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Abstract: Recent studies matching eye gaze patterns with those of others contain research that is
heavily reliant on string editing methods borrowed from early work in bioinformatics. Previous
studies have shown string editing methods to be susceptible to false negative results when matching
mutated genes or unordered regions of interest in scanpaths. Even as new methods have emerged for
matching amino acids using novel combinatorial techniques, scanpath matching is still limited by a
traditional collinear approach. This approach reduces the ability to discriminate between free viewing
scanpaths of two people looking at the same stimulus due to the heavy weight placed on linearity.
To overcome this limitation, we here introduce a new method called SoftMatch to compare pairs of
scanpaths. SoftMatch diverges from traditional scanpath matching in two different ways: firstly, by
preserving locality using fractal curves to reduce dimensionality from 2D Cartesian (x,y) coordinates
into 1D (h) Hilbert distances, and secondly by taking a combinatorial approach to fixation matching
using discrete Fréchet distance measurements between segments of scanpath fixation sequences.
These matching “sequences of fixations over time” are a loose acronym for SoftMatch. Results indicate
high degrees of statistical and substantive significance when scoring matches between scanpaths
made during free-form viewing of unfamiliar stimuli. Applications of this method can be used to
better understand bottom up perceptual processes extending to scanpath outlier detection, expertise
analysis, pathological screening, and salience prediction.

Keywords: visual scanpath; Hilbert curve; discrete Fréchet distance; computational neuroscience;
eye-tracking; fractal analysis

1. Introduction

The maturation of eye tracking methods and bioinformatics over the last thirty years
has led to novel methods used to sequence amino acids [1] for the study of genetics;
and tracking eye movements for the study of human cognitive, neural, and perceptual
processes [2]. The cross-pollination of DNA sequence matching algorithms with visual
scanpaths, consisting of points where “objects of interest” are drawn to the fovea, has led
to ScanMatch [3], a robust method for comparing visual scanpaths, and MultiMatch [4],
a successor which uses the same bioinformatics algorithm but differs by matching scanpaths
over many dimensions using geometric vectors. Both of these methods have been used and
compared [5] in different applications, including detecting pathologies and characterising
expertise and behaviour through gaze analysis. Gaze similarity was shown in experiments
separating expert from novice participants while viewing brain MRIs [6], those separating
healthy patients from those affected by autism [7], and during basic number search tasks [8].

A considerable amount of research within the last two years used ScanMatch and its
vector-based implementation called MultiMatch to perform scanpath comparison [9–12],
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and both methods are featured in a 2021 paper on the state-of-the-art in human scanpath
prediction by Kümmerer and Bethge [13]. Even though the research using both methods is
varied and diverse, it relies heavily on a string editing matching algorithm developed over
fifty years ago by Needleman and Wunsch [14]. Indeed, Needleman–Wunsch generated
a lot of interest among researchers over a decade ago, including work done by Day [15]
examining the validity of the Needleman–Wunsch algorithm in identifying and tracing the
inner operations of cognition. His method, including those of ScanMatch and MultiMatch,
involves two principal interdependent parts: a process-tracing step, followed by an analysis
technique. Inevitably, fixation points need to be translated into 1D discrete representations.
Translating areas of a stimulus in order to isolate ROIs into these representations has the
added benefit of quantisation. However, this exposes a limitation. The simultaneous
quantisation and isolation of these areas into string representations are done either through
equally spaced boxed grids over a stimulus, or through unequally sized boundaries around
specific areas of interest (AOI) to specify the “domains” of interest. Domains can be used
when a small number of specific AOIs are being investigated, e.g., participants in a study
with several buttons to choose from in a computer interface. Both the grid and domain
dissection into AOIs incorrectly quantises points that are close to a boundary and also
prevents locality preservation during string conversion.

This paper aims to build upon these bioinformatics-based methods with a new method-
ology called “SoftMatch”. The results show that in tasks where matching a gaze with a
stimulus is required, our method performs better than others, even when the stimulus is
both unfamiliar and highly complex, requiring the participant to use entry-level senses to
process unintegrated sensory data, i.e., “bottom up processing”. Additionally, we have cho-
sen to capture eye gaze data in a free viewing environment where the participant is asked
to simply view the stimulus. This type of free viewing experiment has been found [16–18]
to be a robust proxy for high cognitive function. This can be valuable in both measuring
expertise and uncovering the underlying structure of perception. This paper hypothesises
that string editing methods used to compare visual gaze patterns are best used in task
based experiments, but are limited in a free viewing approach, where a combinatorial
method to segment and measure sequences is more effective. This is accomplished by both
implementing fractal curves, for increased quantisation performance, and incorporating a
combinatorial discrete Fréchet distance calculation algorithm, which is sensitive to nuances
between participants viewing a stimulus in no defined order. These stimuli could include
any image, including medical images (e.g., MRIs), photographs, or abstract art. In this
study, we choose to use creative paintings with participants instructed to view them freely.
However, we do not make the assumption that viewers will examine the paintings in
a similarly systematic way. Rather, our experiment aimed to define a similarity metric
when the scanpaths compared do appear to be very different. We propose doing this by
embracing a combinatorial method, departing from a string editing approach.

1.1. String Editing Methods

An introductory summary of the Levenshtein [19] distance metric provides context for
the evolution of state-of-the-art scanpath and genome matching methods used today. It was
the first string editing method used to match an ordered sequence to another. The distance
represents a cost metric from a minimum execution of deletion, substitution, or insertion of
characters within a string to make it match another.

However, a major shortcoming in using Levenshtein distance for gaze matching is in
its inflexibility with both locality and time. Its dependence on fixed regions of interest (ROI)
prevents granular discrimination between close and far points, and it does not account
for differences in gaze duration. This was solved in 1970 with the introduction of the
Needleman and Wunsch [14] sequence alignment algorithm. Similarly to Levenshtein,
ScanMatch’s Needleman–Wunsch implementation uses string representations spanning an
ROI grid over a stimulus. However, unlike Levenshtein, this method is able to find a best
fit between two long strings by both allowing for gaps and also applying varying penalties
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when calculating substitutions during alignment. It does this by first creating a substitution
matrix of all possible string combination scores; then a penalty is determined for gaps in the
string; and finally, a score is added up, as an optimal path is calculated from the top left of
the substitution matrix to the outermost column. Additionally, duration is implemented by
repeating strings in a sequence proportional to others it surrounds. MultiMatch builds upon
ScanMatch’s implementation of Needleman–Wunsch by examining multiple dimensions
of a scanpath independently. While ScanMatch uses strings to represent gridded ROIs
over the stimulus, MultiMatch uses strings to represent various quantised attributes of a
participant’s gaze, such as its length, duration, and change in direction, to produce five
different dimensions:

1. Shape, used to measure the similarity in scanpath shape by producing the differences
in aligned saccades as a vector.

2. Length, used to measure the similarity in saccadic amplitude through the difference
in saccade vector endpoints.

3. Direction, used to measure the distance between saccades using their angles.
4. Position, used to measure the Euclidean distance between aligned fixations.
5. Duration, used to measure how long a fixation lingers between aligned fixations.

However, MultiMatch’s parsing and separation features can dilute statistical signifi-
cance in highly complex and unfamiliar stimuli, as seen in this research’s results comparing
gaze data from the paintings Cohen’s Blue Spot and Pollock’s Convergence, as seen in
Figure 1. Furthermore, the quantisation used to isolate regions of interest into boxed grids
over a stimulus in both methods prevents locality preservation during string conversion.
These issues are described by Anderson et al. [5] as being “inherent in any measure using
regions of interest or grids”. A review of human gaze will aid us in better understanding
why Needleman–Wunsch algorithms struggle with such matches.

(a) Jackson Pollock, Convergence (1952) (b) Bernard Cohen, Blue Spot (1966)

(c) William Turner, The Slave Ship (1840) (d) Jackson Pollock, Pasiphae (1943)

(e) Jackson Pollock, Blue Poles (1952) (f) Vincent van Gogh, Starry Night (1889)

Figure 1. Artworks possessing various levels of abstraction and extremes in geometric complexity—
e.g., Pollock’s paintings, being complex, and Cohen’s, being comparatively simple.
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1.2. Human Gaze Physiology

Observation at its most basic level is the input of a visual scene as a whole, dissemi-
nated into details, with a re-assemblage of those details to form a combinatorial sensory
percept [20]. The top-down neural decomposition of a visual scene coupled with the
bottom-up building of details to form percepts in the brain is where combinatorial complex-
ity exponentially increases. Assembling a synthetic model from this biological framework
will give rise to rapid increases in dimensionality, causing an increase in the volume of
space in the data. This large volume of space results in data sparsity, diluting the sta-
tistical significance within datasets. Having sparse data creates artefacts by obscuring
similarities, preventing data organisation. Bellman coined this term in 1961 as “the curse
of dimensionality” when considering problems in dynamic programming [21] and is es-
pecially debilitating in the application of machine learning within big datasets. For this
reason, a handful of gaze modelling trends have emerged since Noton and Stark [22] first
demonstrated that scanpaths may be replicated by the same viewer. This research opened
a path for a large number of papers to tackle the challenge of clustering and measuring
scanpaths [10,23,24].

In a 2020 analysis by Fahimi and Bruce [10], ScanMatch, MultiMatch, and other meth-
ods were compared in order to measure their discriminative power. The most contemporary
method cited is by Anderson et al. [25]. In this research, recurrence quantification analysis
(RQA), which is typically used to describe highly complex dynamic systems, is used to
compare gaze patterns between participants cooperating in a study. Shortcomings in this
study point to large differences between natural and gaze-contingent viewing, making
accurate comparisons dependent on experimental parameters and participant behaviour.
However, the inclusion of anisotropic visual behaviours in the returned results can provide
a wealth of information about how gaze is affected by a stimulus, which string editing
approaches do not provide. Recent work by Kumar et al. [23] attempts to address other
shortcomings in string editing approaches using a weighted comparison matrix of pairwise
comparison strengths, using various methods. These included Jaccard (JD) and bounding
box (BB), longest common subsequence (LCS), Fréchet distance (FD), dynamic time warp-
ing (DTW), and edit distance (ED). All of these methods had strengths and weaknesses,
but scaling the number and length of scanpaths presented a challenge, especially due to
the lack of uniformity in results for each matrix clustering or reordering algorithm.

1.3. Saccades and Fixations in Scanpaths

A preliminary understanding of oculomotor behaviour will facilitate the interpretation
of the many types of movements captured by a high resolution eye tracking device. These
movements can include involuntary fixations, where an object of focus is kept in one’s
visual field while scanning a scene. However, ocular fixation is not completely stationary.
Involuntary physiological drift of the eye coupled with small perturbations at high fre-
quencies often accompanies fixations, making the misleading implication that fixations are
stationary [26,27]. Furthermore, the inhibition of return (IoR), which governs the frequency
of attraction to fixation points, influences how long a gaze can be maintained. This makes
drift, perturbations, and IoR critical behaviours affect the distribution of fixations during
scene exploration [28].

Traditionally, fixations are stored in data structures using a similar method to how
pixel positions are stored on a sensor array of a digital camera as (x,y) Cartesian points
over a 2D plane. The challenge of both reducing dimensionality and increasing statistical
significance for use in scanpath comparisons using string representations was achieved
by creating a grid over the stimulus and assigning a letter combination to each square,
as shown in Figure 2. Any fixation point with an (x,y) position would be reduced to a
string name, which could then be compared to others using string editing methods such
as Levenshtein or Needleman–Wunsch. For example, in Figure 2, the Cartesian points for
the illustrated scanpath would be (2, 1), (3, 3), (4, 2), (1, 4), and its string equivalent would
be BaCcDbAd. However, a major drawback to this method is both its crude quantisation
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calculation, where any point regardless of its proximity to a boundary is uniformly reduced
to its grid value, and its lack of locality preservation, where once a fixation is reduced
to its string value, the original precise position can no longer be determined. To address
these issues, this paper proposes a scanpath representation model using fractal space
filling curves.

Figure 2. A scanpath demonstrates how a theoretical collection of four fixations could be represented
over Cartesian, string, and Hilbert curve distances. All three figures represent four theoretical fixation
points over a 4 by 4 unit space. The left figure illustrates how ScanMatch and MultiMatch reduce the
2D Cartesian coordinates to Ba, Cc, Db, and Ad. The middle figure illustrates a novel method for
reducing the same Cartesian coordinates to Hilbert distances 2, 9, 13, and 6. A blue Hilbert curve
overlay demonstrates the Hilbert curve distance’s path. The right figure shows the Hilbert curve
distances to the left plotted against their temporal sequence. Start and end fixation are represented
with I and H, respectively.

1.4. Fractal Space Filling Curves

A fractal space filling curve is a theoretical line that travels through all the points in a
space, in a self-similar fashion, without crossing (shown centre in Figure 2). The range of
these curves could fill entire n-dimensional hypercubes of Euclidean space without end-
points. The continuous nature of fractal curves means it can fill a finite area as its perimeter
wraps around its shape infinitely. Structures like this could be used as frameworks in
machine learning algorithms such as k-nearest neighbour, where multidimensional points
in a hypercube clustered on a space-filling curve can define a feature space [29]. For exam-
ple, a Euclidean point converted to a 1D Hilbert curve can be graphed against time for a
clearer empirical analysis than if it were left in 2D space with an additional third temporal
dimension. Furthermore, normalisation of multidimensional data in a 1D space would lead
to increased precision as pixel resolution increases, without the need for a linear piecewise
function used to interpret grid changes used in string editing methods. This is because the
curve preserves locality well due to its homeomorphic exponential growth with the nth
approximation of the limiting curve. Thus, as it increases in size, its ratio of detail to scale
remains relatively constant. This example of the Hilbert curve’s regularity of self-similarity
is a testament of its robust ability to preserve locality during a shape’s growth or change
during variable quantisation [30]. This makes it particularly robust in applications where
2D values are reduced to 1D fractal curves plotted against a time dimension, to be both
dynamically quantised over space and uniformly windowed over time.

1.5. Recurrence Measurement with Multidimensional Data

Reduction in dimensionality can be particularly useful when comparing two dimen-
sional locations to one another. Indeed, this is critical in string editing methods where
grid substitutions can turn a sequence of 2D values into a 1D string sequence. These
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1D values can be grouped into a subset of a metric space and compared with others to
determine a distance metric. For example, the Hausdorff distance measures the maximum
distance between all closest rival points in two sets as the overall distance metric between
them. Therefore, an unordered set of 1D Hilbert distances could be the members of a set
matched to another where the closest points are iterated for maximum distance. Adding
an additional dimension for time would allow for a more detailed context and therefore,
better representation of fixation points in a scanpath during comparison using only two
dimensions: (h, t), where h = Hilbert distance and t = time.

A robust method for the measurement, prediction, and analysis of patterns in nature
can be found in the work done by Webber and Zbilut [31] describing methods for recurrence
quantification analysis (RQA). The theoretical premise behind the RQA of natural patterns
is that a direct relationship can be found connecting recurrent patterns and their underlying
dynamics. A simple example introduced by Webber and Zbilut to describe RQA used
wave heights measured by a buoy bobbing on ocean waves. In a plot of wave heights
measured against time, a demarcation is placed at one chosen height, e.g., 0.9 ft, and the
time points of all waves are measured at that height. A new plot of 0.9 ft points is made to
measure the frequency of those recurrent points in time. Incorporating other wave heights
will show the distribution of the 0.9 ft height in comparison to all other heights in a plot
measuring the comparative recurrence of those heights by their corresponding times. This
concept is applied to eye paths by Gandomkar et al. [32] in order to distinguish expert
radiologists from less experienced ones examining mammographic images. The authors
introduced RQA in order to address spatio-temporal dynamics that are absent in time-
related metrics, e.g., fixation latency, viewing times, target fixation duration, total fixations,
fixations cluster sizes, and fractal dimension [32]. Unlike these approaches, RQA considers
scanpaths of complex sequences; fixation points and their corresponding time values can
be recurrent within a scanpath. Similarly to the wave example illustrated earlier, fixation
points are quantised to a 2.5° radius of a previous fixation and are plotted using eight
metrics to evaluate their positions in space over time. Three examples of these metrics
include recurrence (REC), defined as the percentage of all fixation pair combinations
that are quantised to the same position, T2 as the difference in average time between
two non-consecutive returns, and laminarity (LAM), which is the measure of a set of
consecutive fixations repeated many times in a scanpath. Using four experienced and
four inexperienced radiologists viewing 120 mammograms, Gandomkar et al. were able
to reveal that experienced radiologists were more efficient in their deterministic, laminar,
and re-fixating eye movements.

However, unlike the Hausdorff and RQA methods, our method incorporating discrete
Fréchet distance calculations can fully exploit the additional time dimension. A common
allegory used to describe how Fréchet works is that of a man and a dog, both walking in a
single direction down their own different paths [33], where the length of the leash is the
smallest of the maximum pairwise distances necessary for the two to remain connected
as they both stop at each vertex towards the end of the path while travelling in the same
direction. For example, Figure 3 illustrates how the same points can return a small distance
metric when measured without an ordered sequence of points using Hausdorff (Figure 3,
left) versus a much longer distance metric when measured with the actual order of points
using discrete Fréchet distance (Figure 3, right). Indeed, a singular approach using aligned
and ordered items in a collinear comparison methodology would be prone to problems.
Artefacts can be produced when comparisons are weighted too heavily on conforming
to an ordered sequence, as can be encountered in bioinformatics, where DNA is prone to
mutagens, and in visual scanpaths, where anisotropic effects can influence attention.
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Figure 3. The same points expressed without a path sequence prepared for a Hausdorff distance
calculation (left) and with a path sequence for a discrete Fréchet distance calculation (right).

1.6. Problems with Assumed Collinearity

In the field of bioinformatic sequence matching, where Levenshtein and Needleman–
Wunsch are heavily used, there is some debate regarding aligned verses unaligned sequence
matching. Zielezinski et al. [1] identified five cases where alignment-based methods would
introduce problems with amino acid matching results, all of which translate to similar issues
using Needleman–Wunsch implementations in scanpath matching tools such as ScanMatch
and MultiMatch. By examining parallels in both fields, some prescient insight can be made
to mitigate similar limitations in scanpath analysis. First, both in DNA sequencing and
scanpath analysis, aligned comparison methods depend on matched collinearity, i.e., the
homologous sequence of conserved linear visual fixations (in neuroscience) or amino acids
arrangements (in bioinformatics). Indeed, this assumption is demonstrated in a ScanMatch
tutorial where the matched scanpath data is composed of participants following a numerical
visual track task [34]. In reality, both scanpaths and genomes do not follow such uniform
arrangements; scanpaths are combinatorial in nature, and genomes possess a high degree
of variation due to increased rates of mutation [1]. Second, random sequences can mix
with remote homologs when the identity, or in the case of ScanMatch, the substitution
matrix, contains too few values. This can be further exacerbated when gaps are allowed [1].
Third, the memory requirements for creating all possible sequences of either a genome
or scanpath in a substitution matrix scales exponentially with length. Fourth, as just
mentioned, the rapid scaling of long sequence alignments quickly approaches an NP-hard
state where solving a match quickly becomes intractable. This results in shortcuts to
optimise matches that may introduce artefacts [35]. An example of the introduction of such
risks could be demonstrated in a recent attempt at using crowd-sourcing for sequencing
DNA with the application Phylo [36]. Finally, the parameters and matrices used to corral
both amino acids and scanpaths into a tenuous match offer a scoring system that is not
shared between alternate applications or methods. Even within its own method, slight
variations in parameters can provide substantially differing alignments. As these sequence
alignment methods rely on a priori mappings of amino acid and fixation sequences, they
both betray the combinatorial structure of scanpaths and also demand empirical fiddling
with arbitrary parameters.

A solution to all these issues would be to separate sections of a sequence into equally
sized portions and compare them with other portions in an aligned manner, allowing for
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the combinatorial nature of the data to facilitate matches. This research proposes that
scanpath sequences of fixations over time (loose acronym SOFT) can be used to match
with others to move beyond the rigid definition of collinear aligned sequence matching
and move towards a more physiologically representative combinatorial model. Put more
simply, participants are not penalised for viewing regions of interest at different times
within the scanpath during comparison.

2. Methods

Figure 1 reveals the six stimuli used in this experiment: Jackson Pollock’s Pasiphae
(1943), Convergence (1952), and Blue Poles (1952) capture high degrees of abstract complex-
ity. This is polarised by Bernard Cohen’s Blue Spot (1966) painting, which may match
Convergence in emotional impact, but differs by displaying a lower degree of geometric
complexity. Vincent van Gogh’s familiar Starry Night (1889) painting provides a vibrant
contrast to William Turner’s The Slave Ship (1840). Participants were not guided to view
anything in particular and had no known art training or critical instruction. This paper
proposes a similar approach for scanpath comparison as other binary comparison methods
such as ScanMatch and MultiMatch, where the 2D scanpath is reduced in dimensionality
before implementing their respective matching methods. However, our proposed method
uses Hilbert distances instead of boxed grids for dimension reduction. As a result of not
using grids, quantisation is done in the comparison phase in lieu of integration into the
preprocessing box-gridding phase, as is done in other methods, e.g., ScanMatch and Multi-
Match. This will both preserve locality and decouple quantisation from the dimensionality
reduction process.

The benefits of using fractal curves can be understood when comparing it to string
editing quantisation, which uses boxes to designate regions as letters. The gridded boxes
are used as both a quantisation method to snap all fixations within a box to a single value,
and also as a way to designate 2D coordinates as a 1D string. Once a coordinate is assigned
to a box with a designated letter, it is unable to be converted back to a 2D coordinate
without information loss due to the quantisation during dimensionality reduction to a
string value. Fractal curves mitigate these issues because the curves pass through all
points in a space, which means a 2D point can be converted to a 1D point, and back,
without loss. This also means a point on a fractal curve can be quantised independently of
its dimensionality reduction, unlike box methods, allowing for more flexibility when trying
to find optimum values, which could be exploited using future machine-learning-based
optimisation methods.

However, Hilbert distances alone will suffer the same disadvantages as gridded string
substitutions if time values are ignored. By adding time values as a dimension, a 2D
Hilbert versus time axis can be constructed. This opens up a large number of distance
comparison metrics between two sets. This paper diverges from other scanpath comparison
methods by comparing combinatorial sequences of fixations over time, diminishing the
significance of the order by which people examine a stimulus. Instead of a long, single,
sequential list of fixations making up the baseline for comparison, the scanpath will be
cut into short sequences of fixations, in equal time window lengths, which we call tau
(τ). Figure 4 illustrates the preprocessing stage where Cartesian fixations are appended
with their Hilbert distances before Step 1 segments a scanpath into equally sized time
window bins using parameter τ. Step 2 measures the discrete Frechet distance between
two segments, and if it is <δ, adds +1 to the cumulative score. Step 3 compares all scores
in a group; lower scores indicate less similarity.
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Figure 4. The sequences of fixations over time (SOFT)-Match scanpath comparison framework: The
top block represents the preprocessing phase. The left square illustrates the conversion of the 2D pink
scanpath data overlaid on a blue fractal curve path (left), with the arrow pointing to its converted
data structure plotted as a pink line using x axis, time, and y axis, fractal curve position. The right
square in the top block represents an outlier identification method developed by Newport et al. [37]
where scanpaths exhibiting significant differences in geometric complexity are flagged for exclusion.
The bottom block represents the SoftMatch method. The left square illustrates the time bin parameter
τ which is used in Step 1 to establish a consistent binning size for all SoftMatch duration segments.
Step 2 is where SoftMatch segment vectors, shown here as two distinct scanpath segments in blue
and orange, are scored +1 if their distance is <δ. Finally, Step 3 is where a clustered heatmap
reveals score comparisons between all participants. Each axis contains a box representing each of the
53 participants viewing stimuli A (positions 1 through 53) and stimuli B (positions 54 through 106).
The overall 106 × 106 gridded, clustered heatmap illustrates reflective match scores in the group.

2.1. Stimuli and Participants

Experiments were conducted by a trained researcher and approved through The Fac-
ulty Ethics Subcommittees at Macquarie University in accordance with the Australian
National Statement on Ethical Conduct in Human Research. The 53 healthy participants,
labelled P01 through to P53, included medical professionals who were enrolled in a broader
eye-tracking machine vision study in which medical and non-medical images (e.g., paint-
ings in this study) were used. Exposure to stimulus was preceded and followed by exposure
to noise. Participants were asked to examine multiple images, including the digital repro-
ductions of six artworks illustrated in Figure 1. Their gaze was captured by the eye-tracker
EyeLink® 1000 Plus (SR Research, Ottawa, ON, Canada) operating at 1000 Hz at 0.05° root-
mean square (RMS) and 0.25° saccade resolution. Both eyes were captured during tracking.
However, only one eye was used for computation to maximise tracking accuracy. This
decision was partly made due to work by Hooge et al. [38] in their paper “Gaze tracking
accuracy in humans: One eye is sometimes better than two”, which demonstrated that one
eye measurement can reduce systematic error in computed measurements. Additionally,
no part of this experiment was reliant on binocular dynamics, further strengthening the
case for a single eye measurement. The raw samples used directly from of the eye tracker
can be found in the accompanying data labelled “Preprocessed Data”. The head mounting
was free to move; fixations from both eyes were saved into a matrix consisting of the
trial number, participant ID, eye fixations, saccades, blinks, and a timestamp for each
captured event. To reduce unwanted data, post-processing was used to reduce the data to
four columns representing: right eye (x, y) coordinates, its position converted to a Hilbert
distance, and a duration for each fixation.

2.2. Fixation Position Using Hilbert Curves

This paper aims to provide an alternative to 2D quantised gridding by using a space-
filling one dimensional fractal curve. A 2D point on a 1D fractal space-filling curve both
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reduces the complexity of a measurement by using only one dimension, and also preserves
locality when it is converted back to 2D space. This research proposes that a 1D coordinate
representation of points in the shape of the Hilbert curve is better suited to represent a
scanpath’s position. It can perform better than string representation because quantisation
is separated from dimensionality reduction when using fractal curves. This provides the
ability for fractal curves to optimise quantisation while in 1D space.

2.3. Outlier Identification

Oddball scanpaths with valid fixation points and saccades, all within the boundary
of the stimulus, but lacking features shared by the majority, could either represent a
blunder in the data collection process or could reflect a critical yet isolated aspect of
the scanpath. Surprisingly, a formal definition of outlier scanpaths does not exist, even
as researchers computationally strive to cluster and compare entire scanpath datasets
(Burch et al. [39], Jolliffe [40]). In such cases, a judgement call must be made: Does this
scanpath represent a software glitch, an artefact of the experiment process, inattention and
distraction, or a lack of expertise? Alternatively, does the scanpath represent a valid edge
case which would greatly influence data boundaries during clustering? Indeed, robust
analysis keeps data that are unusual and significant while removing artefacts.

In research by Newport et al. [37], these ambiguities were mitigated by a more detailed
geometric complexity metric achieved via the fractal dimension. This is done firstly by
fitting the 2D scanpath into a Hilbert curve and then measuring it as a sequence of fixations
using the Higuchi fractal dimension (HFD). The outliers from HFD analysis are then com-
pared to non-matching results with scanpath matching tools (e.g., SoftMatch) to robustly
identify defective data. These results will be highlighted in a clustered heatmap, which is
a graphical representation of data frequently used in bioinformatics to illustrate clusters
in hierarchical matrices of data. In this research, these methods were used to find outliers
which could have also been present in clustered heatmaps made by SoftMatch, and was
evaluated for exclusion.

2.4. Time Binning

The purpose of data preprocessing, shown in Figure 4, is to reduce the dimensionality
of the Cartesian coordinates and a assign duration to each point in order to construct
spatio-temporal tuples in a 2D scanpath array. This array can then be used in Steps 2 and 3
in Figure 4 when assigning parameters τ and δ. This will result in each scanpath fixation
containing a matching duration value representing the amount of time the participant
has spent gazing at that specific fixation position. A SoftMatch sequence vector is an
ordered list of location and duration pairs separated in a uniform time window (τ) which
is N milliseconds in size. These vectors are all contained within the parent scanpath and
each are compared, one by one, to other scanpath collections of vectors in a combinatorial
fashion. Figure 5 illustrates how fixation points converted into Hilbert distances can be
used as a virtual axis in an imaginary Hilbert versus duration space. In this example,
the tau τ window carves up these pairs of (h, d) points into 6 s bins. If a duration contains
a remaining number of milliseconds when binned, that (h, d) position is repeated with the
remaining portion used when summing durations in the next Soft segment.

An empirical approach to picking the size of time bin τ, which is used to separate
a scanpath into many equally sized SoftMatch segment vectors, can be undertaken by
manually averaging periods of time spent by the participant between empirically defined
regions of interest in a stimulus. When estimating parameters empirically, longer time
bin windows (τ) can include too much fixation sequence detail, making matches more
difficult, whereas shorter τ values will lack enough detail to make matches statistically and
substantively significant.

Though it is outside the scope of this paper, an approach using the brain’s own rhyth-
mic attention physiology could provide a baseline value for time bin window parameter τ.
An “attention window” size of approximately 8 Hz, or 0.125 s per period, was defined by
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research performed by Nakayama and Motoyoshi [41]. This research illustrates that atten-
tion can bind visual features as single events in a chain of perception. This fits well with
the definition of τ defining a fixed window of time used to carve a scanpath into sequences
of equally sized fixation segments. Establishing a clinical trial testing the neurological
best fit for brain cycles using this method is outside the scope of this paper. However,
replacing mathematically derived best estimates with “attention windows” of 8 Hz or
0.125 s per period, similarly to the phase-locked neural oscillations described by Nakayama
and Motoyoshi, may provide a good starting point when empirically exploring parameter
values during the development of computational biological models involving attention.
Indeed, SoftMatch uses this attention window as a default value for τ = 90 ms.

Figure 5. This example illustrates how fixation points, converted from (x, y) coordinates into (h)
Hilbert distances, are binned using a tau τ window of 6 s. Each Soft segment, i.e., 6 s tau window,
consists of a set of Hilbert and duration (h, d) pairs.

2.5. Measuring Curve Similarity

As this study will often be comparing one set of points to another, each point in each
set will be compared to a point in a different set described as its adversary. As the points in
each set are compared, they will be termed adversarial pairs to describe both their status
as points in different sets, and also as points within a comparison metric. The measure
of similarity between two points can be measured as the distance d between both their x
and y coordinates. However, the measure of closeness between two point sets does not
address the sequential and temporal aspects of a scanpath. In our method, we propose
reducing a coordinate’s 2D x and y to a singular Hilbert distance h. In addition to the h
axis, we add a temporal axis t. This is to create a reduction of 3D space-time (x, y, t) into a
2D spatio-temporal axis (h, t), for each of the scanpath fixations and corresponding times.
Therefore, the distance between the Hilbert h time axis t is measured between points as
d =

√
(h2 − h1)2 + (t2 − t1)2. However, with multiple points and a variety of distances

comes additional complexity when attempting to measure similarity. This method uses
discrete Frechet distance to analyse recurrence using the closeness between two curves.
The original Fréchet distance formula measures distances from all possible points along the
curve. However, the discrete variant restricts measurement of distances to specific “discrete”
vertices along its curve, rather than any and all points. This suits our method because
fixation points represent vertices on our polygonal scanpath curves. The following equation
mathematically represents how the discrete Fréchet distance dF(A, B) performs:

Let M be a metric space.

Let curve A and B be two non-empty subsets of a metric space.

Let d denote the distance function of M.

dF(A, B) = inf
α,β

max
t∈[0,1]]

{
d
(

A(α(t)), B(β(t))
)} (1)

When making t an informal representation of time, A(α(t)) and B(β(t)) represent adver-
sarial points at any given time t. Requiring increasing α, β movement from its greatest
lower bound (i.e., through its infimum) encourages forward movement along the curve.
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The infimum over all re-parametrisations of [0, 1] describes the minimising distances be-
tween consecutive adversarial points while progressively iterating along the curve. The
final result of dF(A, B) is a singular distance metric between curves A and B. When the
distance metric for two SoftMatch segment vectors is returned, it is compared against the
quantisation parameter δ, which represents the maximum distance for a match between
two curves. The final function of the sum of all segments, or SoftMatch function, can be
described as such:

Let i, j...n represent each fixation sequence,

D the distance returned by dF.
n

∑
i,j=1

dF(Ai...n, Bj...n) =

{
1 if D < δ;
0 otherwise.

(2)

If a match is determined, the match score for the pair is incremented by one point. No
match provides no points. After all the SoftMatch segment vectors in one scanpath are
compared to all those in another, a final score is returned, determining the overall match
score value for the pair. No normalisation is done in order to introduce interpolated points
into each curve. When two “curves” are compared, they are comprised of points which
are used as the discrete vertices of a curve, as shown by the illustration on the right in
Figure 3. The way that each curve is “portioned” equally is through time windowing using
parameter τ, introduced in the next section.

2.6. Method Parameters

This method incorporates two parameters used to create a SoftMatch segment vector.
The first (τ) determines the size of the SoftMatch time bins, in order to capture greater
or fewer fixations. The second (δ) is used to quantise fixation location data, in order to
increase their statistical significance during the SoftMatch matching process.

2.6.1. Quantisation

The method outlined in this paper quantises fixation locations by implementing a
parameter, denoted as δ, representing a maximum distance two curves can be from each
other to match. Figure 6 illustrates this, where the grey circle outlines the boundary for
inclusion of the maximum discrete Fréchet distance between the fourth point and its
adversary. The tolerance threshold discriminates against unmatched curves by establishing
a maximum discrete Fréchet distance for matches. In contrast, grid-based quantisation
methods such as ScanMatch and MultiMatch require that all fixations falling inside a grid
square assigned the same location attribute when compared to each other. In Figure 6,
the two scanpaths on the left have fixation points that lie very close to each other in
Cartesian space, yet are quantised to be further apart due to their positions being close to
the grid boundary. The string edit representations of the scanpaths in Figure 6 would be
AbBdDaCc and AcBcCaDc, which are almost completely different. Alternatively, the 1D
Hilbert representations would be (17,8,41,56) and (16,9,40,52), yielding a more accurate and
quantifiable representation of their similarity. Adding a temporal dimension will create 2D
Hilbert–duration curves. SoftMatch uses a discrete Fréchet distance to measure between
adversarial curves; a maximum distance is required to return a match, indicated via a
tolerance parameter δ in Figure 6. The measurements are made originating from each
point’s spatio-temporal position. This mitigates quantisation issues in grid-based methods
such as ScanMatch and MultiMatch, where adversarial fixation points, which may fall
close to each other on a grid boundary, are separated due to their positions in different
gridded squares.
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Figure 6. String editing quantisation methods introduce artefacts where points, depicted here as pink
and orange, may be close together in Cartesian space but are far apart when quantised in the green
grid. In our method, 1D Hilbert distances are quantised within the parameter δ originating from
each point’s spatio-temporal position when calculating the discrete Fréchet distance, as illustrated
using the fourth pink point in the diagram (right). Conversely, grid methods shown (left) quantised
to enclosing green squares are prone to quantisation limitations, as shown in the diagram (left),
where pink point Cc and orange point Dc are quantised apart even though they are close together. It
should be noted that even though quantisation is reduced using this method, it is not completely
removed, as demonstrated by the distance between points Bc and Cd. Start and end fixation are
represented with I and H, respectively. String editing versus Hilbert distance are shown on an 8 × 8
grid quantised to 4 × 4.

2.6.2. Time Binning

The binning window, shown in Figure 7 and denoted as τ, is the second and final
parameter used in this method. It defines the length of time per span as a uniform number
of milliseconds per segment. The time bins must be kept at a defined length because this
method is based on the frequency of subsequences within it. As described in Section 2.3,
a good starting point for this parameter could use the brain’s rhythmic attention network,
as defined by Nakayama and Motoyoshi [41] to be 8 Hz, or 0.125 s. Future work is planned
to use an optimisation analysis method using machine learning to find the best fit for τ and
δ. Nevertheless, SoftMatch provides the flexibility to use any other type of optimisation
method in order to optimise τ and δ granularity.

Figure 7. We used equally spaced time window bins to split a scanpath consisting of Hilbert distance
and duration tuple values (h, d) into combinatorial segments. In cases where a fixation’s duration
exceeds the time bin size, its duration is truncated; the fixation and its remaining duration are copied
over to the next sequence.
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3. Statistics and Testing

The metric of success for the methods tested in this paper is the magnitude of the
difference between concordant and discordant groups of scores. One method of analysis
is not enough [42] for measuring differences between groups, since p-values are suited
only to statistical significance, whereas an effect size provides a substantive significance.
Therefore, a combination of heatmaps, Cohen’s effect size, and paired t-test p-values were
used to measure how effective SoftMatch, ScanMatch, and MultiMatch performed in binary
tests. Tests were composed of scores from concordant (A versus A and B versus B) and
discordant (A versus B) matches. Paired t-tests calculated p-values from two randomly
picked (without replacement) sets of 100 match scores from each comparison, which we
repeated 1000 times and averaged. Picks were chosen from the triangular wedges shown
in Figure 8, which included 1378 unique participant combinations. Cohen’s effect size was
computed using all 1378 unique match combinations. Heatmaps are included to provide
an empirical validation of t-test and Cohen’s effect size results.

The clustered heatmap supports t-test results measuring the p-values between identical
and discordant match results, shown in Table 1. Paired t-testing was conducted with a
noted dependency between the same participants used when scoring matches between
identical (e.g., Convergence vs. Convergence) and discordant (e.g., Convergence vs. Blue
Spot) stimuli. Each sample used in the paired t-test included random pairs of participants;
no single participant was used more than once per test, giving non-repeating pairs, as
shown in Figure 8. The participant sample’s identical match scores, e.g., Convergence vs.
Convergence and Blue Spot vs. Blue Spot, were tested against the participant sample’s
discordant match scores, e.g., Convergence vs. Blue Spot. This was done to see if one
discordant group was more significantly separable from one concordant group than another,
e.g., “Convergence versus Blue Spot” scores being more significantly separable from “Blue
Spot versus Blue Spot” than “Convergence versus Convergence”.

Figure 8. Illustration showing portions of the heatmap (solid colour) used in statistical testing. These
triangular wedges omit repeating members (white) of the heatmap; e.g., match scores for (P05, P23)
duplicate the match scores for (P23, P05), (P10, P10) are redundant, and all matches in Stimulus B
versus Stimulus A match all those in Stimulus A versus Stimulus B.
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Table 1. Total results (out of 30) for each method where p-values are over 0.05 and Cohen’s effect size
is over 0.20. Please see Appendix A for a detailed p-value matrix.

p-Value < 0.05 Cohen’s Effect Size > 0.20

SoftMatch 24 27
ScanMatch 22 25

MultiMatch Vector 5 10
MultiMatch Direction 5 10
MultiMatch Length 4 10
MultiMatch Position 5 9
MultiMatch Duration 1 8

4. Results

SoftMatch was tested using two different approaches. Firstly, artificial scanpaths were
created, and matching was scored based on comparisons to a noise-perturbed duplicates.
This experiment was adopted by Dewhurst et al. [4] to test their MultiMatch method against
ScanMatch, and Cristino et al. [3] to test their ScanMatch method against Levenshtein.
In this research, we continued developing this experimental framework by adopting the
same artificial scanpath experiment with our method against MultiMatch and ScanMatch.
To be clear, we adopted this approach using synthetic scanpaths because it was used by
both ScanMatch and MultiMatch to show how effective each method is with controlled
perturbations augmented in each synthetic scanpath sample. Secondly, real world scanpaths
were compared using 53 participants viewing six different paintings exhibiting varying
levels of abstraction (as shown in Figure 1). Accuracy was determined by comparing
match scores; higher scores mean greater matchability. Our hypothesis proposes that
our combinatorial method will return higher scores when matching the gaze patterns of
different participants looking at the same stimulus. For example, we propose that gaze
patterns looking at William Turner’s The Slave Ship will match better with other gaze
patterns looking at the same thing, versus those of Vincent van Gogh’s Starry Night. This
was tested using heatmaps, Cohen’s effect size, and p-value scores to see if there is a
difference between each score of discordant and concordant matches.

4.1. Artificial Scanpath Matching Experiment

Three synthetic scanpaths were generated in order to estimate and compare the
sensitivity of SoftMatch to artificial noise: S1, S2, and S1p. S1 and S2 scanpaths were
populated with 10 randomly generated sequential fixation positions. S1p was a copy of
S1 perturbed with noise from a Gaussian distribution. The noise varied with a standard
deviation (σ) ranging between 10 and 90% of the screen width (W). Duration was a random
number of milliseconds of between 150 and 300 ms per fixation, representing average
fixation duration [43]. Duration was perturbed with noise from a Gaussian distribution
ranging between 10 and 90% of the difference between 150 and 300 ms. Figure 9 illustrates
a random set of S1, S2, and S1p scanpaths plotted in 2D space.

The experiment included five levels of perturbation, including (σ) = 0.1, 0.3, 0.5, 0.7,
and 0.9 of W and 24 unique (S1, S2) pairs. Each level or perturbation was applied 50 times
to each unique S1 scanpath to create an adversarial S1p value, making (S1, S2, S1p). This
created a total number of 1200 samples per (σ) perturbation (24 unique scanpath pairs
multiplied by 50 perturbations per σ), adding up to 6000 samples in total for SoftMatch,
ScanMatch, and each MultiMatch attribute. The match method correctly classified the
perturbed scanpath if the comparison score was lower between S1 and S2 than between S1
and S1p.
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Figure 9. Examples of random scanpaths S1 and S2 illustrating high variability. S1p is shown as a
duplicate of S1 perturbed with σ = 0.1W. This experiment tests for higher similarity between S1 and
S1p than with S2, given the increasing noise. Start and end fixation is represented with I and H,
respectively.

SoftMatch was assigned (δ) = 0.0 in this experiment due to the low number of fixation
points (10 samples), making quantisation unnecessary. The maximum value of all 10 fixation
durations (max(d)) was used to calculate τ. ScanMatch, MultiMatch vector, direction,
length, position, and duration results were included using the default settings in the Matlab
MultiMatch toolbox. It should be noted that this experiment included MultiMatch duration,
which was omitted in the original Dewhurst et al. [4] experiment.

Figure 10 illustrates SoftMatch results against MultiMatch and ScanMatch. Indeed,
it appears that in small perturbation amounts, SoftMatch did not perform comparatively
well with MultiMatch, especially in direction and position. ScanMatch performed better
than SoftMatch with less noise but performed equally or slightly worse in high noise tests.
However, as spatio-temporal noise was increased, SoftMatch did appear to improve over
MultiMatch in duration, approach length, or vector performance. The reason MultiMatch’s
direction and position were good may be because S1p was not perturbed sequentially,
allowing lower sensitivity attributes such as position and direction to isolate themselves
from higher sensitivity attributes such as vector, length, and duration. This kind of isolation
may also be a weakness for MultiMatch, since researchers are left to draw their own
conclusions from five potentially very divergent MultiMatch feature results, as shown in
Figure 10. Furthermore, this experiment reinforced scanpath collinearity by maintaining
the spatio-temporal order of all fixations regardless of perturbation amount. In a task-
based, sequential experiment where participants are rewarded for pursuing a particular
order, this type of experiment would work well. However, in a free-viewing experiment
designed to be a proxy for high cognitive function, where there is no task, perturbations
would include disturbances to the sequence order of fixations, in addition to spatial noise,
exposing a weakness in these methods for matching non-sequential scanpaths. In the
following experiment, we will see how a free viewing experiment will reveal the limitations
of ScanMatch’s and MultiMatch’s reliance on spatial colinearity.
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Figure 10. Twenty-four unique, random scanpath adversaries. S1, S2 including S1p, which is a noise
perturbed version of S1. The levels of (σ) represent S1p perturbation as a measure of percentage of
screen width and milliseconds between 150 and 300 ms. Each set was perturbed 50 times for a total
of 6000 samples.

4.2. Real Scanpath Matching Experiment

To measure the accuracy of our method with real scanpaths, we used an existing
dataset (described in Section 2.1) of 53 eye tracking trials where each person looked at a
painting without any particular task or instruction. Participants were medical professionals
with no formal art training. After all participant scanpaths were recorded, a score was
calculated using SoftMatch, ScanMatch, and MultiMatch by comparing one participant’s
scanpath with another. In some cases, the paintings were the same, or concordant, and in
other cases they were discordant, or different. The list of scores for when the painting was
concordant was compared to the list of scores where they were discordant, to determine
if the scores were different enough to be (p-value < 0.05) significantly so. Success was
defined as scores for concordant results being consistently higher than discordant ones.
Default values were used with SoftMatch, ScanMatch, and MultiMatch.

A clustered heatmap, used in bioinformatics to illustrate clusters in hierarchical ma-
trices, was used to illustrate this point by revealing lower comparison scores between
participants who looked at Stimulus A versus participants who looked at Stimulus B (see
Figure 8). This was done with each axis representing all participant stimuli combinations
along each axis to empirically reveal separability between the groups. p-values (<0.05)
were calculated to determine the statistical significance of separation between concordant
and discordant scores. We conducted 1000 paired t-test trials using 100 randomly picked
(without replacement) scores to calculate the p-value. Cohen’s effect size was used to
determine the substantive significance (effect size > 0.20) and confirm observations seen in
the heatmaps.

An outlier evaluation was done using Newport et al. [37] Higuchi fractal dimension
(HFD) analysis, as shown in Figure 11. The results on the y axis are geometric complexity
values, measured via a scanpath’s HFD. Horizontal lines represent standard deviations
from the mean for all participants viewing the stimulus. A scanpath was deemed a potential
outlier when its fractal dimension is outside two standard deviations from the mean of
all others in a stimulus group. Figure 11 shows potential outliers at Blue Spot P47 and
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Convergence P14 and P51. These scanpaths were inspected during SoftMatch scoring
as potential outliers. Other corroborating anomalous results returned from these three
scanpaths during matching provide a robust justification for their exclusion from further
study. No outliers required removal, and thus all participant scores were used in p-value
results, Cohen’s effect size results, and heatmaps which can be found in the Appendix A.

(a) Blue Spot scanpaths; potential outlier at P47.

(b) Convergence scanpaths; potential outliers P14, P51.

Figure 11. Scatter plot illustrating the geometric complexity (y axis) of each participant’s scanpath
(x axis), for the purpose of outlier detection using methods from Newport et al. [37]. The black
horizontal line in the approximate centre of the plot represents the mean geometric complexity. Red
dotted lines represent either a 1× or a 2× standard deviation from the mean.

Reliability and Uniformity

The clustered heatmap seen for SoftMatch in Figure 12 illustrates a high degree of
visual separability in matching results for both pale low scores and darker high ones.



Sensors 2022, 22, 7438 19 of 46

A decreased magnitude of difference for un-matched scanpaths (e.g., Convergence and
Blue Spot) was to be expected, since matching stimulus scores may contain greater variance
(e.g., 154, 115, 87. . . ) compared to unmatched stimulus scores which are always close
to zero (e.g., 5, 8, 0. . . ). As shown in Table 1, SoftMatch returned the highest number of
comparisons that were statistically significant—24 out of 30 returned a p-value less than
0.05; and the highest number of comparisons that were substantively significant—27 out of
30 returned a Cohen’s effect size greater than 0.20. The effect sizes can be visually validated
by noticing the chequered pattern illustrated in the complete list of heatmaps found in
the Appendix A.

ScanMatch also performed well, but was slightly behind SoftMatch in statistical and
substantive significance, falling two samples behind in both. A view of the detailed
breakdowns (please see Appendix A) by ScanMatch and SoftMatch, there was a shared
difficulty in establishing the magnitudes of differences between concordant and discordant
scores for Convergence versus Blue Poles and Convergence versus Starry Night. ScanMatch
lost to SoftMatch in tests of Blue Poles versus Pasiphae, Convergence versus Pasiphae,
and Convergence versus The Slave Ship. However, ScanMatch did manage a better p-value
against SoftMatch when comparing Starry Night versus The Slave Ship, though SoftMatch
missed the 0.05 cutoff here by 0.0024. All results of the analysis can be found in the
Appendix A.

Conversely, the clustered heatmap for MultiMatch seen in Figure 12 demonstrates the
difficulty of comparing natural scanpaths in a free-form, unstructured viewing experiment.
This is consistent with other stimuli, and a complete set of heatmaps can be found in
the Appendix A. Multiple participant matches appear to have no MultiMatch scores at
all, which may be attributed to the nonlinear and unstructured nature of the viewing
experiment. Indeed, Table 1 illustrates how poorly MultiMatch results did compared to
SoftMatch and ScanMatch in both p-value and Cohen’s effect size. MultiMatch vector and
direction did better than other MultiMatch results, which may have been due to erratic
length, position, and direction behaviours.

A look at HFD measurements in Figure 11 indicates that there is no correlation between
scanpaths which match poorly in the MultiMatch results shown in Figure 12 and those
with geometric complexities outside two standard deviations from the mean. However,
SoftMatch was able to find Convergence P14 displayed in Figure 12 as a white line, meaning
it is a very poorly matching scanpath, but did not detect Blue Spot P47 or Convergence
P51. Corroborating evidence of outlier status using the different approaches in SoftMatch
and HFD outlier detection by Newport et al. [37] may provide a solid basis for exclusion of
Convergence P14 from further study.

Figure 12. Cont.
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Figure 12. SoftMatch, ScanMatch, and MultiMatch heatmaps. Stimuli matched are Bernard Cohen’s
Blue Spot (1966) and Jackson Pollock’s Convergence (1952). Darker values indicate higher matches.
Complete heatmaps can be found in the Appendix A.

5. Discussion

The results indicate that a combinatorial approach, also used in amino acid matching,
can produce improvements with scanpaths. By using six paintings as ground truth, a clear
distinction can be made between what should be a high-scoring match between identical
paintings and a low-scoring match between two different ones. The high- and low-scoring
match results are shown to be statistically distinct during a rigorous t-test and returned
robust Cohen’s effect sizes, indicating scanpath matching had statistical (p-value > 0.05)
and substantive (>0.20) significance, as shown in Table 1.

The implementation of Hilbert distances instead of traditional 2D grids is instrumental
in the increased precision of quantisation during matching. This is due to both a reduction
of errors where two points are on either side of a grid boundary, causing over-quantisation,
and also increased flexibility for optimisation, where quantisation can be adjusted dur-
ing method execution, without the need for pre-processing with, e.g., gridded methods.
However, we did not provide a formal ablation study where we replaced our Hilbert and
time (h, t) distance metric with other Euclidean (x, y) or alternatively quantised (q(x), q(y))
methods because we chose to focus on its comparison to string editing techniques. An al-



Sensors 2022, 22, 7438 21 of 46

ternative method to discrete Frechet distance measurement using weighted and optimised
τ and δ values could provide better results. For example, using a support vector machine
(SVM), the SOFT segments can be implemented as multidimensional feature spaces for
each stimulus observation. Training would fit a margin around these features, separating it
from others during a binary classification task. However, this is reserved for future work,
where this combinatorial approach could provide a baseline for more advanced machine
learning based approaches.

SoftMatch’s conversion of scanpaths into axes of Hilbert distance over a time dimen-
sion would, at first glance, appear to be a good match with RQA analysis. It uses time to
detect unstable periodic orbits and transitions between repeating clusters and can create
cross recurrence plots to discover similarities between processes. However, the clue to
its limitation with scanpaths lies in an example Webber [31] used describing RQA ECG
signal analysis. The signal, being a periodic 1D representation of voltage as a function
of time, has a regular and consistently measured time dimension. Comparing this to
scanpaths yields a similarity where eye movements are captured over time as fixation
points, with the important difference that fixations are inconsistently spaced along the
time dimension; some fixations linger for very long or very short periods. This means
that implementing RQA requires the interpolation of fixation points which will diminish
the statistical significance of lingering fixation points and fleeting glances that may yield
important clues when comparing participants’ gaze sequences. For this reason, the method
used by this paper uses a curve to describe each windowed scanpath segment, and the
distance between two curved segments as a measure of its similarity.

The poor performance of SoftMatch in the simulated scanpath experiment, used by
both ScanMatch and MultiMatch to demonstrate their accuracy, exposes serious limitations.
However, the question of whether the problems are inherent in the experiment methodology
or in the SoftMatch algorithm should be explored. The perturbation methods used in the
ScanMatch and MultiMatch experiment only change the spatial offset from its twin, not the
sequential order. This perturbation may describe noise introduced by machine alignment
drift but does not accurately simulate the difference in perception between two different
participants in a free-viewing experiment. This may describe why SoftMatch performed
better at real scanpath comparison while being poor at matching simulated short-length
random scanpaths. A clinical exploration of the role short sequenced analysis techniques
such as SoftMatch play in measuring free-form visual search tasks can paint a complete
picture of how it fits into expertise and perception. Indeed, methods such as ScanMatch
and MultiMatch may provide compliments for investigating complex visual field patterns
in addition to SoftMatch’s analysis of free-look similarity during a scanpath analysis.

This experiment assumed that scanpaths viewing the same stimulus would be more
similar than between different stimuli, and indeed the results have shown that this is
the case. However, these similarities may be driven by bottom-up saliency mechanisms,
which were not explored in this research. An interesting follow-up to this research should
include consistencies in strategic top-down aspects, where a task is performed, unlike the
free-viewing approach used to obtain data for this research. Furthermore, an exploration
of match consistency within and between participants could determine how consistently
these saliency mechanisms are maintained.

Future work exploring the correlation between the length of τ values and bottom-
up versus top-down processing may identify more complex fixation patterns in longer
τ segments, while revealing shared bottom-up characteristics between participants with
similar expertise. For example, expert radiographers may return high match scores with
beginners when using shorter τ values, but may match poorly with higher τ values due
to different habits with back-tracking, re-reading, etc. In this case, shorter segments
returned from smaller τ values capture all the similar bottom-up search results, while
longer segments from higher τ values capture top-down complex fixation patterns.
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6. Conclusions

In this paper, we introduced a novel approach to reducing 2D scanpaths into 1D Hilbert
distances to increase quantisation performance, preserve locality, and reduce complexity
when integrating the temporal dimension. This approach initially provided poor results
when using a small number of synthetic scanpaths in an experiment using ScanMatch and
MultiMatch to test noise performance. However, it performed well in free-look scanpath
testing, showing comparatively high substantive significance (>0.20) through Cohen’s
effect size results, as seen in Table 1, and well defined separability seen through the
magnitudes of differences in clustered heatmap quadrants in Figure 12, and through
p-value results in Table 1.

Future work may involve investigating scanpath separability using more nuanced
examples of different stimuli. For example, do people view Jackson Pollock’s Convergence
painting differently to his Blue Poles one, even though they appear to be very similarly
random? If these two apparently random paintings have separable scanpath patterns,
what does this say about subconscious human perception? Furthermore, instead of an
examination of how the same group views two different stimuli, as was done in this experi-
ment, an examination could be made of how two different groups view the same stimulus.
An expert and novice group could have their scanpaths matched when viewing the same
stimulus to search for separability. For example, MRI scans which cause larger differences
between scanpath matches in experts and novices may be used to address learning gaps
when dealing with certain types of pathology. Most importantly, this method acknowledges
the anisotropic nature of the human gaze by incorporating a combinatorial approach to
scanpath matching, thereby showing results which improve upon the limitations imposed
by traditional collinear methods.
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Appendix A

Figure A1. SoftMatch, ScanMatch, and MultiMatch heatmaps for empirical evaluation. Stimuli
matched are Jackson Pollock’s Blue Poles (1952) and Bernard Cohen’s Blue Spot (1966).



Sensors 2022, 22, 7438 24 of 46

Figure A2. SoftMatch, ScanMatch, and MultiMatch heatmaps for empirical evaluation. Stimuli
matched are Jackson Pollock’s Blue Poles (1952) and Jackson Pollock’s Convergence (1952).
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Figure A3. SoftMatch, ScanMatch, and MultiMatch heatmaps for empirical evaluation. Stimuli
matched are Jackson Pollock’s Blue Poles (1952) and Jackson Pollock’s Pasiphae (1943).
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Figure A4. SoftMatch, ScanMatch, and MultiMatch heatmaps for empirical evaluation. Stimuli
matched are Jackson Pollock’s Blue Poles (1952) and Vincent van Gogh’s Starry Night (1889).
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Figure A5. SoftMatch, ScanMatch, and MultiMatch heatmaps for empirical evaluation. Stimuli
matched are Jackson Pollock’s Blue Poles (1952) and William Turner’s The Slave Ship (1840).
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Figure A6. SoftMatch, ScanMatch, and MultiMatch heatmaps for empirical evaluation. Stimuli
matched are Bernard Cohen’s Blue Spot (1966) and Jackson Pollock’s Convergence (1952).
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Figure A7. SoftMatch, ScanMatch, and MultiMatch heatmaps for empirical evaluation. Stimuli
matched are Bernard Cohen’s Blue Spot (1966) and Jackson Pollock’s Pasiphae (1943).
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Figure A8. SoftMatch, ScanMatch, and MultiMatch heatmaps for empirical evaluation. Stimuli
matched are Bernard Cohen’s Blue Spot (1966) and Vincent van Gogh’s Starry Night (1889).
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Figure A9. SoftMatch, ScanMatch, and MultiMatch heatmaps for empirical evaluation. Stimuli
matched are Bernard Cohen’s Blue Spot (1966) and William Turner’s The Slave Ship (1840).
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Figure A10. SoftMatch, ScanMatch, and MultiMatch heatmaps for empirical evaluation. Stimuli
matched are Jackson Pollock’s Convergence (1952) and Jackson Pollock’s Pasiphae (1943).
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Figure A11. SoftMatch, ScanMatch, and MultiMatch heatmaps for empirical evaluation. Stimuli
matched are Jackson Pollock’s Convergence (1952) and Vincent van Gogh’s Starry Night (1889).
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Figure A12. SoftMatch, ScanMatch, and MultiMatch heatmaps for empirical evaluation. Stimuli
matched are Jackson Pollock’s Convergence (1952) and William Turner’s The Slave Ship (1840).
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Figure A13. SoftMatch, ScanMatch, and MultiMatch heatmaps for empirical evaluation. Stimuli
matched are Jackson Pollock’s Pasiphae (1943) and Vincent van Gogh’s Starry Night (1889).
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Figure A14. SoftMatch, ScanMatch, and MultiMatch heatmaps for empirical evaluation. Stimuli
matched are Jackson Pollock’s Pasiphae (1943) and William Turner’s Starry Night (1889).
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Figure A15. SoftMatch, ScanMatch, and MultiMatch heatmaps for empirical evaluation. Stimuli
matched are Vincent van Gogh’s Starry Night (1889) and William Turner’s The Slave Ship (1840).
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Table A1. SoftMatch results. Match pair (e.g., Blue Poles vs. Blue Spot) where AvA, AvB, and BvB
represent match scores based on a comparison of the one member of the pair with itself, or the first
member of the pair (A) (e.g., Blue Poles) and the second member, B (e.g., Blue Spot). The effect size
for (AvA vs. AvA) and (BvB vs. BvB) in all cases was zero.

SoftMatch p-Value Effect Size

Match Pair AvA
vs. AvA

AvA
vs. AvB

BvB
vs. AvB

BvB
vs. BvB

AvA
vs. AvB

BvB
vs. AvB

Blue Poles
vs. Blue Spot 0.49465 0.017122 1.93 × 10−9 0.52246 0.43011 1.0109

Blue Poles
vs. Convergence 0.49347 0.25058 0.30436 0.51081 0.19909 0.17048

Blue Poles
vs. Pasiphae 0.48679 0.0087026 0.0022738 0.50324 0.43256 0.54812

Blue Poles
vs. Starry Night 0.4884 0.097013 0.02734 0.50217 0.29583 0.3799

Blue Poles
vs. Slave Ship 0.49834 0.036134 0.0073515 0.50448 0.38241 0.53199

Blue Spot
vs. Convergence 0.50753 1.44 × 10−9 0.021894 0.51176 1.0166 0.45826

Blue Spot
vs. Pasiphae 0.51529 6.16 × 10−9 0.021169 0.52246 1.0056 0.47291

Blue Spot
vs. Starry Night 0.52459 1.77 × 10−9 0.0067916 0.50401 1.0136 0.50545

Blue Spot
vs. Slave Ship 0.50692 7.68 × 10−10 0.0001946 0.5177 1.0438 0.83333

Convergence
vs. Pasiphae 0.51362 0.015839 0.0033566 0.49944 0.43424 0.53429

Convergence
vs. Starry Night 0.51498 0.38295 0.16885 0.49452 0.12733 0.2462

Convergence
vs. Turner 0.50819 0.046322 0.0097503 0.50245 0.3789 0.52794

Pasiphae
vs. Starry Night 0.50071 0.0028103 0.0024894 0.49816 0.54522 0.51281

Pasiphae
vs. Slave Ship 0.52015 0.0059023 0.0064706 0.50023 0.62055 0.68171

Starry Night
vs. Slave Ship 0.49414 0.052357 0.046021 0.51818 0.36831 0.40994
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Table A2. ScanMatch results. Match pair (e.g., Blue Poles vs. Blue Spot), where AvA, AvB, and BvB
represent match scores based on a comparison of the one member of the pair with itself, or the first
member of the pair (A) (e.g., Blue Poles) and the second member, B (e.g., Blue Spot). The effect size
for (AvA vs. AvA) and (BvB vs. BvB) in all cases was zero.

ScanMatch p-Value Effect Size

Match Pair AvA
vs. AvA

AvA
vs. AvB

BvB
vs. AvB

BvB
vs. BvB

AvA
vs. AvB

BvB
vs. AvB

Blue Poles
vs. Blue Spot 0.50344 0.0011269 1.70 × 10−15 0.50561 0.63708 1.6689

Blue Poles
vs. Convergence 0.50355 0.28329 0.51496 0.50676 0.1836 −0.0080159

Blue Poles
vs. Pasiphae 0.53182 9.86 × 10−5 0.20566 0.52676 0.82049 0.2403

Blue Poles
vs. Starry Night 0.49714 0.022621 0.48565 0.49282 0.45832 0.068167

Blue Poles
vs. Slave Ship 0.50997 0.00019244 0.0028972 0.51166 0.74308 0.60245

Blue Spot
vs. Convergence 0.51822 5.66 × 10−17 0.0033476 0.50095 1.7598 0.57523

Blue Spot
vs. Pasiphae 0.5194 6.47 × 10−27 2.70 × 10−7 0.51124 2.3258 0.9808

Blue Spot
vs. Starry Night 0.50152 1.08 × 10−21 2.76 × 10−5 0.52595 2.0374 0.80002

Blue Spot
vs. Slave Ship 0.51926 3.48 × 10−25 4.82 × 10−11 0.49876 2.2556 1.2616

Convergence
vs. Pasiphae 0.50973 0.002536 0.12405 0.51374 0.62166 0.29488

Convergence
vs. Starry Night 0.50887 0.41546 0.5139 0.49884 0.11776 −0.047047

Convergence
vs. Turner 0.51203 0.056072 0.010194 0.51469 0.38004 0.48823

Pasiphae
vs. Starry Night 0.49034 0.0065178 0.00018246 0.51879 0.5344 0.75368

Pasiphae
vs. Slave Ship 0.51323 0.0014275 1.80 × 10−7 0.52469 0.61468 1.0137

Starry Night
vs. Slave Ship 0.50651 0.040815 0.0011885 0.50219 0.40999 0.63488
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Table A3. MultiMatch vector results. Match pair (e.g., Blue Poles vs. Blue Spot), where AvA, AvB,
and BvB represents a match score based on a comparison of the one member of the pair with itself,
or the first member of the pair (A) (e.g., Blue Poles) and the second member, B (e.g., Blue Spot).
The effect size for (AvA vs. AvA) and (BvB vs. BvB) in all cases was zero.

MultiMatch p-Value Effect Size

Match Pair AvA
vs. AvA

AvA
vs. AvB

BvB
vs. AvB

BvB
vs. BvB

AvA
vs. AvB

BvB
vs. AvB

Blue Poles
vs. Blue Spot 0.51646 0.0043146 0.498 0.5067 0.57263 −0.040202

Blue Poles
vs. Convergence 0.50971 0.47197 0.27019 0.49911 −0.069875 0.20231

Blue Poles
vs. Pasiphae 0.4921 0.25568 0.4147 0.53258 0.20738 −0.11029

Blue Poles
vs. Starry Night 0.5176 0.5016 0.31079 0.51869 −0.017362 0.15487

Blue Poles
vs. Slave Ship 0.51095 0.11803 0.49355 0.50809 0.30315 −0.021785

Blue Spot
vs. Convergence 0.50427 0.014789 0.049586 0.50379 −0.49709 0.37599

Blue Spot
vs. Pasiphae 0.50776 0.14077 0.51017 0.51587 −0.27385 0.022704

Blue Spot
vs. Starry Night 0.51985 0.024881 0.10708 0.48784 −0.45473 0.31452

Blue Spot
vs. Slave Ship 0.50655 0.23543 0.48601 0.51434 −0.2105 0.062971

Convergence
vs. Pasiphae 0.50585 0.061811 0.20496 0.51397 0.35307 −0.24216

Convergence
vs. Starry Night 0.51661 0.46029 0.51245 0.50932 0.077057 −0.010214

Convergence
vs. Turner 0.50548 0.016018 0.37578 0.50827 0.45496 −0.12792

Pasiphae
vs. Starry Night 0.51884 0.29382 0.12968 0.49505 −0.19573 0.28906

Pasiphae
vs. Slave Ship 0.51254 0.46309 0.47513 0.50355 0.085018 0.066298

Starry Night
vs. Slave Ship 0.51458 0.057846 0.402 0.5121 0.35997 −0.1197
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Table A4. MultiMatch direction results. Match pair (e.g., Blue Poles vs. Blue Spot), where AvA,
AvB, and BvB represents a match score based on a comparison of the one member of the pair with
itself, or the first member of the pair (A) (e.g., Blue Poles) and the second member, B (e.g., Blue Spot).
The effect size for (AvA vs. AvA) and (BvB vs. BvB) in all cases was zero.

MultiMatch p-Value Effect Size

Match Pair AvA
vs. AvA

AvA
vs. AvB

BvB
vs. AvB

BvB
vs. BvB

AvA
vs. AvB

BvB
vs. AvB

Blue Poles
vs. Blue Spot 0.50536 0.00076724 0.47414 0.51184 0.68139 0.063733

Blue Poles
vs. Convergence 0.51416 0.48297 0.32656 0.51671 −0.054654 0.16213

Blue Poles
vs. Pasiphae 0.52205 0.25351 0.42004 0.50264 0.20562 −0.10814

Blue Poles
vs. Starry Night 0.52086 0.49116 0.37895 0.51398 −0.040816 0.13397

Blue Poles
vs. Slave Ship 0.52111 0.13765 0.48846 0.49619 0.28664 0.036677

Blue Spot
vs. Convergence 0.50747 0.047925 0.022843 0.49426 −0.38105 0.43671

Blue Spot
vs. Pasiphae 0.502 0.26971 0.45286 0.51357 −0.19619 0.084797

Blue Spot
vs. Starry Night 0.51509 0.09363 0.022778 0.50844 −0.325 0.46224

Blue Spot
vs. Slave Ship 0.51024 0.40494 0.25003 0.52279 −0.12066 0.2052

Convergence
vs. Pasiphae 0.50158 0.10764 0.2046 0.52499 0.30247 −0.24022

Convergence
vs. Starry Night 0.51122 0.49962 0.50691 0.5221 0.025064 −0.0096754

Convergence
vs. Turner 0.49325 0.034687 0.46908 0.52469 0.40881 −0.055778

Pasiphae
vs. Starry Night 0.50198 0.26985 0.12844 0.49924 −0.19867 0.29104

Pasiphae
vs. Slave Ship 0.51128 0.49158 0.40616 0.50761 0.066651 0.11554

Starry Night
vs. Slave Ship 0.50214 0.066823 0.47884 0.52341 0.35815 −0.057239
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Table A5. MultiMatch length results. Match pair (e.g., Blue Poles vs. Blue Spot), where AvA, AvB,
and BvB represents a match score based on a comparison of the one member of the pair with itself,
or the first member of the pair (A) (e.g., Blue Poles) and the second member, B (e.g., Blue Spot).
The effect size for (AvA vs. AvA) and (BvB vs. BvB) in all cases was zero.

MultiMatch p-Value Effect Size

Match Pair AvA
vs. AvA

AvA
vs. AvB

BvB
vs. AvB

BvB
vs. BvB

AvA
vs. AvB

BvB
vs. AvB

Blue Poles
vs. Blue Spot 0.50903 0.00047322 0.47484 0.51962 0.68139 0.063733

Blue Poles
vs. Convergence 0.51485 0.49168 0.32864 0.52348 −0.054654 0.16213

Blue Poles
vs. Pasiphae 0.51909 0.2553 0.42738 0.51229 0.20562 −0.10814

Blue Poles
vs. Starry Night 0.50636 0.49683 0.38311 0.50607 −0.040816 0.13397

Blue Poles
vs. Slave Ship 0.49402 0.13393 0.49078 0.50617 0.28664 0.036677

Blue Spot
vs. Convergence 0.50315 0.048395 0.024374 0.51413 −0.38105 0.43671

Blue Spot
vs. Pasiphae 0.49523 0.28056 0.44822 0.52274 −0.19619 0.084797

Blue Spot
vs. Starry Night 0.51181 0.082202 0.0179 0.51982 −0.325 0.46224

Blue Spot
vs. Slave Ship 0.51974 0.39374 0.27705 0.51168 −0.12066 0.2052

Convergence
vs. Pasiphae 0.51211 0.1106 0.19591 0.50937 0.30247 −0.24022

Convergence
vs. Starry Night 0.51384 0.49992 0.51539 0.49989 0.025064 −0.0096754

Convergence
vs. Turner 0.50992 0.038488 0.48964 0.5206 0.40881 −0.055778

Pasiphae
vs. Starry Night 0.51678 0.25618 0.13211 0.51369 −0.19867 0.29104

Pasiphae
vs. Slave Ship 0.52332 0.47788 0.41083 0.53226 0.066651 0.11554

Starry Night
vs. Slave Ship 0.50833 0.06875 0.49455 0.51188 0.35815 −0.057239
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Table A6. MultiMatch position results. Match pair (e.g., Blue Poles vs. Blue Spot), where AvA,
AvB, and BvB represents a match score based on a comparison of the one member of the pair with
itself, or the first member of the pair (A) (e.g., Blue Poles) and the second member, B (e.g., Blue Spot).
The effect size for (AvA vs. AvA) and (BvB vs. BvB) in all cases was zero.

MultiMatch p-Value Effect Size

Match Pair AvA
vs. AvA

AvA
vs. AvB

BvB
vs. AvB

BvB
vs. BvB

AvA
vs. AvB

BvB
vs. AvB

Blue Poles
vs. Blue Spot 0.51062 0.0052031 0.49423 0.51567 0.5562 −0.028059

Blue Poles
vs. Convergence 0.51446 0.50589 0.36054 0.50747 −0.043984 0.1498

Blue Poles
vs. Pasiphae 0.50424 0.15594 0.39235 0.51459 0.26577 −0.12215

Blue Poles
vs. Starry Night 0.51571 0.50176 0.34 0.49788 −0.0098568 0.15814

Blue Poles
vs. Slave Ship 0.5128 0.10252 0.50838 0.50627 0.31224 0.023418

Blue Spot
vs. Convergence 0.50948 0.018466 0.11466 0.50606 −0.46644 0.30167

Blue Spot
vs. Pasiphae 0.50814 0.23967 0.52385 0.5111 −0.21105 0.0072367

Blue Spot
vs. Starry Night 0.50859 0.022024 0.13395 0.50271 −0.44005 0.28895

Blue Spot
vs. Slave Ship 0.51514 0.30912 0.43361 0.51145 −0.17996 0.10605

Convergence
vs. Pasiphae 0.49665 0.04377 0.216 0.50669 0.3914 −0.22726

Convergence
vs. Starry Night 0.50309 0.51104 0.49386 0.51644 0.021965 0.014402

Convergence
vs. Turner 0.5155 0.026809 0.47618 0.53044 0.41429 −0.069836

Pasiphae
vs. Starry Night 0.5046 0.26047 0.059964 0.52656 −0.20302 0.35903

Pasiphae
vs. Slave Ship 0.51943 0.47879 0.4013 0.52536 0.05203 0.12469

Starry Night
vs. Slave Ship 0.51461 0.075879 0.45686 0.52561 0.34743 −0.086924
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Table A7. MultiMatch duration results. Match pair (e.g., Blue Poles vs. Blue Spot), where AvA,
AvB, and BvB represents a match score based on a comparison of the one member of the pair with
itself, or the first member of the pair (A) (e.g., Blue Poles) and the second member, B (e.g., Blue Spot).
The effect size for (AvA vs. AvA) and (BvB vs. BvB) in all cases was zero.

MultiMatch p-Value Effect Size

Match Pair AvA
vs. AvA

AvA
vs. AvB

BvB
vs. AvB

BvB
vs. BvB

AvA
vs. AvB

BvB
vs. AvB

Blue Poles
vs. Blue Spot 0.50582 0.13371 0.48443 0.49847 0.2905 −0.055539

Blue Poles
vs. Convergence 0.50681 0.33123 0.20014 0.50802 −0.15286 0.24122

Blue Poles
vs. Pasiphae 0.51237 0.34896 0.52742 0.509 0.14468 0.0018035

Blue Poles
vs. Starry Night 0.51217 0.51054 0.23939 0.50787 −0.039226 0.21395

Blue Poles
vs. Slave Ship 0.50699 0.3982 0.48716 0.51708 0.13051 0.062887

Blue Spot
vs. Convergence 0.50125 0.025793 0.15516 0.51709 −0.43713 0.25609

Blue Spot
vs. Pasiphae 0.50506 0.30493 0.49752 0.52327 −0.17356 0.029436

Blue Spot
vs. Starry Night 0.50772 0.092893 0.20763 0.5139 −0.3277 0.24011

Blue Spot
vs. Slave Ship 0.5088 0.29723 0.4573 0.49748 −0.18794 0.074387

Convergence
vs. Pasiphae 0.53091 0.10004 0.23542 0.51654 0.30668 −0.20982

Convergence
vs. Starry Night 0.52213 0.44653 0.50062 0.50868 0.089141 −0.040873

Convergence
vs. Turner 0.51872 0.14004 0.40955 0.5083 0.28778 −0.12467

Pasiphae
vs. Starry Night 0.51407 0.2444 0.36072 0.5099 −0.21323 0.15353

Pasiphae
vs. Slave Ship 0.51752 0.50296 0.49332 0.51521 −0.022134 0.044754

Starry Night
vs. Slave Ship 0.50827 0.22181 0.46688 0.53079 0.22471 −0.065455
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