the one based on field data only. An
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error of 0.54 ◦C and 0.10 ◦C with respect to the true neutral temperature measured by an
independent party was achieved using extremely limited data and two frequencies inputs
compared to the finite element case. The results proved that the data collected during a day
worth of testing, were sufficient to estimate the neutral temperature during the second day.
The strategy based on finite element data showed promise in its independence from real
data. However, it has been also shown that such approach may be negatively biased by the
applications of the equations related with the ideal beam-column theory (see Equation (2))
and by the approximation in simplification of the boundary conditions.

Future investigations shall take two directions. The first direction shall improve the
model of the rail by replacing the six single springs at the end of the rail cell with more
distributed cells. The second direction shall consist of collecting more field data to validate
the accurate estimations found in this article by feeding the artificial intelligence with field
data only.
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